
THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale Information Structures Systèmes

Unité de recherche UMR5506 (LIRMM)

Algorithms for graph modification problems:
towards generality and efficiency

Algorithmes pour des problèmes de modification de
graphes : Généralisation et efficacité

Présentée par Laure Morelle
le 23 septembre 2025

Sous la direction de Ignasi SAU VALLS et Dimitrios M. THILIKOS

Devant le jury composé de

Frédéric HAVET, DR., Université Côte d’Azur, CNRS, Inria, I3S Président du jury
Robert GANIAN, A. Pr., Vienna University of Technology Rapporteur
Eunjung KIM, A. Pr., Korea Advanced Institute of Science & Technology Rapporteuse
Archontia GIANNOPOULOU, A. Pr., National & Kapodistrian University of
Athens

Examinatrice

Petr GOLOVACH, Pr., University of Bergen Examinateur
Ignasi SAU VALLS, DR., LIRMM, Université de Montpellier, CNRS Co-directeur de thèse
Dimitrios M. THILIKOS, DR., LIRMM, Université de Montpellier, CNRS Co-directeur de thèse

Remerciements

I cannot start my acknowledgments by anyone else than my two supervisors, Ignasi Sau and Dimitrios
Thilikos. Thank you Dimitrios for those great and enlightening conversation about research and
theory making, and for always encouraging me to travel and visit researchers. Thank you Ignasi for
your always careful reading of my writings, and for your great support me whenever I wished to
travel. It is often said that a good PhD starts with good PhD supervisors, and I think it would be
difficult to find better supervisors than the two of you.

I would also like to thank the members of my defense committee: Robert Ganian, Archontia
Giannopoulou, Petr Golovach, Frédéric Havet, and Eunjung Kim, with a special mention to Robert
Ganian and Eunjung Kim for accepting to review this thesis, and to Frédéric Havet for accepting to
preside this committee. I am deeply grateful for your time and your effort.

I wish to express my thanks to all my coauthors: Ignasi and Dimitrios, of course, but also Davi
de Andrade, Júlio Araújo, Matthias Bentert, Gaétan Berthe, Marthe Bonamy, Nicolas Bousquet,
Quentin Chuet, Yoann Coudert–Osmont, Alexander Dobler, Lars Jaffke, Victor Falgas–Ravry, Fedor
Fomin, Petr Golovach, Amaury Jacques, Timothé Picavet, Evangelos Protopapas, Amadeus Reinald,
Mathis Rocton, Alexander Scott, Ana Silva, Giannos Stamoulis, and Sebastian Wiederrecht.

Mais une thèse ne se réduit pas à écrire des papiers : elle est construite sur des rencontres. Je
voudrais remercier Chien-Chung Huang, qui m’a fait découvrir le monde de la recherche, ainsi que
Pierre Aboulker, qui m’a introduit à la complexité paramétrée et qui m’a orienté vers Montpellier
pour la thèse.

A deep thank to Petr Golovach and Fedor Fomin, who invited me twice to Bergen. I love the
country, the city, the mountains, the team. Thank you both, as well as Matthias Bentert, for your
time and the great research discussions.

Thank you Sebastian Wiederrecht and Sang-il Oum for hosting and supporting my visit to
the IBS in South Korea. I enjoyed my three weeks there with all the team members. Thank you
Sebastian in particular, for those fruitful discussions, that finally put an end to our project.

Merci Marthe pour m’avoir invité à Bordeaux. J’y ai passé un excellent moment, à travailler
avec toi et Timothé, ainsi qu’à rencontrer les membres de l’équipe.

Je voudrais aussi bien évidemment remercier les membres de l’équipe AlGCo. Merci à Fanny,
Vagelis, Giannos et Sebastian, qui m’ont accuelli à mon arrivée dans l’équipe. Merci à mes camarades
de thèse, Gaétan, Amadeus et Yann, ainsi que ceux qui ont suivi (thésards et postdocs), Hugo,
Simon, Raul, Guilherme, et à tous les stagiaires. On a passé de grands moments ensemble. Merci
aussi à tous les membres permanents de l’équipe pour avoir toujours su garder l’ambiance conviviale

i

ii

et chaleureuse: William, Daniel, Petru, Marin, Mathieu, Stéphane, Mickaël, Christophe, Alexandre,
Emeric, Pascal (and Matthieu). Merci aussi à l’équipe administrative, et notamment Nicolas
Serrurier-Gourvès, best secretaire ever: tu nous manques beaucoup. Merci à toutes les autres que
j’ai pu rencontrer au LIRMM ou à l’Université de Montpellier, et que je ne peux pas tous citer.

Thank you to all the people I met in the following workshops, conferences, and meetings: APGA
2022, ICGT 2022, GROW 2022, CoA 2022, JGA 2022, LoGAlg 2022, FPT Fest 2023, ICALP 2023,
ALGO 2023, STRUG Bootcamp 2023, JGA 2023, JCALM 2023, Algoridam workshop, and JGA
2024. C’est notamment super de rencontrer la communauté française des graphes chaque année aux
JGA.

Merci également à mes amis de longue date avec qui j’ai gardé le contact malgré la distance, aux
nouveaux amis que j’ai pu me faire à Montpellier autour de jeux de société, et à toutes les personnes
formidables que j’y ai croisées.

Merci à tous ceux que j’ai oubliés de mentionner et que je regretterai plus tard.
Et bien sûr pour finir, merci à ma famille, mes grands-parents, mes parents, ma sœur.

Abstract

In this thesis, we study graph modification problems, where the goal is to do the minimum amount of
modifications of some kind to an input graph so that the modified graph belongs to some target graph
class H. Many well-known problems on graphs can be expressed as graph modification problems,
hence the considerable attention given to this subject.

More particularly, we study graph modification problems under the framework of parameterized
complexity, which focuses on expressing the running time of an algorithm not only in terms of the
size of the input n, but also in terms of other parameters. The parameter that we consider here
is usually the size k of the modulator (i.e., the modified vertices of the input graph), or another,
more refined, measure on the modulator. More particularly, we look for FPT-algorithms, that is,
algorithms running in time f(k) · nc for some function f and some constant c.

Graph modification problems have already been extensively studied. In particular, there exist
algorithmic meta-theorems solving a considerable number of graph modification problems in time
f(k) · n2 (for some huge function f) when the target graph class H is minor-closed and the so-called
bidimensionality of the modulator is bounded by k.

The results of this thesis are divided into three parts.
In the first part, we give an example of the use of bounded bidimensionality modulators via a

structure theorem: we prove that a graph that excludes an edge-apex graph (a graph that is planar
after removing an edge) as a minor is a clique-sum of graphs that can be embedded in the projective
plane after doing identifications in a set of vertices of bounded bidimensionality.

In the second part, we design FPT-algorithms with explicit and moderate parametric dependencies
for many graph modification problems that are already solvable using algorithmic meta-theorems, in
particular improving the dependence on k. We study most particularly problems where the target
class is minor-closed, the measure on the modulator is its size or the treedepth of its torso, and the
modification operation is the identification of vertices (which is the modification operation of the
aforementioned structure theorem), the deletion of vertices (which is the most studied modification
operation), or even any combination of vertex identifications/deletions and edge additions/deletions.

In the third and last part, we develop new techniques to solve graph modification problems beyond
the scope of current algorithmic meta-theorems. As such, we provide a general dynamic programming
scheme solving problems parameterized by bipartite treewidth, a parameter generalizing both the
treewidth and the odd cycle transversal number and that is closely related to odd-minor-closed
graph classes (which are more general than minor-closed graph classes). Furthermore, we design a
new irrelevant vertex technique that we use to solve graph modification problems beyond the limit
of bidimensionality.
Keywords: Graph Modification Problems, Parameterized Complexity, Graph Minor Theory,
Structure Theorems.

iii

Résumé

Dans cette thèse, nous étudions des problèmes de modification de graphes, dont le but est d’appliquer
un minimum de modifications d’un certain type au graphe donné en entrée, de sorte que le graphe
résultant appartienne à une certaine classe de graphes H cible. Beaucoup de problèmes connus
peuvent être exprimés comme des problèmes de modification de graphes, d’où l’intérêt considérable
porté au sujet.

Plus précisément, nous étudions des problèmes de modification de graphes sous le point de vue
de la complexité paramétrée, qui consiste à exprimer le temps d’exécution d’un algorithme non
seulement en fonction de la taille n de l’entrée, mais aussi en fonction d’autres paramètres. Le
paramètre considéré ici est généralement la taille k du modulateur (i.e., les sommets du graphe donné
en entrée qui sont modifiés), ou une autre mesure sur le modulateur. Nous cherchons principalement
des algorithmes dit FPT, c’est-à-dire qui terminent en temps f(k) · nc pour une fonction f et une
constante c.

Beaucoup de résultats existent déjà concernant les problèmes de modification de graphes. En
particulier, il existe des méta-théorèmes algorithmiques qui résolvent un nombre considérable de
problèmes de modification de graphes en temps f(k) · n2 (où f est une fonction croissant très
rapidement) quand la classe cible H est close par mineur et un paramètre nommé bidimensionnalité
est borné par k pour le modulateur.

Les résultats de la thèse sont divisés en trois parties.
Dans une première partie, nous prouvons un théorème de structure qui peut s’énoncer en terme

d’identification de sommets dans un ensemble de bidimensionnalité bornée.
Dans une seconde partie, nous construisons des algorithmes FPT avec une meilleure complexité

(notamment concernant la dépendance en k) pour de nombreux problèmes de modification de graphes
qui sont déjà résolubles par des méta-théorèmes algorithmiques. Nous étudions des problèmes où
la classe cible H est close par mineur, la mesure sur le modulateur est sa taille ou la profondeur
arborescente de son torse, et l’opération de modification est l’identification de sommets (comme pour
le théorème de structure), la suppression de sommets, ou même parfois n’importe quelle combinaison
de suppression/identification de sommets et de suppression/addition d’arêtes.

Dans une troisième partie, nous développons de nouvelles techniques pour résoudre des problèmes
de modification au-delà des méta-théorèmes algorithmiques existant déjà. Ainsi, nous proposons
une méthode de programmation dynamique pour résoudre des problèmes paramétrés par la largeur
arborescente bipartie, un paramètre fortement relié aux classes de graphes closes par mineur impair
(qui sont plus générales que les classes de graphes closes par mineur). En outre, nous créons une
nouvelle technique du sommet inutile que nous utilisons pour résoudre des problèmes de modification
de graphes où le modulateur n’a pas forcément une bidimensionnalité bornée.
Mot-clés : Problèmes de modification de graphes, Complexité paramétrée, Mineurs de graphes,
Théorèmes de structure.

iv

Résumé étendu en français

Pour votre anniversaire, imaginez que vous voulez inviter un maximum d’amis. Cependant, certains
de vos amis ne s’entendent pas entre eux et se disputeront dès qu’ils se rencontreront. C’est pourquoi
vous voulez choisir un minimum de personnes à ne pas inviter de sorte qu’il n’y ait aucune dispute.

Cette situation peut être modélisée par un graphe. Un graphe G est une structure mathématique
composée d’un ensemble V (G) de sommets et d’un ensemble E(G) de paires e = {u, v} de sommets
qu’on appelle des arêtes (cf. Figure 1).

Figure 1 : Un graphe avec six sommets et huit arêtes.

Dans le cas qui nous intéresse ici, les sommets du graphe sont vos amis, et deux sommets sont
reliés s’il y a un conflit entre les deux personnes correspondantes. Modélisé par un graphe, le problème
que nous cherchons à résoudre est le problème de Couverture par Sommets. Étant donné un
graphe G, l’objectif est de trouver le plus petit ensemble S de sommets de G tel que le graphe G−S
obtenu après avoir supprimé les sommets dans S n’ait pas d’arêtes. Un tel ensemble S s’appelle une
couverture par sommets.

Étant donné que vous avez beaucoup d’anniversaires à venir, vous souhaitez créer un ensemble
d’instructions à donner à un ordinateur de sorte que celui-ci, quand il reçoit un graphe G, retourne
une couverture par sommets de taille minimum. Un tel ensemble d’instructions est ce que l’on appelle
un algorithme.

Un point critique dans un algorithme est sa complexité temporelle, c’est-à-dire le temps qu’il lui
faut pour retourner une solution dans le pire des cas. L’objectif est bien sûr de trouver une solution
aussi rapidement que possible.

Pour le problème de Couverture par Sommets, l’algorithme le plus simple consisterait à
tester, pour chaque sous-ensemble S ⊆ V (G) de sommets de G, si c’est une couverture par sommets,
et de retourner une couverture par sommets de taille minimum. Si n est le nombre de sommets
de G, alors le nombre de sous-ensembles de sommets est 2n. En conséquence, cet algorithme a
une complexité en temps de O(2n) : on parle d’un algorithme exponentiel. Le problème ici est que
votre nombre d’amis va certainement augmenter avec le temps. Si vous avez un jour cent amis,

v

vi

votre anniversaire sera terminé le temps que l’ordinateur renvoie une solution. Voici pourquoi nous
recherchons plutôt des algorithmes avec une complexité temporelle de O(nc) pour une constante c
(un algorithme polynomial), ou même O(n) (un algorithme linéaire).

Malheureusement, Couverture par Sommets est ce que l’on appelle un problème NP-dur [181],
ce qui signifie qu’il est peu probable qu’il existe un algorithme polynomial le résolvant. Il existe
plusieurs méthodes permettant de contourner cet obstacle. Celle que nous utilisons tout particuliè-
rement ici est la complexité paramétrée. L’idée est que la difficulté du problème ne vient peut-être
pas du nombre de sommets n du graphe G donné en entrée, mais plutôt d’un paramètre k plus fin,
qui est une mesure sur G ou sur la solution. Nous pouvons espérer que k est petit dans notre cas,
ce qui nous permettrait de chercher un algorithme dont la complexité temporelle est polynomiale
en n après avoir fixé k. Nous cherchons plus particulièrement des algorithmes terminant en temps
f(k) · nc, où f est une fonction et c est une constante. Un tel algorithme est ce qu’on appelle un
algorithme FPT.

Dans notre problème d’anniversaire, nous ne voulons pas refuser trop de monde. Peut-être que
s’il faut refuser k ≥ 4 personnes pour éviter toute dispute, nous abandonnerons et inviterons tout le
monde, même s’il y aura des conflits. Cela correspond à fixer la taille k d’une couverture par sommet
minimum : l’algorithme retourne soit une couverture par sommet minimum de taille au plus k, soit
déclare qu’une telle couverture n’existe pas. Pour Couverture par Sommets, il existe de tels
algorithmes paramétrés par la taille k de la solution. Le meilleur qui a été trouvé jusqu’à présent a
une complexité temporelle de O(1.2738k + kn) [59].

Couverture par Sommets est ce qu’on appelle un problème de modification de graphes.
Chaque problème de modification de graphes est caractérisé par :

• une classe de graphes cible H,

• un ensemble de modifications autoriséesM, et

• une mesure p sur le modulateur X du graphe G donné en entrée, c’est-à-dire le sous-ensemble
de sommets qui sont soit modifiés, soit incidents à une arête modifiée.

Dans le cas du problème de Couverture par Sommets, la classe cible est l’ensemble H des
graphes sans arêtes, l’ensemble de modifications autorisées estM = {suppression de sommets}, et
la mesure p sur le modulateur X (qui est ici l’ensemble des sommets supprimés) est sa taille |X|.

Étant donné que chaque choix de H, M, et p crée un nouveau problème de modification de
graphes, le nombre de ceux-ci est infini. C’est pourquoi deux lignes de recherches principales ont
émergé concernant les problèmes de modification de graphes :

• Efficacité : Concernant les problèmes les plus connus, à commencer par Couverture par
Sommets, les chercheurs tentent d’optimiser au maximum la complexité des algorithmes les
résolvant.

• Généralité : Plutôt que de résoudre chaque problème un par un, notamment ceux dont
l’utilité reste très anecdotique, les chercheurs prouvent des méta-théorèmes algorithmiques
permettant de construire des algorithmes pour un vaste ensemble de problèmes simultanément,
au prix d’un manque d’optimisation de leur complexité (notamment leur dépendance en k).

Voyons différentes méthodes permettant d’englober de nombreux problèmes de modification de
graphes dans un même théorème.

vii

Classes de graphes cibles

Certaines classes de graphes cibles H ont des propriétés intéressantes qui rendent plus facile la
résolution de problèmes de modification vers H. C’est le cas de la propriété d’être clos par mineur.

Un graphe H est un mineur d’un graphe G s’il peut être obtenu en supprimant des arêtes et des
sommets de G, et en contractant des arêtes de G (cf. Figure 2). Une classe de graphes H est close

suppression d’un sommet suppression d’une arête contraction d’une arête

Figure 2 : Illustration d’une suppression d’un sommet, d’une suppression d’une arête et d’une
contraction d’une arête.

par mineur si, pour tout graphe G ∈ H, ses mineurs sont aussi dans H.
Un résultat important sur les classes de graphes closes par mineur, prouvé par Robertson et

Seymour [278] dans leur célèbre série de 23 papiers sur la théorie des mineurs, est qu’elles ont un
nombre fini d’obstructions (les graphes qui n’appartiennent pas à la classe de graphes, mais dont
tous les mineurs font partie). Cela signifie que pour tester si un graphe G appartient à une classe de
graphes H close par mineur, il suffit de tester si chacune des obstructions F de H est un mineur de
G. Étant donné que ce test peut s’effectuer en temps f(|V (F)|) · n1+o(1) [205], il est donc possible
de tester si G ∈ H en temps f(sH) · n1+o(1), où sH est la taille de la plus grande obstruction de H.

Ce qui nous intéresse est la chose suivante : de nombreux problèmes de modification de graphes
peuvent se réduire à tester si le graphe donné en entrée appartient à une certaine classe de graphes
qui est close par mineur. Par exemple, appelons Suppression de Sommets vers H le problème de
modification de graphes qui demande, étant donné un graphe G et un entier k, si on peut supprimer
au plus k sommets de G de sorte que le graphe obtenu appartienne à H, et supposons que H est une
classe close par mineur. Pour k fixé, l’ensemble Ak(H) des graphes G tels que (G, k) est une instance
positive du problème est une classe de graphes close par mineur. Par conséquent, pour résoudre
Suppression de Sommets vers H pour une instance (G, k), il suffit de tester si G appartient à
Ak(H), ce qui, nous l’avons vu, est faisable en temps quasi-linéaire paramétré par k et sH.

Malheureusement, ce résultat ne donne aucune garantie sur la dépendance en k. Pire, le résultat
de Robertson et Seymour est non-constructif, c’est-à-dire qu’il donne l’existence d’un nombre fini
d’obstructions, mais n’explique pas comment les construire. En conséquence, cela nous donne l’exis-
tence d’algorithmes pour certains problèmes de modification de graphes, mais pas leur construction.
D’autres chercheurs ont néanmoins prouvé comment construire ces obstructions dans certain cas. En
particulier, nous savons comment construire les obstructions de Ak(H) quand les obstructions de H
sont connues [160, 285]. Depuis, des algorithmes avec une meilleure dépendance ont été proposés,
qui s’appuient généralement sur les techniques développées par Robertson et Seymour, notamment
la “technique du sommet inutile” [271], sur laquelle nous reviendrons plus tard. L’algorithme avec
la meilleure dépendance en k pour Suppression de Sommets vers H avec H clos par mineur a
actuellement une complexité 2poly(k) · n3, où poly est une fonction polynomiale dont le degré dépend
de sH [284].

Une autre propriété, plus générale que la clôture par mineur, pourrait impliquer des résultats
similaires. Il s’agit de la clôture par mineur impair.

viii

Un mineur impair H de G est essentiellement un mineur de G, mais qui préserve la parité des
cycles. C’est-à-dire que la taille d’un cycle dans H à la même parité que celle du cycle correspondant
dans G. Une classe de graphes close par mineur impair est aussi close par mineur, mais le contraire
n’est pas vrai, d’où le fait que la clôture par mineur impair est plus générale que la clôture par
mineur.

Il a été affirmé (sans preuve) qu’une classe qui est close par mineur impair a un nombre fini
d’obstructions (en tant que mineur impair) [168]. Additionnellement, des algorithmes existent pour
tester si un graphe F est un mineur impair d’un graphe G [168,193]. En conséquence, les résultats
sur les classes closes par mineur devraient pouvoir être étendus aux classes closes par mineur impair.
Malheureusement, la théorie sur les mineurs impairs est bien moins développée que celle sur les
mineurs, et beaucoup de résultats restent à prouver sur le sujet.

Modifications

Après les classes cibles, parlons des différents types de modifications.
Outre la suppression de sommets, les opérations de modification les plus étudiées sont certainement

la suppression d’arêtes, l’ajout d’arêtes, et la contraction d’arêtes. Nous pouvons ajouter à cela
d’autres opérations plus exotiques, telles que la suppression d’un ensemble connexe de sommets, la
suppression d’un ensemble indépendant, la suppression ou la contraction d’un couplage, ou encore
la complémentation d’un sous-graphe. Il est aussi possible de combiner plusieurs opérations de
modification ensemble. Par exemple, si on autorise à la fois la suppression et l’addition d’arêtes, on
parle d’édition d’arêtes.

Une méthode pour englober plusieurs types de modification dans une unique structure est la
suivante. Une action de remplacement est une fonction L qui associe chaque graphe H1 à un ensemble

L

H1 H2 ∈ L(H)

Figure 3 : Illustration d’une modification de graphes autorisée par l’action de remplacement L.

L(H1) de graphes H2 tels que |V (H1)| = |V (H2)| (cf. Figure 3). Le problème de L-Remplacement
vers H demande alors, étant donné un graphe G et un entier k, s’il y a un sous-graphe H1 de
G et un graphe H2 dans L(H1) de sorte que le graphe obtenu en remplaçant H1 par H2 dans G
appartienne à H. Intuitivement, H1 correspond au modulateur du graphe G en entrée de notre
problème de modification de graphes, et H2 correspond à l’ensemble des modifications faites sur
H1. Par exemple, si notre problème demande s’il est possible d’enlever au plus k arêtes à G pour
appartenir à H, alors L(H1) est l’ensemble des graphes pouvant être obtenus depuis H1 en enlevant
au plus k arêtes. L-Remplacement vers H peut simuler tout problème de modification de graphes
où la mesure sur le modulateur est sa taille et la modification est n’importe quelle combinaison

ix

d’ajouts et de suppressions d’arêtes. Il a été prouvé que L-Remplacement vers H peut être résolu
en temps O(f(k) · n2) quand H est la classe des graphes planaires, c’est-à-dire des graphes pouvant
être dessinés dans un plan sans croisement d’arêtes [121].

Mesures sur le modulateur

Concernant les différentes mesures sur le modulateur, les chercheurs s’intéressent dans la plupart
des cas à sa taille, comme vu dans les différents problèmes présentés ci-dessus. Cependant, d’autres
mesures existent.

Commençons par quelques définitions. Le torse d’un ensemble X de sommets dans un graphe
G, noté torso(G,X), est le graphe obtenu en supprimant chaque composante C de G − X et en
rajoutant, si elle n’existe pas déjà, une arête entre chaque paire de sommets de X adjacent à un
sommet de C (cf. Figure 4). Étant donné une classe de graphes H et un paramètre p sur les graphes,

X

G−X

torso(G,X)

Figure 4 : Torse d’un ensemble X dans un graphe G. For chaque composante connexe C de G−X
(en orange), les arêtes (en rouge) entre chaque paire de sommets de X adjacente à un sommet de C
sont ajoutées, si elles n’existent pas déjà.

le paramètre H-p est le paramètre défini par, pour tout graphe G,

H-p(G) = min{k ∈ N | ∃X ⊆ V (G), p(torso(G,X)) ≤ k et les composantes de G−X sont dans H}.

Évidemment, si p est le paramètre size qui affecte à chaque graphe son nombre de sommets et que
H est clos par union disjointe, alors le problème de Suppression de Sommets vers H correspond
à, étant donné un graphe G et un entier k, tester si H-p(G) ≤ k.

Deux autres paramètres p ont été bien étudiés dans ce contexte. Le premier est la profondeur
arborescente d’un grapheG, noté td(G). L’idée est de retirer un sommet de chaque composante connexe
à chaque itération, et la profondeur arborescente de G est le nombre minimum d’itérations nécessaire
pour supprimer tous les sommets. Le paramètre H-td est souvent nommé distance d’élimination
à H [43,44], et peut être reformulé de la façon suivante : un sommet est retiré de chaque composante
connexe à chaque itération, et la distance d’élimination à H est le nombre minimum d’itérations
nécessaire pour que chaque composante connexe appartiennent à H. Le problème correspondant, à
savoir tester, étant donné une instance (G, k), si H-td(G) ≤ k, est nommé Distance d’Élimination
à H.

Le second paramètre est la largeur arborescente d’un graphe G, noté tw(G). L’idée est de mesurer
à quel point G ressemble à une forêt, c’est-à-dire un graphe sans cycle. Ce paramètre, que nous ne
définirons pas formellement dans ce résumé, est très apprécié par les chercheurs car de nombreux
problèmes admettent un algorithme FPT quand le paramètre est la largeur arborescente du graphe
donné en entrée [18, 67]. Le paramètre H-tw a été développé dans [104] pour combiner les propriétés
intéressantes de la largeur arborescente et de la cible H.

x

Un résultat important sur ces différentes mesures sur le modulateur a été prouvé par Agrawal,
Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, et Zehavi dans [6] : pour tout p ∈ {size, td, tw}
et pour toute classe cible H ayant les “bonnes” propriétés (qui sont peu contraignantes), si le problème
de tester si H-p(G) ≤ k admet un algorithme FPT, alors la même chose est vraie pour les deux
autres paramètres. Plus généralement, leur résultat semble pouvoir s’appliquer à tout paramètre p
plus grand que tw (i.e. tel qu’il existe une fonction f : N → N telle que, pour tout graphe G,
tw(G) ≤ f(p(G))), dont font partie size et td.

Un méta-théorème algorithmique

Sau, Stamoulis, et Thilikos ont prouvé dans [287] un théorème englobant tous les problèmes vus
ci-dessus, tant que la classe cible H est close par mineur, et qui construit pour chacun de ces
problèmes un algorithme FPT de complexité f(k) · n2 pour une certaine fonction f . C’est ce qu’on
appelle un méta-théorème algorithmique.

Ce méta-théorème emploie une mesure sur le modulateur qui n’utilise pas le torso. Elle s’appuie
à la place sur les paramètres annotés. Étant donné un ensemble X de sommets d’un graphe G, un
X-mineur de G est un mineur de G tel que chaque ensemble d’arêtes connectées qui est contracté
contient un sommet de X. La version annotée d’un paramètre p sur les graphes est alors le paramètre
qui, à chaque graphe G et à chaque ensemble X ⊆ V (G), associe

p(G,X) = min{k ∈ N | il existe un X-mineur H de G tel que p(H) ≤ k}.

En particulier, pour tout graphe G et tout X ⊆ V (G), tw(G,X) ≤ tw(torso(G,X)). Le méta-
théorème algorithmique de [287] s’applique aux problèmes de modification de graphes où la mesure
sur le modulateur a largeur arborescente annotée bornée. Cela contient notamment le problème de
tester si H-p(G) ≤ k pour tout paramètre p plus grand que tw.

Plutôt que de parler de largeur arborescente annotée bornée, on parle de façon équivalente de
bidimensionnalité bornée. Les auteurs de [287] utilisent la technique du sommet inutile de Robertson
et Seymour [271] mentionnée plus haut, et essaient de l’appliquer de la façon la plus générale possible.
En l’occurrence, cette méthode ne fonctionne pas quand le modulateur a une bidimensionnalité non
bornée, donc résoudre des problèmes où le modulateur a une bidimensionnalité non bornée requiert
d’autre méthodes.

Quand bien même nous présentons plus haut un problème de modification où la mesure sur
le modulateur X est la largeur arborescente du torse tw(torso(G,X)), nous ne connaissons pas de
problème de modification de graphes étudié dans la littérature où la mesure est la bidimensionnalité
du modulateur, ou, dit autrement, correspond à la limite du méta-théorème algorithmique de [287].
Cependant, des modulateurs de bidimensionnalité bornée sont présents dans d’autres types de
résultats : les théorèmes de structure.

Théorèmes de structure

Un théorème de structure est essentiellement un théorème décrivant la structure des graphes ayant
une certain propriété, qui correspond souvent à l’exclusion d’un graphe H d’une certaine manière.

En particulier, le théorème de structure des mineurs [275] dit (de manière très schématique) que
tout graphe qui ne contient pas un certain graphe H en tant que mineur est obtenu en “collant”
ensemble des graphes qui peuvent être dessinés dans une certaine surface sans que des arêtes
se croisent, à quelques “erreurs” près dont le nombre dépend de |V (H)| (voir Figure 5 pour une
illustration). Ce théorème a été reformulé à l’aide de modulateurs de bidimensionnalité bornée
dans [302] : tout graphe qui ne contient pas un certain graphe H en tant que mineur est obtenu

xi

Figure 5 : Illustration artistique par Felix Reidl de la structure d’un graphe excluant un autre
graphe en tant que mineur.

en “collant” ensemble des graphes qui peuvent être dessinés dans une certaine surface après avoir
supprimé un ensemble X de sommets de bidimensionnalité bornée.

D’autre théorèmes de structure existent si H possède des propriétés plus restrictives, comme être
planaire [261], ou planaire après avoir supprimé un sommet [101].

Il existe aussi un théorème de structure concernant les mineurs impairs [85] : tout graphe qui ne
contient pas un certain graphe H en tant que mineur impair est obtenu en “collant” ensemble des
graphes qui sont soit bipartis (i.e., sans cycle impair) soit excluent un graphe H ′ en tant que mineur,
à quelques erreurs près dont le nombre dépend de |V (H)|. Ce résultat a ensuite été reformulé de
la manière suivante en terme de modulateurs [299] : pour tout graphe H, il existe une fonction cH
telle que, pour tout graphe G excluant H en tant que mineur, H-btw(G) ≤ cH . Ici, btw dénote la
largeur arborescente bipartie, qui est un paramètre généralisant à la fois la largeur arborescente et les
graphes bipartis. Donc, pour résoudre des problèmes sur les classes de graphes closes par mineur
impair, une première étape est de résoudre ces problèmes paramétrés par btw.

Organisation et résultats de cette thèse

Dans la Partie I, nous introduisons plus en détail le contexte et les motivations de cette thèse
(Chapitre 1), ainsi que les résultats obtenus (Chapitre 2) et les principales techniques employées
(Chapitre 3). Nous définissons aussi dans le Chapitre 4 les notions utilisées tout au long de la thèse.

Dans la Partie II (et plus précisément le Chapitre 5), nous présentons un théorème de structure
pour l’exclusion d’un graphe H en tant que mineur. Ici, le graphe H considéré appartient à une autre
classe de graphes proche de la planarité : on considère les graphes H qui sont planaires après avoir
supprimé une arête. On appelle de tels graphes des graphes arête-apex. Le théorème de structure
obtenu est donc plus fin que le théorème de structure des mineurs [275], et il peut notamment être
reformulé en terme de modulateurs de bidimensionnalité bornée. Cependant, la modification n’est
pas ici la suppression de sommets, mais l’identification de sommets (l’identification d’une paire
{u, v} de sommets est la même chose que la contraction de l’arête {u, v}, mais ici, on ne requiert
pas la présence d’une arête). Ainsi, on prouve la propriété suivante : un graphe excluant un graphe
arête-apex H en tant que mineur est obtenu en “collant” ensemble des graphes qui peuvent être
dessinés dans une certaine surface après avoir effectué des identifications dans un ensemble X de
sommets de bidimensionnalité bornée.

Dans la Partie III, nous obtenons des algorithmes avec une meilleure complexité en temps,
notamment concernant la dépendance en k, pour une importante variété de problèmes de modifications

xii

de graphes qui sont déjà résolubles par le méta-théorème algorithmique de [287] en temps f(k) · n2
pour une fonction f non-explicitée.

Plus précisément, étant donné que nous requérons comme modification dans le Chapitre 5
l’identification de sommets, et que cette opération n’a encore jamais été étudiée, nous commençons
l’exploration de ce type de modification dans le Chapitre 6. Nous étudions le problème de Identi-
fication vers H, c’est-à-dire le problème de modification de graphes où la classe cible est H, la
modification est l’identification de sommets, et la mesure sur le modulateur est sa taille. Dans le
Chapitre 6, nous étudions l’une des classes H les plus simples non triviales, à savoir l’ensemble des
forêts (les graphes sans cycles). En particulier, nous construisons un algorithme résolvant le problème
en temps O(1.2738k + k

√
log k · n) et nous proposons une façon de construire les obstructions (en

tant que mineurs) de la classe F (k) des graphes G tels que (G, k) est une instance positive de
Identification vers une Forêt.

Dans le Chapitre 7, nous voulons étudier plus généralement Identification vers H pour
n’importe quelle classe H qui est close par mineur. Nous obtenons un algorithme de complexité
2poly(k) · n2 (où poly est une fonction polynomiale dont le degré dépend de la taille maximale d’une
obstruction de H), qui résout non seulement Identification vers H, mais aussi Suppression de
sommets vers H, ainsi qu’un nombre conséquent de problèmes de modification de graphes, pour H
clos par mineur. Pour englober tous ces problèmes en un unique méta-théorème algorithmique, nous
réadaptons le problème de L-Remplacement vers H de [121] pour qu’il puisse décrire des problèmes
de modification de graphes où les modifications sont des combinaisons, non seulement d’additions
et de suppressions d’arêtes comme dans [121], mais aussi de suppressions et d’identifications de
sommets. Pour cela, nous redéfinissons la notion d’action de remplacement : si dans [121], une
action de remplacement L associe chaque graphe à une collection de graphes de même taille, un
graphe G peut maintenant être associé à une collection de graphes de taille au plus celle de G. Notre
algorithme a ainsi une meilleure complexité que l’ancien meilleur algorithme résolvant Suppression
de sommets vers H en temps 2poly(k) · n3 [284] et est le premier algorithme avec une dépendance
explicite en k résolvant les autres problèmes de modifications de graphes qui peuvent être simulés
par L-Remplacement vers H. Le degré de la fonction poly est très grand, mais quand H est
l’ensemble des graphes que l’on peut dessiner dans une certaine surface Σ, nous obtenons un meilleur
algorithme avec une complexité 2O(k9) · n2.

Dans le Chapitre 8, nous changeons la mesure sur le modulateur : au lieu de la taille du
modulateur, nous étudions la profondeur arborescente de son torse. Plus précisément, nous étudions
le problème de Distance d’Élimination à H présenté plus haut. En utilisant des techniques
similaires à celles employées dans le Chapitre 7, nous obtenons le premier algorithme FPT résolvant
Distance d’Élimination à H pour n’importe quelle classe H qui est close par mineur avec une
dépendance explicite en k. En outre, nous proposons une façon de construire les obstructions (en
tant que mineurs) de la classe Ek(H) des graphes G tels que (G, k) est une instance positive de
Distance d’Élimination à H.

Dans la Partie IV, nous nous intéressons à des problèmes de modification de graphes qui ne sont
pour l’instant résolubles par aucun méta-théorème algorithmique.

Comme présenté plus haut, plutôt qu’étudier des classes closes par mineur, on peut s’intéresser
aux classes closes par mineur impair, et une première étape dans cette direction est la paramétrisation
par la largeur arborescente bipartie btw. Dans le Chapitre 9, nous proposons une technique pour
obtenir des algorithmes FPT paramétrés par btw, et nous appliquons cette technique pour résoudre
un certain nombre de problèmes de modification de graphes paramétrés par btw.

Enfin, étant donné que la plupart des méta-théorèmes algorithmiques concernant des problèmes
de modification de graphes, à commencer par celui de [287], utilise la technique du sommet inutile

xiii

de Robertson et Seymour [271], qui ne s’applique que quand le modulateur a une bidimensionnalité
bornée, nous créons dans le Chapitre 10 une nouvelle technique de sommet inutile, qui elle, fonctionne
pour des modulateurs de bidimensionnalité non-bornée. Nous appliquons cette technique pour
résoudre en temps polynomial le problème de H-Planarité qui demande, étant donné un graphe
G, s’il existe un ensemble X dont le torse est planaire et tel que les composantes connexes de
G−X sont dans H, avec H obéissant à des propriétés moins restrictives que la clôture par mineur.
Nous appliquons aussi cette technique pour résoudre en temps FPT le problème qui demande,
étant donné un graphe G et un entier k, si H-p(G) ≤ k, pour deux paramètres p plus petits que
tw, à savoir la profondeur arborescente planaire, qui combine td avec la planarité, et la largeur
arborescente planaire, qui combine tw avec la planarité, étant donné, encore une fois, des conditions
peu contraignantes sur H. Dans ces trois cas, le modulateur, dont le torse est soit planaire, ou a une
profondeur arborescente planaire bornée, ou a une largeur arborescente planaire bornée, peut avoir
une bidimensionnalité non bornée, et c’est la première fois que de tels modulateurs sont étudiés pour
des problèmes de modification de graphes.

Dans la Partie V, nous concluons la thèse avec un chapitre (Chapitre 11) proposant des questions
ouvertes et des conjectures découlant des résultats de la thèse.

Contents

I Introduction 1

1 Motivation 2
1.1 Vertex Cover . 4

1.1.1 Parameterized complexity . 5
1.1.2 Restricting the input . 7

1.2 Graph modification problems . 9
1.3 Target class . 11

1.3.1 Vertex Deletion to H . 11
1.3.2 Excluding forbidden patterns . 13

1.4 Modification . 19
1.5 Measure on the modulator . 20
1.6 Logic . 23
1.7 Structure theorems . 26

1.7.1 Excluding a graph as a minor . 26
1.7.2 Excluding a graph as an odd-minor . 29

2 Results 31
2.1 Excluding edge-apex graphs . 31
2.2 Identification to a forest . 33
2.3 Bounded size modulators to minor-closedness . 34
2.4 Elimination distance to minor-closedness . 36
2.5 Odd-minors and bipartite treewidth . 37
2.6 Global modulators . 38
2.7 Papers . 41

3 Techniques 43
3.1 Graph modification problems . 43

3.1.1 Flatness . 43
3.1.2 Flat wall theorem . 45
3.1.3 Irrelevant vertex technique . 46
3.1.4 Bounded treewidth . 47
3.1.5 Obligatory sets . 47

xiv

Contents xv

3.2 Structure theorem . 48

4 Preliminaries on graphs 50
4.1 Sets and functions . 50
4.2 Basic concepts on graphs . 51
4.3 Tree decompositions . 53
4.4 Boundaried graphs . 54
4.5 Drawing on surfaces . 56
4.6 Flat walls . 60

4.6.1 Walls and subwalls . 60
4.6.2 Flatness pairs . 62
4.6.3 Canonical partitions . 65
4.6.4 Homogeneous walls . 66
4.6.5 Tight renditions . 67

II A structure theorem 69

5 Excluding pinched spheres 70
5.1 Proof structure . 70
5.2 The upper bound . 72

5.2.1 Excluding a long-jump transaction from a society 73
5.2.2 From societies to a local structure theorem 88
5.2.3 The global structure theorem . 93

5.3 The lower bound . 106
5.3.1 Identifications in a long-jump grid . 106
5.3.2 Lower bound under the presence of clique-sums 107

III Towards efficiency 111

6 Identification to forests 112
6.1 Hardness and parameterized results . 113

6.1.1 Dealing with bridges . 113
6.1.2 NP-completeness . 114
6.1.3 Parameterized results for Identification to Forest 114

6.2 Obstructions . 115
6.2.1 Bridges in the obstructions of Vk . 115
6.2.2 Constructing the obstructions of F (k) from the obstructions of Vk 117

6.3 Universal obstruction . 119
6.4 Relation with Contraction to H . 121
6.5 Identification minors . 122

7 Bounded size modifications to minor-closedness 124
7.1 Definition of the problem, results, and applications 125

7.1.1 Definition of the problem and main results . 125
7.1.2 Problems generated by different instantiations of L 128

7.2 Overview of the techniques . 131
7.3 The algorithms . 133

Contents xvi

7.3.1 Main ingredients . 134
7.3.2 The general case: proof of Theorem 7.1.5 . 135
7.3.3 The special case of bounded genus: proof of Theorem 7.1.6 141

7.4 Irrelevant vertex . 145
7.4.1 An auxiliary lemma . 146
7.4.2 Finding an irrelevant vertex in a homogeneous flat wall 147
7.4.3 Irrelevant vertex in the bounded genus case 149

7.5 Obligatory sets . 150
7.6 The case of bounded treewidth . 151

7.6.1 Signature . 153
7.6.2 Dynamic programming . 153

8 Elimination distance to minor-closedness 158
8.1 Sketch of the algorithms . 159
8.2 Preliminaries . 160

8.2.1 F-elimination trees . 160
8.2.2 Bidimensionality of elimination sets . 162

8.3 Elimination distance to a minor-closed graph class 164
8.3.1 Quickly finding a wall . 165
8.3.2 Description of the algorithm for Elimination Distance to exc(F) 167
8.3.3 Correctness of the algorithm . 168

8.4 Elimination distance when excluding an apex-graph 169
8.4.1 Generalization to annotated elimination distance 169
8.4.2 Description of the algorithm for Elimination Distance to exc(F) when

aF = 1 . 171
8.4.3 Correctness of the algorithm . 172

8.5 Solving Elimination Distance to exc(F) on tree decompositions 174
8.5.1 Annotated trees . 175
8.5.2 Characteristic of a boundaried graph . 177
8.5.3 The procedures . 178
8.5.4 The algorithm . 186
8.5.5 Exchangeability of boundaried graphs with the same characteristic 187

8.6 Bounding the obstructions of Ek(exc(F)) . 188
8.6.1 Bounding the treewidth of an obstruction . 189
8.6.2 Bounding the size of an obstruction of small treewidth 190

IV Towards generalization 193

9 Dynamic programming for bipartite treewidth 194
9.1 Overview of the dynamic programming scheme . 195
9.2 Equivalent definitions of odd-minors . 198
9.3 Bipartite treewidth . 200
9.4 General dynamic programming to obtain FPT-algorithms 204

9.4.1 Gluing boundaried graphs . 204
9.4.2 Nice problems . 205
9.4.3 General dynamic programming scheme . 208
9.4.4 Generalizations . 209

Contents xvii

9.5 Applications . 210
9.5.1 Kt-Subgraph-Cover . 211
9.5.2 Weighted Vertex Cover/Weighted Independent Set 216
9.5.3 Odd Cycle Transversal . 220
9.5.4 Maximum Weighted Cut . 226
9.5.5 Hardness of covering problems . 228

10 H-planarity and beyond 229
10.1 The algorithms . 231

10.1.1 The algorithms . 231
10.1.2 Outline of our technique of H-planarity (and H-planar treewidth) 233
10.1.3 Changes for H-planar treedepth . 237

10.2 The FPT algorithm for H(k)-Planarity . 238
10.2.1 Flat walls . 238
10.2.2 An obstruction to H(k)-Planarity . 239
10.2.3 H-compatible sphere decompositions . 240
10.2.4 Comparing sphere decompositions . 242
10.2.5 Combining sphere decompositions . 245
10.2.6 Proof of Theorem 10.1.4 . 248

10.3 Planar elimination distance . 249
10.3.1 Finding a big leaf in H . 249
10.3.2 The algorithm . 251

10.4 H-planar treewidth . 254
10.4.1 Expression as a sphere decomposition . 254
10.4.2 The algorithm . 258

10.5 Applications . 259
10.5.1 Colourings . 261
10.5.2 Counting perfect matchings . 262
10.5.3 EPTAS for Independent Set . 265

10.6 Necessity of conditions . 267

V Conclusion and research directions 272

11 Concluding remarks 273
11.1 Perspectives on our structure theorem . 273
11.2 Open problems on identifications . 274
11.3 Concluding notes on bounded size modulators . 276
11.4 Beyond elimination distance . 277
11.5 Towards odd-minor-closedness . 278
11.6 Further research on unbounded bidimensionality modulators 279

Part I

Introduction

1

CHAPTER 1

Motivation

Imagine that you want to invite your friends to your birthday party. However, you know that some
of your friends do not like each other and will fight as soon as they meet. So your goal is to invite as
many of your friends as possible, while ensuring that no fight erupts.

Graphs

This situation can be modeled by a graph [87]. A graph G is a mathematical structure composed of
a set V (G) of points, that we call vertices, and a set E(G) of links between pairs of those points,
that we call edges (see Figure 1.1). Seen another way, E(G) is a set of pairs e = {u, v} of vertices of
G (we also write e = uv). In our case, your friends are the vertices, and there is an edge joining two

Figure 1.1: A graph with six vertices and eight edges.

of your friends if these two friends are on bad terms. We say that an edge e is incident to a vertex v
if one of the endpoints of e is v, and we say that a vertex u is adjacent to a vertex v if there is an
edge with endpoint u and v. Also, the vertices that are adjacent to u are the neighbors of u and the
degree of u is the number of its neighbors.

In the setting of graphs, the problem we want to solve is called Vertex Cover. The goal is,
given a graph G modeling the conflicts between your friends, to find a minimum number of vertices
that can be deleted (along with their incident edges), such that the remaining graph has no edges.
Such a set of vertices is called a vertex cover.

While the situation described here is just a toy example, graphs are used to simulate many real
world problems. They can model the metro network in a big city, with vertices being the metro
stations, and where two stations are adjacent if there is a direct connection between them. They
can model molecules, where the vertices are the atoms, and the edges are the bonds between atoms.

2

3

They can again model social networks, with people represented by vertices, whose neighbors are
their friends. Also, a phylogenetic tree is a specific kind of graph, called a tree.

Some well-known graphs

Let us already present well-known types of graphs (including trees). For k ∈ N (N is the set of
non-negative integers), the path Pk is the graph with k vertices v1, . . . , vk and edges vivi+ 1 for
i ∈ [k − 1] = {1, . . . , k − 1} (see Figure 1.2). We say that Pk has length k − 1 (i.e., the length of a

P1 P2 P3 P4 P5

Figure 1.2: The paths of length zero to four.

path is its number of edges). For k ≥ 3, the cycle Ck is the graph obtained from the path Pk by
adding an edge v1vk (see Figure 1.3). For t ∈ N, the complete graph Kt (alternatively the clique of

C3 C4 C5 C6 C7

Figure 1.3: The cycles of size three to seven.

size t) is the graph with t vertices and all edges between vertices (see Figure 1.4). A graph is said to

K1 K2 K3 K4 K5 K6 K7 K8 K9

Figure 1.4: The complete graphs of size one to nine.

be connected if there is a path in G joining each pair of vertices of G. A tree is a connected graph
with no cycle (see Figure 1.5). A forest is a graph (possibly disconnected) with no cycle. Thus, its
connected components are trees. A bipartite graph is a graph whose edges can be partitioned into
two sets A and B such that every edge has one endpoint in A and the other in B. In particular,
paths, trees, forests, and cycles of even size are bipartite graphs. For a, b ∈ N, the complete bipartite
graph Ka,b is the bipartite graph whose vertex set is the union of a vertex set A of size a and a
vertex set B of size b and whose edge set is composed of all edges with one endpoint in A and the
other in B (see Figure 1.5). A planar graph is a graph that can be drawn on a plane without edge

K3,4

Figure 1.5: A tree and the complete bipartite graph K3,4.

crossing. In particular, paths, cycles, trees, forests, and the graph of Figure 1.1 are planar graphs,
but Kt is not for t ≥ 5, and neither is Ka,b for a, b ≥ 3.

1.1. Vertex Cover 4

Algorithms

Let us come back to our birthday problem. Given that you (hopefully) still have many birthdays
to come, and that your friends and their relationships will change over time, you want to create a
set of instructions that you can run on your computer such that, given the graph of your friends’
conflicts that you input, will output a minimum vertex cover of the graph. Such a set of instructions
is what we call an algorithm.

Again, if you do not find our birthday setting very relatable, let us give another example of
algorithm on graphs that you surely encountered in your everyday life. Assume you just arrive in
a new city and you want to go from metro station a to metro station b, but you do not know the
fastest way to do so. What do you do? Unless you enjoy reading the metro map to try to find the
best way by yourself, you will open an application on your phone that, when you tell it you want to
go from point a to point b, will output in a few seconds the fastest way to do so. As said above,
the metro network can be modeled by a graph. What your application actually does is to solve
Shortest Path on this graph. As its name indicates, the Shortest Path problem is the problem
that takes as an input a graph and two vertices a and b and finds a path of shortest length between
a and b.

1.1 Vertex Cover

Back to our birthday setting, the obvious way to create an algorithm solving Vertex Cover is to
check, for each one of the 2n subsets S of vertices of the graph G (n is the number of vertices of G),
whether S is a vertex cover of G, and to output a smallest one. If, for now, you only have about ten
friends (that is, n = 10), then the computer should be able to run the algorithm so that it outputs
an answer quickly enough. However, your number of friends will grow over time, and when the time
comes when you have more than 100 friends (which you expect will happen soon), the algorithm
might terminate only after your birthday has passed. Here, the running time of your algorithm, i.e.,
the time the algorithm needs, in the worst case, to compute an answer, is O(2n). We say that the
algorithm runs in exponential time, given that the time needed to terminate increases exponentially
with the number of vertices. This is why we would prefer to find an algorithm running in polynomial
time, i.e., in time O(nc) for some constant c, or, even better, in linear time, i.e., in time O(n).

NP-hardness

Unfortunately, Vertex Cover1 is what we call an NP-hard problem [181], which means that,
assuming the complexity assumption P ̸= NP (the question of P versus NP is one of the Millennium
Prize problems), the problem cannot be solved in polynomial time. Researchers developed various
methods to circumvent this issue. We can search for an approximate solution instead of the
optimal one using approximation algorithms [311]. We can use heuristic algorithms [227], that
work well in practice, but with no theoretical guarantee on the complexity. Using randomization,
we can create non-deterministic algorithms [236] that solve the problem fast with high probability.
Instead of computing the running time in the worst case, we can analyze the average running
time [167]. Researchers even proposed more powerful computational models such as quantum or
DNA computing [249,315].

1To talk about NP-hardness, we need a decision problem, that is a problem that can be answered by yes or no.
When considering Vertex Cover as a decision problem, it takes as an input a graph G and an integer k ∈ N, and
the question is whether G has a vertex cover of size at most k.

1.1. Vertex Cover 5

1.1.1 Parameterized complexity

Let us take a closer look at two such methods. The first one is parameterized complexity [74,98,119].
Parameterized complexity was introduced through the pioneering work of Downey and Fellows in
the 90s [1, 93–96]. The key idea is that the hardness of a problem might originate from some more
refined measure than just the size of the input (here the number n of vertices of the input graph).
Theses measures are what we call parameters. If a parameter k is a the source of intractability for
a problem, then we should be able to find an algorithm that is solvable in polynomial time after
fixing k. Here, we consider parameterized problems, i.e., problems together with a parameter. For
instance, Vertex Cover, in its parameterized version, can be seen as the problem that, given a
graph G and an integer k ∈ N, outputs a minimum vertex cover of G of size at most k if it exists,
and returns a no-answer otherwise.

XP-algorithms

In the birthday setting, you do not want to reject too many friends, since it will not be well-received.
Maybe, if you need to reject more than k friends (for instance k = 4), then you just drop the idea
and invite everyone, even though you know a fight will happen. In this case, an obvious algorithm
is, for all subsets S of size at most k among your n friends, to check whether S is a vertex cover
and to output a smallest such S. This algorithm runs in time O(nk+1). This is what we call an
XP-algorithm (XP is “short” for slicewise polynomial), i.e., an algorithm running in time f(k) · ng(k)
for some functions f, g. For a fixed k, we indeed have a polynomial-time algorithm. However, because
k is in the exponent of n, each fixed k gives rise to a different polynomial running time in n. In that
sense, an XP-algorithm is a non-uniform algorithm with respect to k.

FPT-algorithms and branching

To remove this non-uniformity, we may search instead for a fixed-parameter tractable algorithm
(FPT-algorithm for short), which is an algorithm running in time f(k) · nc, for some constant c and
some function f . For each fixed k, the running time is O(nc), which is hence uniform in k. Let us
give such an example in our birthday setting, using a technique called branching [74]. Given that
after deleting a vertex cover S, we delete all edges of the input graph G, this implies that, for each
edge e of G, one of its endpoints is in S. Therefore, we can do the following procedure, with input a
graph G and a k ∈ N, where we search for a minimum vertex cover of G of size at most k. If k < 0,
then there exists no vertex cover of size at most k. If G is edgeless, then the minimum vertex cover
is the set S = ∅. Otherwise, there is at least one edge e = {u, v} in G. A minimum vertex cover S
contains at least one of u and v. Therefore, we run recursively the algorithm on (G− u, k − 1) and
(G− v, k− 1) to obtain, if they exist, a minimum vertex cover Su of G− u of size at most k− 1 and
a minimum vertex cover Sv of G− v of size at most k − 1, respectively. If we did not find a vertex
cover of size at most k − 1 for any of them, then there is no vertex cover of G of size at most k. If
|Su| ≤ |Sv|, then Su ∪ {u} is a minimum vertex cover of G, and otherwise, Sv ∪ {v} is a minimum
vertex cover of G. Let us compute the running time of this algorithm. At each step of the recursion,
we decrease k by one, and recursive calls happen only for k ≥ 0, so the recursion has depth at most
k + 1. Additionally, we make two recursive calls at each step of the recursion, so we do at most 2k+1

recursive calls in total. Given that a recursive call can be implemented in time O(n), the algorithm
runs in time O(2k · n). We talk about branching because the procedure can be pictured as a search
tree, whose root is the first edge {u, v} we consider, with two children, one corresponding to the
case where we pick u in the vertex cover, and the other to the case where we pick v in the vertex
cover. We continue as such, picking a new edge at each node, and we stop when we arrive at depth

1.1. Vertex Cover 6

k + 1, since we output a no-answer if a minimum vertex cover has size larger than k. We have two
branches at each step and depth k + 1, so the search tree has O(2k) nodes.

W-hierarchy

Parameterized problems that admit FPT-algorithms (resp. XP-algorithms) form the parameterized
complexity class FPT (resp. XP). Between FPT and XP, there is an entire hierarchy of classes
expressing different levels of hardness of parameterized problems, called the W-hierarchy [97,119],
whose classes are ordered as follows:

FPT = W[0] ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP.

If a parameterized problem is W [t]-hard for some t ≥ 1, then it is unlikely that it can be solved in
FPT-time. Many such problems exist. For instance, the k-Clique problem, which asks whether
the input graph contains a complete graph on k vertices as a subgraph, is W[1]-complete when
parameterized by k [96]. Similarly, k-Dominating Set, which asks for the existence of a set S of
size at most k such that any vertex of the input graph is either in S or adjacent to a vertex in S, is
W[2]-complete parameterized by k [95].

Additionally, if a parameterized problem is already NP-hard for some fixed value of the parameter,
then it is said to be para-NP-hard. For instance, k-Coloring, which asks whether the vertices of the
input graph can be colored using at most k colors, in such a way that no two adjacent vertices have
the same color, is para-NP-hard parameterized by k, given that it is already NP-hard for k = 3 [181].

Kernelization

The running time to solve Vertex Cover can be optimized further using kernelization. Kernelization
can be seen as a set of preprocessing rules that can be applied in polynomial time and that produce
an equivalent instance whose size is bounded by a function of the parameter. For Vertex Cover,
we can, for instance, observe that, for each vertex v of the input graph G, if v is not in a vertex
cover, then all its neighbors are in this vertex cover. Therefore, if v has degree at least k + 1, then
any vertex cover of size at most k contains v. We can hence remove v and recurse on (G− v, k − 1),
or, in other words, the instance (G, k) can be reduced to (G− v, k − 1). Additionally, if a vertex
v has no neighbor, then it does not belong to any minimum vertex cover. Therefore, if a vertex v
has degree zero, then the instance (G, k) can be reduced to (G− v, k). With this two preprocessing
rules, we can reduce in time O(k · n) the instance (G, k) to an equivalent instance (G′, k′) such that
k′ ≤ k and such that every vertex in G′ has degree at least one and at most k. Let S be a vertex
cover of G′ of size at most k′. Given that every vertex of G′ has at least one neighbor, every vertex
that is not in S is adjacent to a vertex in S. Therefore, given that each vertex in S has at most
k neighbors and that S has size at most k′ ≤ k, there are at most k2 vertices that are not in S.
Therefore, if there is a vertex cover of G′ of size at most k, then G′ has at most k + k2 vertices.
Thus, if G′ has strictly more that k + k2 vertices, we can conclude to a no-instance, and otherwise,
we obtained in polynomial time an instance (G′, k′) that is equivalent to (G, k), where |V (G′)|+ k′

is bounded by some function in k. This is what we call a kernel. Formally, a kernelization algorithm
(kernel for short) for a parameterized problem Π is an algorithm that, given an instance (G, k),
outputs, in polynomial time, an equivalent instance (G′, k′) of Π with |V (G′)|+ k′ ≤ f(k), where
f is a function. If f is more particularly a polynomial function, as is the case here, we talk about
a polynomial kernel. Given a kernel for Π, we can obtain an FPT-algorithm for Π by solving the
reduced instance exhaustively. Conversely, if there is an FPT-algorithm running in time f(k) · nc,

1.1. Vertex Cover 7

then we can also obtain in time O(nc+1) a kernel of size f(k) [74]. However, some problems that are
in FPT are known to be unlikely to have a polynomial kernel [34].

To solve Vertex Cover given an instance (G, k), we can thus first apply our kernelization
algorithm in timeO(k·n) to (G, k), which outputs an equivalent instance (G′, k′) with |V (G′)| = O(k2)
and k′ ≤ k. Then, we apply our FPT-algorithm to (G′, k′), which outputs in time O(2k′ · |V (G′)|) =
O(2k · k2) a minimum vertex cover. We thus solve Vertex Cover in time O(2k · k2 + k · n).

From this trivial kernel, a long series of papers [21, 45, 58, 61, 80, 111, 220, 237, 238, 294] led to
the current best kernel for Vertex Cover of [214], which has size 2k − c log k for any constant
c. Given that it has size O(k), we talk about a linear kernel. Concerning FPT-algorithms, a
similarly impressive list of papers [21, 45, 54, 58, 242,243,296] led to the current best running time of
O(1.2738k + kn) [59]. Thus, if when you will have 100 friends instead of your current 10, the time
your algorithm takes to terminate will only be multiplied by 10. If it seems like a lot to you, let
us compare numbers: for n = 10 and k = 4, we have 2n = 1024 and 1.2738k + kn ≤ 43, while for
n = 100 and k = 4, we have 2n ≥ 1030 and 1.2738k + kn ≤ 403. The multiplication by 10 concerning
1.2738k + kn is nothing compared to the multiplication by 1027 concerning 2n.

Of course, a downside is that we require k to be small for this to work. Still we may observe
here that k does not need to be a constant to obtain a subexponential algorithm: for k = log n,
O(1.2738k + kn) = O(nlog(1.2738) + n log n) is polynomial. In particular in our birthday setting,
rejecting at most k = log n friends seems reasonable.

1.1.2 Restricting the input

The second method we detail here to circumvent the issue of NP-hardness is to restrict the input. A
problem might be NP-hard on complicated graph classes, but could become tractable on simpler
classes. Instead of the class Gall of all graphs, we may thus consider a more restrictive graph class,
such as, for instance, the class of trees.

Trees

Back to our birthday setting, let us assume that the graph of conflicts of your friends forms a tree T .
Let r be a vertex of T , that we call root of T . Then we say that (T, r) is a rooted tree, which is
usually depicted (contrary to its name) with the root r at the top and the rest of the tree “pending”
from r (see Figure 1.6 for an example). The vertices of a tree are sometimes called nodes of the

r

Figure 1.6: A tree T with root r. The leaves of (T, r) are depicted in blue, and the squared vertices
form a vertex cover of T .

tree. The leaves are the vertices of degree one (aside from the root, which could also have degree
one), and the other nodes are called internal nodes. The parent of a node u ̸= r is the node adjacent
to u in the unique path between u and r, and the children of an internal node u are the neighbors
of u aside from its parent. To find a minimum vertex cover of u, we can notice the following: if a
vertex v has a unique neighbor u, then, for any vertex cover S containing v, S \ {v} ∪ {u} is also a
vertex cover of size at most |S|. Therefore, given that the unique neighbor of a leaf v is its parent u,

1.1. Vertex Cover 8

the set obtained by adding u to the minimum vertex cover of T − u − v (the tree obtained after
removing v and u from T) is a minimum vertex cover of T . As such, in a leaf-to-root manner, we
may add the parents of leaves to the vertex cover, delete both the leaves and their parent from the
tree, and recurse on the tree obtained after the deletion. This gives a minimum vertex cover such as
the one depicted in Figure 1.6. We can thus solve Vertex Cover on trees in linear time.

Treewidth

Now, maybe the graph of your friends’ conflicts is not a tree, but it might look similar to a tree when
seen from afar. A way to measure how much a graph looks like a tree is a graph parameter called
treewidth. A graph parameter is a function p : Gall → N, such as, for instance, the size |V (G)| of a
graph G. While it was (re)discovered several times since the 70s, the popularity of the parameter
treewidth originates from its rediscovery in the Graph Minors series of Robertson and Seymour in
the 80s [260], who demonstrated the usefulness of treewidth for problems related to minor-closed
graph classes (see Section 1.3 and Section 3.1 for more on the subject). A tree decomposition of
a graph G is a pair (T, β) composed of a tree T and a function β mapping each node t of T to
a set β(t) of vertices of G, called bag of t, such that each edge e and each vertex v belongs to
some bag, and such that, for each vertex v, the nodes whose bag contain v form a subtree of T .
Then, the width of (T, β) is the maximum size minus one of a bag, and the treewidth of G is the
minimum width over all tree decompositions of G. See Figure 1.7 for an illustration. In particular,

Figure 1.7: A graph of treewidth two (on the left) and an associated tree decomposition (T, β) of
width two, where the tree T is represented on the right, and the bag β(t) of each node t is the set of
vertices of the same color as t on the left.

forests have treewidth one. There is a long line of research on the computation of the treewidth of a
graph [13,17,26,27,33,35,110,128,131,203,204,212,255,271]. In this thesis, we use most particularly
the 2-approximation algorithm of Korhonen [203], running in time 2O(tw) · n. Treewidth is arguably
the favorite parameter of researchers in parameterized complexity, mainly due to the fact that a large
collection of problems on graphs is solvable in polynomial-time on graphs of bounded treewidth, or,
said another way, is in FPT parameterized by tw [18, 67] (see Section 1.6) for more on the subject.

Dynamic programming

Let us see how to solve Vertex Cover on graphs of treewidth at most tw. Using for instance
the 2-approximation algorithm of Korhonen [203], we find in time 2O(tw) · n a tree decomposition
of width at most w = 2tw. This tree decomposition can then be transformed in a so-called rooted
nice tree decomposition (cf. Section 4.3), which is a tree decomposition (T, β) with a root r and
such that each node has at most two children. Then, we use a dynamic programming technique on
(T, β, r). A dynamic programming technique consists in breaking the problem into a collection of

1.2. Graph modification problems 9

simpler subproblems and in solving each subproblem only once by storing the solution for the next
time the subproblem occurs. Our dynamic programming algorithm on (T, β, r) goes as follows. For
each node t of T , in a leaf-to-root manner, and for each subset X of β(t), we store the size vt(X) of
the minimum vertex cover SX containing X that occurs in the already processed graph Gt, i.e., the
graph induced by the bag of t and its descendants (if there is no such vertex cover, we store ∞).
Thus, a minimum vertex cover of G has size minX⊆β(r) vt(X). Notice that, by the connectivity of
the bags containing a vertex in a tree decomposition, the vertices of Gt that are not in β(t) will
never appear again in the bag of a node between t and r. Let us see how to compute vt(X). For
a leaf t, this is trivial given that SX = X, if it is a vertex cover (otherwise, vt(X) = ∞). For an
internal node t with children t1 and t2, if X is a vertex cover of β(t), then vt(X) is the minimum
value vt1(X1) + vt2(X2)− |X1 ∩X| − |X2 ∩X|+ |X|, over all X1 and X2 such that, for i ∈ {1, 2},
Xi is a subset of β(ti) such that X ∩ β(ti) ⊆ Xi. Given that a bag has size at most w + 1, there are
at most 2w+1 subsets X for each node t. Thus, the computation of vt can be done in time 2O(tw)

and, given that we may assume that T has O(n) nodes (cf. Section 4.3), computing the size of a
minimum vertex cover takes time 2O(tw) · n. It is then possible to apply some kind of backtracking
algorithm going from the root to the leaves in order to deduce from the choices we made at each
node such a minimum vertex cover.

1.2 Graph modification problems

Vertex Cover is the simplest of a category of problems called “graph modification problems”. A
graph modification problem is typically determined by

• a target graph class H,

• a set of allowed modifications M, and

• a measure p on the “modulator”,

and the question is, given a graph G and an integer k, whether it is possible to transform G into
a graph in H by applying modifications from M, such that p(G,X) ≤ k, where X ⊆ V (G) is the
modulator, i.e., the set of all vertices that are modified or that are incident to a modified edge (here,
the measure p depends on X, but might also depend on G). For Vertex Cover, the target class
H is the class of edgeless graphs, the set of allowed modifications isM = {vertex deletion}, and the
measure is the size of the modulator X, i.e., p(G,X) = size(X) = |X|.

Starting from Vertex Cover, we may wonder what happens if we “grow” the target graph
class, change the type of modification, or “grow” the size of the modulator by changing the measure
on it. Each of these changes defines a new graph modification problem, and researchers study the
parameterized complexity of those problems.

Beyond our toy example of birthday party to introduce Vertex Cover, graph modification
problems have applications in domains as diverse as computational biology, computer vision, machine
learning, networking, or sociology; see for instance [130,292] and the references therein. One of the
motivations behind the study of graph modification problems is linked to the concept of distance from
triviality formalized by Guo, Hüffner, and Niedermeier [160], which expresses the closeness of a graph
to a supposedly “simple” target graph class H. Let us use Vertex Cover as an example. A problem
Π is usually trivial on edgeless graphs. Therefore, we may hope that Π is also “easily solvable” when
it is “close” to being edgeless, where the closeness here refers to the minimum size vc of a vertex
cover, and “easily solvable” means solvable in FPT-time parameterized by vc. And this is actually the
case for many problems such as the ones in the following papers [78,112,116,117,200,215]. However,

1.2. Graph modification problems 10

in order to apply those FPT-results parameterized by vc, we first need to be able to compute vc.
The same holds for the other measures of distance from triviality. That is, assuming a problem Π is
solvable in polynomial time on a graph class H, Π might be solvable in FPT-time on graphs close to
H parameterized by this closeness. Therefore, we need to be able to measure this closeness, which is
done using graph modification problems.

Let us fix the measure to be the size of the modulator for now. Given a graph G and a set
S ⊆ V (G), G− S is the graph obtained by removing the vertices of S from G. The most studied
type of modification is arguably vertex deletion, for which one may define the following general
graph modification problem, given some target graph class H:

Input: A graph G, a k ∈ N.
Question: Is there a set S ⊆ V (G) of size at most k such that G− S ∈ H?

Vertex Deletion to H

Each different target class H defines a different graph modification problem. As presented above,
when H is the class of edgeless graphs, then this is Vertex Cover. When H is the class of forests,
then this is Feedback Vertex Set. When H is the class of bipartite graphs, then this is Odd
Cycle Transversal.

One may also consider other modifications: if M = {edge addition} and H is the class of
chordal graphs2, then we obtain Chordal Completion; or even combine modifications: if
M = {edge addition, edge deletion} and H is the class of graphs that are a union of cliques,
then we obtain Cluster Edition. More generally, any pair composed of a fixed set of modifications
M and a fixed target class H defines a new graph modification problem, hence their sheer number.
For each such problem Π, the goal is hence to find an algorithm that solves Π as fast as possible.

Instead of studying each graph modification problem separately, an emerging trend is to find
algorithmic meta-theorems solving many problems at once, given some restriction of the descriptive
complexity of the problem via some logic and to the structure of the input via some graph parameter,
with the objective to solve those problems efficiently (cf. Section 1.6 for more details). Of course
finding a meta-theorem that would solve every problem efficiently is not realistic, as seen from the
many hardness results [29,30,69,122,164,216,223,291,313]. Hence, two main lines of research can
be distinguished regarding graph modification problems:

• Efficiency: solving a specific problem or certain families of problems as fast as possible.

• Generality: finding an algorithmic technique that can be applied to a general scheme for
defining graph modification problems, often at the cost of its efficiency.

Following those lines of research, the objective in Part III of this thesis is to solve families of
problems that can be solved by known algorithmic meta-theorems more efficiently. Let us discuss
what “efficient” means here.

Graph modification problems that are known to be solvable in polynomial time do exist. One
such example is Feedback Edge Set, where we ask for a minimum number fes of edges to delete
from the input graph such that the resulting graph is a forest. fes is simply equal to n+m+ c, where
m is the number of edges, n the number of vertices, and c the number of connected components of
the graph, which can be computed in polynomial time. Still, most graph modification problems are
NP-hard [109,216,313].

2A chordal graph is a graph where every cycle of size at least four contains an edge connecting two non-consecutive
vertices of the cycle.

1.3. Target class 11

Hence, we study in this thesis graph modification problems from the viewpoint of parameterized
complexity. As presented in Section 1.1 for Vertex Cover, a rather natural parameter is the
bound k on the measure on the modulator (usually the size), though we also sometimes use other
graph parameters, such as the treewidth of the input.

The objective in Part IV of this thesis is to solve graph modification problems beyond the scope
of known algorithmic meta-theorems. Before presenting those results (in Chapter 2), we first need
to present a landscape of graph modification problems along with some known algorithmic results
on those and the current limits.

As said above, a graph modification problem is defined from three ingredients: a target class H, a
set of allowed modificationsM, and a measure p on the modulator. We can also see it as a modulator
versus target scheme: on the one hand, we have whatever is modified (the modulator) characterized
by M and p, and on the other hand, we have whatever remains (the target) characterized by H.
We thus proceed as follows for the next three sections. In Section 1.3, we consider other target
graph classes, beyond edgeless graphs, and we more generally explain how to encompass several
target classes at once by excluding forbidden patterns. In Section 1.4, we focus on modifications and
introduce replacement actions, a way to generalize several types of modifications. In Section 1.5, we
discuss measures that have been considered, other than the size of the modulator, in the literature.

1.3 Target class

As said above, the problem of Vertex Cover corresponds to Vertex Deletion to H when H is
the class of edgeless graphs. Let us see what happens when we change the target graph class.

1.3.1 Vertex Deletion to H

If H is the class of forests, then we obtain Feedback Vertex Set. In Subsection 1.1.2, we mention
that treewidth is a parameter measuring how much a graph looks like a tree or, more generally, a
forest. The minimum size fvs of a feedback vertex set of a graph G (a set S such that G − S is a
forest) is another graph parameter measuring how close G is to being a forest. Given that many
problems are solvable in polynomial time on forests, many problems are also solvable in FPT-time
parameterized by fvs - see for instance [38,172,207,226,234]. Just as is the case for Vertex Cover,
Feedback Vertex Set has been extensively studied parameterized by the size k of the modulator.
An impressive list of papers [25,32,50,57,76,79,94,159,180,201,252,253,306] leads to the current
best running time of O(2.7k · n) [217] (the linearity comes from [170]). On the kernalization side,
the best kernel for Feedback Vertex Set has size 2k2 + k [170].

When H is the class of bipartite graphs, we obtain Odd Cycle Transversal, whose parame-
terized complexity by the size k of the modulator has been studied for instance in [175,192,225,254].

When H is the class of planar graphs, the problem is often called Planarization and the
currently fastest algorithm runs in time 2O(k log k) · n [176].

Surfaces

Planar graphs are the graphs that can be embedded in the sphere (or equivalently the plane), i.e.,
graphs that can be drawn in the sphere with no edge crossings. More generally, we may consider the
class GΣ of graphs that can be embedded in some surface Σ. Let us give some intuition on surfaces
(we refer the interested reader to [233] for more on the subject).

We call here surface a compact and connected 2-manifold, which is a topological space such
that every point has a neighborhood that is topologically equivalent to an open disk and any two

1.3. Target class 12

distinct points can be contained by disjoint neighborhoods. The simplest surface is the sphere, and
the surface classification theorem, that was first proved rigorously in the 1920s by Brahana [42],
essentially states that every surface can be obtained from the sphere by adding h “handles” and c
“crosscaps”, for some c, h ∈ N (see Figure 1.8).

handle

crosscap = Möbius stripthe sphere (minus a disk)

Figure 1.8: Adding a handle or a crosscap to the sphere: the dashed boundaries are glued together.

Adding a handle, essentially means adding a hole to the surface. The torus (the surface with
one hole that looks like a donut) is obtained from the sphere by adding one handle, and more
generally, the k-torus (the surface with k holes) is obtained from the sphere by adding k handles (cf.
Figure 1.9). Those surfaces, that can be obtained from the sphere by adding only handles, are called
orientable surfaces. They are easy to picture given that they can be represented in 3D. The number
of handles of an orientable surface is called its genus.

The other surfaces, that require to add “crosscaps”, are called non-orientable surfaces. A crosscap
is essentially a Möbius strip, i.e., the half-twisted strip pictured in Figure 1.8. Notice that the
boundary of a Möbius strip is a unique cycle. Adding a crosscap to a surface Σ essentially consists in
cutting Σ along a cycle C bounding a disk ∆, and replacing ∆ with a Möbius strip whose boundary
is glued to C. By adding one crosscap to the sphere, we obtain the projective plane. The projective
plane, along with the other non-orientable surfaces, is not representable in 3D, though it can be
represented in 4D. Still an attempt to picturing it is proposed in Figure 1.9. By adding another
crosscap, we obtain the Klein bottle. This is arguably the most famous non-orientable surface,
perhaps because it is relatively easy to depict. With yet another crosscap, we obtain Dyck’s surface.
The other non-orientable surfaces are usually designated by their number of handles and crosscaps.

An important result on surfaces is Dyck’s theorem [103,132,302]. It states that two crosscaps
are equivalent to a handle under the presence of a third crosscap. This implies that Dyck’s surface is
equivalently the surface obtained from the sphere by adding one handle and one crosscap. More
generally, it implies that any surface can be obtained from the sphere by adding h handles and c
crosscaps, where h ∈ N and c ∈ {0, 1, 2}.

Instead of the genus of a surface Σ, which mainly refers to orientable surfaces, we prefer to use a
variant that is in accordance with the fact that two crosscaps are essentially equal to a handle. This
variant is the Euler genus of Σ, which is defined as 2h+ c, where Σ has h handles and c crosscaps.
Hence, for Dyck’s surface for instance, no matter whether we say that it has three crosscaps or one
handle and one crosscap, the Euler genus is three. Interestingly, if g is the smallest integer such
that a graph G embeds in a surface Σ of Euler genus g, then v + f − e = 2− g, where v = |V (G)|,
e = |E(G)|, and f is the number of connected components obtained after cutting Σ along the edges
of G (the number of faces). The value 2− g is called Euler characteristic of a surface (in terms of
genus g of an orientable surface, the Euler characteristic is 2− 2g).

1.3. Target class 13

0

1

2

3

4

Euler genus Orientable surfaces Non-orientable surfaces

(0, 0)

(0, 1)

(0, 2)(1, 0)

(2, 0)

(1, 1)

(1, 2)

sphere

torus

2-torus

projective plane

Möbius strip

Klein bottle

Dyck’s surface

+(1, 0)

+(1, 0)

+(0, 1)

+(0, 1)

+(0, 1)

+(0, 1)

+(0, 1)

Figure 1.9: Representation of the surfaces of small Euler genus. Each surface is characterized by a
pair (h, c) where h ∈ N is the number of handles of the surface and c ∈ {0, 1, 2} is its number of
crosscaps.

Back to our graph modification problems, given that every surface locally looks like a disk, results
on planar graphs are often generalizable to surfaces (parameterized by the Euler genus). This is the
case for Vertex Deletion to H: when H = GΣ for some surface Σ of Euler genus g, then there is
an algorithm running in time 2Og(k2 log k) · nO(1)3 [202].

1.3.2 Excluding forbidden patterns

In Subsection 1.3.1, we mainly present results on particular target graph classes. Due to the sheer
number of graph classes, enumerating results on each of them one by one would be a daunting task.
Instead, we would prefer to find a property P on graph classes such that graph modification problems
to target classes with this property are “easily” solvable. One such method is to characterize target
graph classes via the exclusion of forbidden graphs according to some partial order on graphs. Let
us give some notations concerning partial orders on graphs.

3Given some t ∈ N and some functions f, g : N → N, we write g(n) = Ot(f(n)) in order to denote that there exists
some function h : N → N such that g(n) ≤ O(h(t) · f(n)).

1.3. Target class 14

Partial orders. Let ⪯ be a partial order on graphs4. We say that a graph class H is closed
under ⪯ if, for each G ∈ H and for each H ⪯ G, we have H ∈ H. Then, we can define the set of
⪯-obstructions of H to be the (possibly infinite) set obs⪯(H) of graphs F such that F /∈ H and, for
each G ⪯ F , G ∈ H. A standard way to describe many target classes at once is to ask for H to be
any target class such that obs⪯(H) has some particular properties, such as being finite or containing
a planar graph, or more generally, for H to be closed under ⪯.

Let us mention some of the most well-known partial orders on graphs (the operations mentioned
below are illustrated in Figure 1.10).

vertex deletion edge deletion edge contraction

Figure 1.10: Illustration of a vertex deletion, an edge deletion and an edge contraction.

(Induced) subgraphs

One of the most natural partial orders on graphs is through the deletion of vertices and/or edges. A
graph H is an induced subgraph of a graph G, denoted by H ⪯i G, if H can be obtained from G by
removing vertices. A graph class that is closed under induced subgraphs is said to be hereditary. A
graph H is a subgraph of a graph G if H can be obtained from G by removing edges and vertices. A
graph class that is closed under subgraphs is said to be monotone. Graph modification problems
where the target class is hereditary or monotone have been extensively studied from the parameterized
complexity viewpoint. Most notably, if H is graph class such that obs⪯i(H) is finite, then Cai [47]
proved that, given a graph G and three integers i, j, k, one can decide in FPT-time (parameterized by
i, j, and k) whether one can remove at most i vertices, remove at most j edges, and add at most k
edges so that the modified graph belong to H. See also for instance [7,16,40,48,75,174,228,239,283]
and, more particularly, the extensive survey of [69] (restricted to modifications related to edges).

Subdivisions/topological minors

Another rather natural partial order on graphs is to say that a graph H is smaller than a graph
G if H can be “drawn” in G, i.e., if each vertex v of H is mapped to a vertex xv of G and each
edge {u, v} of H is mapped to a path Puv in G with endpoints xu and xv, where the vertices xv are
pairwise distinct and the paths Puv are pairwise internally vertex-disjoint. We say that G contains
a subdivision of H as a subgraph (a subdivision of a graph H, which corresponds to replacing
edges by paths, is depicted in Figure 1.11). Equivalently, a graph H is a topological minor of a
graph G, denoted by H ⪯tm G, if H can be obtained from G by removing edges, removing vertices,
and contracting edges that have at least one endpoint of degree two. Modification problems to
topological-minor-closed graph classes have mainly been investigated for vertex deletion problems,
see for instance [6, 22,126,145].

4A partial order ⪯ on a set S is a binary relation that is reflexive (a ⪯ a for each a ∈ S), antisymmetric (a ⪯ b and
b ⪯ a implies a = b), and transitive (a ⪯ b and b ⪯ c implies a ⪯ c).

1.3. Target class 15

G H

Figure 1.11: The graph G is a subdivision of the graph H.

Minors

Let us now present a partial order with nice properties.
A graph H is a minor of a graph G, denoted by H ⪯m G, if H can be obtained from G by

removing edges, removing vertices, and contracting edges (see Figure 1.12). A graph class that is
closed under minors is said to be minor-closed. As shown in Figure 1.16, minor-closed graph classes

G H

Figure 1.12: A minor H of a graph G.

are also topological-minor-closed, monotone, and hereditary. Among the classes mentioned above,
the classes of edgeless graphs, of forests, of planar graphs, and of graphs embeddable in a surface Σ
are minor-closed. Bipartite graphs however, form a monotone (and thus hereditary) graph class, but
that is not (topological-)minor-closed.

Let us discuss some nice properties of minor-closed graph classes.

Well-quasi-order. Kuratowski proved in the 30s that the topological-minor-obstructions of the
class of planar graphs are K5 and K3,3 [211]. Later, Wagner proved another variant of this result: the
minor-obstructions of the class of planar graphs are K5 and K3,3 [309] (see Figure 1.13). Given that

K5 K3,3

Figure 1.13: The (topological-)minor-obstructions of planar graphs.

planar graphs form a minor-closed graph class, this gave rise to the so-called Wagner’s conjecture,
which states that every minor-closed graph class has a finite number of minor-obstructions. In more
technical terms, it states that minor containment is a well-quasi-order on graphs. A well-quasi-order

1.3. Target class 16

(WQO) on graphs is a partial order such that there is no infinite set of graphs that are pairwise
incomparable by the partial order. The other partial orders defined above, that is (induced) subgraph
containment and topological minor containment, are not WQOs given that there exist some infinite
set (Sk)k∈N of pairwise incomparable graphs for those partial orders (cf. Figure 1.14).

S1 S2 S3

Figure 1.14: The family (Sk)k∈N is a family of pairwise incomparable graphs for (induced) subgraph
and topological minor containment.

The Graph Minors series. In the span of 23 papers [258–267,269–281], Robertson and Seymour
proved several results on minors and developed many techniques that are at the base of the
Graph Minor Theory (see Chapter 3 for more on those techniques). Their primary objective was
to prove Wagner’s conjecture, which they achieve in [278]. Additionally, the main algorithmic
contribution of the Graph Minors series is an algorithm that solves in time Oh(n

3)5 the Minor
Containment problem which asks whether a fixed graph H on h vertices is a minor of an input
graph G on n vertices [271]. The cubic running time has since then been improved to Oh(n

2)
by Kawarabayashi, Kobayashi, and Reed [188], and more recently to Oh(n

1+o(1)) by Korhonen,
Pilipczuk, and Stamoulis [205]. An algorithmic consequence of the above concerns the Membership
in H problem that asks whether the input graph G belongs to a fixed graph class H: if H is
minor-closed, then Membership in H is equivalent to checking whether G excludes as minors all
the minor-obstructions of H. Due to the finiteness of the minor-obstructions of H, Membership in
H thus reduces to applying a finite number of times an algorithm solving Minor Containment.
Therefore, it is solvable in time OsH(n

1+o(1)) where sH is the size of the largest obstruction of H.

A meta-theorem. When the yes-instances (or the no-instances) of a decision problem Π form a
minor-closed graph class G, it implies that solving Π reduces to solving Membership in G, which
can be done in polynomial time. Under this viewpoint, the Graph Minors series build a framework
to solve a wide family of problems in polynomial time. This is hence a so-called meta-algorithmic
theorem.

In particular, this applies to graph modification problems. For instance, when the target class H
is minor-closed, then the set Ak(H) of all graphs G such that (G, k) is a yes-instance of Vertex
Deletion to H is also a minor-closed graph class. Therefore, this immediately implies that Vertex
Deletion to H is solvable in time OsH,k(n

1+o(1)).
Interestingly, Robertson and Seymour’s proof of Wagner’s conjecture is not constructive: while

they prove that the obstruction set of minor-closed graph classes is finite, they do not provide a way
to construct it. Thus, they only prove the existence of a polynomial algorithm for Membership in
H when H is minor-closed. Actually, Friedman, Robertson, and Seymour proved that there exists
no proof yielding a way to construct the minor-obstruction set obs(H) for each minor-closed graph

5Given some t ∈ N and some functions f, g : N → N, we write g(n) = Ot(f(n)) in order to denote that there exists
some function h : N → N such that g(n) ≤ O(h(t) · f(n)).

1.3. Target class 17

class H [133], while Fellows and Langston proved that there is no algorithm that, given a finite
description of a minor-closed graph class H, outputs obs(H) [113].

Constructing obstructions. Hence, a line of research in Graph Minor Theory consists in
constructing the obstructions of minor-closed graph classes, which immediately implies an algorithm
solving membership to the said graph class. In particular, given a “simple” minor-closed graph class
H whose obstructions are supposed to be known, researchers study mechanisms for constructing
obstructions of minor-closed graph classes that are “close” to H in the sense of the distance from
triviality of Guo, Hüffner, and Niedermeier [160]. For instance, given the set obs(H) of obstructions of
a minor-closed graph class H, the constructibility of the obstructions of the class Ak(H) obtained by
adding at most k vertices to graphs of H as been extensively studied [3, 91, 92,115,125,230,244,316].
Other modification operations have also been investigated for instance in [43,55,89,114,161,213,290].

One of the goals of this thesis (although not necessarily the main one) is thus the following.

Bound the size of the obstructions of minor-closed graph classes composed of the yes-instances
of some graph modification problems.

We do so in particular in Chapter 6 and Chapter 8. Those results are presented in Section 2.2 and
Section 2.4, respectively.

Vertex Deletion to Minor-closedness. The Graph Minor series of Robertson and Seymour
gave rise to many researches on problems related to minors and, in particular, explains why graph
modification problems where the target class is minor-closed are extensively studied. Studies on
modification problems to (specific) minor-closed graph classes include for instance the following [3,57,
59,124,125,176,184,197,202,229]. Concerning Vertex Deletion to H, when H is any minor-closed
graph class, the best parametric dependence is obtained in [284] with a running time of 2k

OsH (1)

· n3.
This parametric dependence can be improved if we add some constraints on obs(H). If an obstruction
of H is planar, then Vertex Deletion to H can be solved in time 2O(k) ·n2 [197]. If we additionally
ask that all obstructions are connected, then the running time drops to 2O(k) · n [125]. Asking for an
obstruction to be planar is a rather restrictive condition. To relax this condition, we can instead ask
that an obstruction F of H is close to being planar. By this, we mean that F is an apex graph, i.e., F
contains a vertex v such that F − v is planar. In this case, we say that H is an apex-minor-free graph
class. Both K5 and K3,3 are apex graphs, so planar graphs are apex-minor-free. More generally, the
class GΣ of graphs embeddable in a surface Σ is apex-minor-free. Indeed, there is kΣ ∈ N such that
K3,kΣ /∈ GΣ [233, Theorem 4.4.7], which is an apex graph, given that K2,kΣ is a planar graph. When
H is any apex-minor-free graph class, the authors of [284] obtain a running time of 2k

OsH (1)

· n2.

Odd-minors

Let us mention a last partial order on graphs that could imply results as promising as the ones on
minor-closed graph classes.

A graph H is an odd-minor of a graph G if H can be obtained from G by removing edges,
removing vertices, and contracting edge cuts6 (see Figure 1.15 for an illustration). Another way to see
it is that an odd-minor is a minor that preserves the parity of the length of cycles (cf. Section 9.2 for

6An edge set E′ is an edge cut in a graph G if there exists a partition of V (G) into two sets A and B such that E′

is exactly the set of edges of G with one endpoint in A and the other in B.

1.3. Target class 18

more on the subject). A graph class that is closed under odd-minors is said to be odd-minor-closed. In

Figure 1.15: The black edges form an edge cut.

particular, the class of bipartite graphs is odd-minor-closed, with unique odd-minor-obstruction K3.
Hence, a minor-closed graph class is also odd-minor-closed, but the contrary does not hold, given
that the class of bipartite graphs is not minor-closed. Other examples of odd-minor-closed graph
classes are the classes of graphs excluding odd (resp. even) cycles of big size. For instance, the
K2p+1-odd-minor-free graphs are exactly the graphs with no odd cycles of size 2p+ 1 or more.

Hadwiger’s conjecture [163], which is open since 1943, states that if a graph excludes Kt as a
minor, then its chromatic number7 is at most t− 1. In 1993, Gerards and Seymour [177] generalized
this conjecture to odd-minors, hence drawing attention to odd-minors: the Odd Hadwiger’s conjecture
states that if a graph excludes Kt as an odd-minor, then its chromatic number is at most t − 1.
Note that a similar conjecture when Kt is excluded as a topological minor was disproved by Catlin
in [51]. Since then, several papers regarding odd-minors appeared. Most of them focus on the
resolution of the Odd Hadwiger’s conjecture (see for instance [137], and [297] for a nice overview of
the results), while some others aim at extending the results of Graph Minor Theory to odd-minors
(see for instance [85,168,193]).

Similarly to minors, Odd-Minor Containment, that asks whether a fixed graph H is an
odd-minor of the input graph G, is solvable in FPT-time parameterized by the size of H [193]
(unfortunately, only a short version of this paper exists to our knowledge, see also [168] for an
XP-result on the subject). Moreover, as explained by Huynh in [168], Geelen, Gerards, and Whittle
claimed in 2009 that odd-minor containment is a WQO, though no proof as been written since then
to our knowledge. If these results are true, then they would imply, as is the case for minors, that
Membership in H is solvable in FPT-time for any odd-minor-closed graph class H. In particular,
given that Ak(H) is odd-minor-closed for any odd-minor-closed graph class H, this would imply the
existence of an FPT-algorithm solving Vertex Deletion to H for any odd-minor-closed graph
class H.

The Graph Odd-minor Theory is unfortunately far less developed than the Graph Minor Theory.
Therefore, not much is known about modification problems to any odd-minor-closed graph class
(that is not minor-closed), other than the vertex deletion to bipartite graphs, that is, Odd Cycle
Transversal [192,254].

A hierarchy of the graph classes closed by the partial orders defined above is depicted in
Figure 1.16. Other partial orders exist, such as immersions [139,140], though we will not go into
details about them here.

In this section, we mainly talked about vertex deletion problems. This is because vertex deletion
is one of the simplest modification operations, and thus, one of the most extensively studied. While
we develop more on the other modification operations in the next section, let us already present one
of the objectives of this thesis.

7The chromatic number of a graph G is the minimum number of colors necessary to color the vertices of G such
that no two adjacent vertices have the same color.

1.4. Modification 19

Hereditary

Monotone

Topological-minor-closed

Odd-minor-closed

Minor-closed

Figure 1.16: Hierarchy of graph classes properties: a minor-closed graph class is both odd-minor-
closed and topological-minor-closed, and all of those are monotone graph classes and, more generally,
hereditary graph classes.

Extend the results on graph modification problems where the modification is vertex deletion
to other modification operations.

We do so in particular in Chapter 5, Chapter 6, and Chapter 7. See Section 2.1, Section 2.2, and
Section 2.3 for a description of those results.

1.4 Modification

For Vertex Cover, the modification is vertex deletion. While this is certainly the most studied
modification, as discussed in the previous section, other modification operation do exist. Some of
the most studied are edge deletion and edge addition. If we allow both, then we get edge edition. We
refer the reader to the extensive survey of [69] concerning the parameterized complexity of Edge
Deletion/Addition/Edition to H. Let us also mention the edge contraction operation (see [147]
for an overview on Contraction to H). Some more exotic modification operations exist, such
as the deletion of a connected set, the deletion of an independent set, the complementation of a
subgraph, the deletion or contraction of a matching, and so on [39,66,73,121,218,221,251].

In order not to study each modification operation one by one, it is necessary to define a general
framework that can describe many of them. One of them uses replacement actions, introduced by
Fomin, Golovach, and Thilikos in [121].

Replacement actions

The idea of replacement actions is not to consider each modification operation, such as deleting
an edge, separately, but instead to consider the modulator in its whole, for instance, the minimum
induced subgraph of the input graph where k edges will be removed. More formally, Fomin, Golovach,
and Thilikos defined in [121] a replacement action as a function L that maps each graph H to a

1.5. Measure on the modulator 20

L

H1 H2 ∈ L(H)

Figure 1.17: Illustration of a graph modification allowed by the replacement action L.

collection of graphs of size |V (H)| (cf. Figure 1.17 for an illustration) corresponding to the “allowed
modifications”. Given a target class H, L-Replacement to H is the problem where the input is a
graph G and the question is whether it is possible to replace some induced subgraph H1 of G on at
most k vertices by a graph H2 in L(H1) so that the resulting graph belongs to H. Defined as such,
L-Replacement to H can simulate any problem that is a combination of edge removal and edge
addition of bounded size, such as whether it is possible to remove a matching of size at most k to
belong to H, or whether one can find a set X of size at most k and replace the subgraph induced by
X by its complement, so that the modified graph is in H. Fomin, Golovach, and Thilikos proved
in [121] that L-Replacement to H is solvable in time f(k) · n2 for some computable function f
when H is the class of planar graphs.

A limit of this framework of replacement actions is that it encompasses only modifications related
to edge additions and deletions. It does not encompass the deletion of vertices, or the contraction
of edges, for instance. Additionally, L-Replacement to H has only been studied when H is the
class of planar graphs and no explicit parametric dependency is known. We hence have the following
objective.

Simultaneously extend the framework of replacement actions so that it encompasses more
modification operations and solve L-Replacement to H on more general graph classes and
with moderate parametric dependencies.

This is what we do in Chapter 7 (see Section 2.3 for a description of the results).

1.5 Measure on the modulator

For Vertex Cover, and, more generally, for most graph modification problems mentioned above,
the measure on the modulator X is size(X) = |X|. However, nothing stops us from quantifying the
modulator using another more refined parameter. For instance, we could ask whether the input
graph G has a modulator X such that G[X]8 has treewidth at most w and G−X is planar. Given
a problem Π that is solvable in polynomial time on graphs of bounded treewidth, and on planar

8Given a graph G and X ⊆ V (G), the graph induced by X, denoted by G[X], is the induced subgraph of G with
vertex set X.

1.5. Measure on the modulator 21

graphs, we could hope that Π is solvable in FPT-time parameterized by w on such graphs. Given
that the class Hw of such graphs is more general that the class Aw(P) of graphs that are w vertices
away from being planar, solving Π on Hw is more general than solving Π on Aw(P). Unfortunately,
Farrugia [109] proved that, if G and H are two hereditary graph classes that are closed under
disjoint union9, then checking whether there is X ⊆ V (G) such that G[X] ∈ G and G−X ∈ H is
NP-complete unless both G and H are the class of edgeless graphs. However, there are some positive
results if, instead of a measure on the graph G[X] induced by X, we consider the “torso” of X in G.

X

G−X

torso(G,X)

Figure 1.18: Torso of a set X in a graph G. For each connected component C of G−X (in orange),
we add all edges (in red) between pairs of vertices of X adjacent to vertices in C.

Torso. The torso of a set X ⊆ V (G) in a graph G, denoted by torso(G,X), is the graph obtained
from G[X] by making a clique out of the neighborhood of each connected component of G−X (see
Figure 1.18). Compared to G[X], torso(G,X) keeps information about each connected component
C of G−X that has been removed and, more specifically, about the paths going through C with
endpoints in X.

Let us present a first graph modification problem whose measure on the modulator X is not
its size, but a different parameter applied to the torso of X. For this, we need to define the graph
parameter treedepth.

Treedepth. Similarly to treewidth, the treedepth of a graph G, denoted by td(G), is a minor-
monotone graph parameter with tw ⪯ td ⪯ size that has been (re)discovered several times since the
70s, though its popularity as well as the term are due to Nešetřil and Ossona de Mendez [240,241].
The most common definition of treedepth might be the following:

td(G) =


0 if G is the empty graph,
1 + minv∈V (G) td(G− v) if G is connected,
max{td(H) | H is a connected component of G} otherwise.

In other words, at each step, we remove one vertex from each connected component of G, and
the treedepth of G is the minimum number of steps necessary to remove all vertices. It can be
seen as a measure on the connectivity of a graph: the easier a graph G can be broken in many
small components, the smaller its treedepth is. Reidl, Rossmanith, Villaamil, and Sikdar [256]
provide an algorithm computing the treedepth of a graph in time 2O(td2) · n. Papers studying the
parameterization by td include [37,162,174,256,312].

9H is closed under disjoint union if the disjoint union of any two graphs in H is also in H.

1.5. Measure on the modulator 22

Elimination distance to H. From this definition of treedepth, we may wonder: what if we stop
when G belongs to some target class H instead of when G is the empty graph? In this case, we
call it the elimination distance of G to H, that was defined by Bulian and Dawar about 10 years
ago [43,44]. An equivalent way to define it is the following. The elimination distance of G to a graph
class H is the minimum k ∈ N such that there exists a modulator X with td(torso(G,X)) ≤ k and
each connected component of G−X belongs to H. Hence, the problem Elimination Distance
to H, that asks, given a graph G and a k ∈ N, whether G has elimination distance at most k, is a
graph modification problem, where the target class is H, the modification is vertex deletion, and
the measure on the modulator is the treedepth of its torso. Elimination Distance to H can
be seen as some kind of “parallel” Vertex Deletion to H problem, where we delete vertices
simultaneously on each connected component.

Elimination Distance to H is solvable in FPT-time for any target class H such that obs⪯i(H)
or obs⪯tm(H) is finite [6, 7], such that the graphs in H have bounded degree [7], such that H is the
class of cliques [10], or such that H is minor-closed [44, 278]. Additionally, when the property of
belonging to H is expressible by a FO formula φ (cf. Section 1.6 for the definition of FO logic),
sufficient and necessary conditions on the prefix of φ are known for the existence of an FPT-algorithm
for the problem [123].

This “torso idea” can be generalized to every graph parameter.

Torso-parameters

Given a graph parameter p and a graph class H, we define H-p to be the parameter mapping each
graph G to

H-p(G) = min{k ∈ N | ∃X ⊆ V (G), p(torso(G,X)) ≤ k and the components of G−X are in H}.

If H is a graph class closed under disjoint union, then (G, k) is a yes-instance of Vertex Deletion
to H if and only if H-size(G) ≤ k, where size is the graph parameter that maps a graph to its
number of vertices. When p = td, then H-td is the elimination distance to H. More generally, for
any graph parameter p, H-p corresponds to a different graph modification problem where the target
class is H, the modification is vertex deletion, and the measure is p applied to the torso of the
modulator.

Those torso parameters are rather new and are thus not well-studied yet. In particular, we stick
here to vertex deletion problems, as we are not aware of such a measure for another modification
operation. Let us present a last well-known H-p parameter.

H-treewidth. When p = tw, then this is H-tw, commonly known as H-treewidth, which was
defined by Eiben, Ganian, Hamm, and Kwon in [104]. Just as presented in the beginning of this part,
their idea was to combine the best of treewidth and of the target class H. Given an instance (G, k),
checking whether H-tw(G) ≤ k can be done in FPT-time when H is bipartite, when |obs⪯i(H)| is
finite [173], when H has bounded rankwidth [104] or is minor-closed [205,278].

FPT-equivalence of torso-parameters

Let us give a few more definitions. We say that two parameters p and p′ are such that p ⪯ p′ if there
is a function f : N→ N such that, for any graph G, p(G) ≤ f(p′(G)). Two parameters p and p′ are
asymptotically equivalent, denoted by p ∼ p′ if p ⪯ p′ and p′ ⪯ p. A graph parameter p is said to
be minor-monotone if, for any graph G and any minor H of G, p(H) ≤ p(G). We call Hadwiger

1.6. Logic 23

number of a graph G, denoted by hw(G), the maximum t ∈ N such that Kt is a minor of G. Observe
that, for any (unbounded) minor-monotone parameter p, we have

hw ⪯ p ⪯ size.

An important result on those H-p parameters was proved by Agrawal, Kanesh, Lokshtanov,
Panolan, Ramanujan, Saurabh, and Zehavi in [6]: given a parameter p ∈ {size, td, tw} and a target
class H that is hereditary and CMSO-definable (see Section 1.6 for the definition), if checking
whether H-p(G) ≤ k is in FPT, then the same holds for the two other parameters. More importantly,
the techniques used in [6] seem applicable to any minor-monotone parameter p with tw ⪯ p ⪯ size.
It would essentially imply that it is enough to study graph modification problems whose measure
is the size of the modulator, instead of other torso measures (for tw ⪯ p ⪯ size). However, their
methods are not applicable to parameters p with hw ⪯ p ≺ tw.

Hence, one of our objectives is the following.

Given graph class H and a graph parameter p with hw ⪯ p ≺ tw, study the problem of
checking, given a graph G and a k ∈ N, whether H-p(G) ≤ k.

We do so in Chapter 10, whose results are presented in Section 2.6.

1.6 Logic

In Section 1.3, Section 1.4, and Section 1.5, we presented ways to express many graph modification
problems at once, by encompassing several target classes, or several modifications, or several measures
on the modulator. Still there is one way that we did not mention yet, that encompasses those all at
once. This way is logic.

While logic is not the main focus of this thesis, it is necessary to present some of the most used
logics in Graph Theory, in order to introduce the algorithmic meta-theorems that can be applied to
graph modification problems. Let us in particular define FO logic and CMSO logic.

First-Order Logic. The syntax of First-Order Logic (FO) includes logical connectives ∧, ∨,
¬, ⇔, ⇒, variables for vertices and edges, quantifiers ∃, ∀ over these variables, and the relations
adj(u, v) when u and v are vertex variables, with the interpretation that u and v are adjacent,
and inc(u, e) when u is a vertex variable and e is an edge variable, with the interpretation that
e is incident to u; and equality of variables representing vertices and edges. For instance, the
formula ∃v1, ∃v2,∀e, (inc(v1, e) ∨ inc(v2, e)) expresses the property of having a vertex cover of size
two, that is, that there exists two vertices v1 and v2 such that any edge e has v1 or v2 as an endpoint.
More generally, FO logic can express problems such as k-Vertex Cover, k-Dominating Set,
or (Induced) Subgraph Containment. Concerning graph modification problems, the authors
of [122] studied the problems of removing/adding at most k vertices/edges when the target class is
definable by a first-order formula φ. They gave sufficient and necessary conditions on the structure of
the prefix of φ specifying when the corresponding graph modification problem is FPT (parameterized
by k) and when it admits a polynomial kernel.

(Counting) Monadic Second-Order Logic. The syntax of Monadic Second-Order Logic (MSO)
extends FO by including variables for vertex sets and edge sets as well as the atomic expressions

1.6. Logic 24

u ∈ V when u is a vertex variable and U is a vertex set variable and e ∈ E when e is a edge variable
and E is a edge set variable. MSO logic can express, aside from all problems expressible in FO
logic, problems such as k-Colorability or Connectivity. Counting Monadic Second-Order Logic
(CMSO) extends MSO by including atomic sentences testing whether the cardinality of a set is equal
to q modulo r, where r ∈ N≥2 and q ∈ [r− 1]. We say that a class of graphs H is CMSO-definable if
the property of belonging to H is expressible in CMSO logic.

Model-checking

Let us see how logic can be employed to state algorithmic meta-theorems.
The Model-Checking problem asks, given a formula φ and a graph G, whether G satisfies

φ. Many algorithmic meta-theorems are stated as follows: Model-checking for a certain logic is
solvable in a certain time for graphs of a certain graph class. The most famous such meta-theorem
is Courcelle’s theorem [18, 67] that states that Model-Checking for a formula φ definable in
CMSO logic is solvable on graphs of treewidth at most tw in time f(tw, |φ|) · n for some computable
function f . When the expressibility of the logic is restricted, then one may find tractable results for
broader input graph classes. As such, Model-Checking for a formula φ definable in FO logic is
solvable in FPT-time on nowhere-dense graphs [153] or on bounded twin-width graphs [41]. Between
FO and CMSO logic, other logics were defined, each with a corresponding meta-theorem that states
on which graph class Model-Checking this logic is FPT. We refer to [152,208,295] for surveys on
the subject. Many graph modification problems can be expressed in some logic. For instance, if H is
a graph class definable in CMSO logic (as is often the case), then so is k-Vertex Deletion to H.
As such, k-Vertex Deletion to H is solvable in linear FPT-time on graphs of bounded treewidth
by Courcelle’s theorem.

Logics for graph modification problems

Some logics were specifically created to express graph modification problems.
Fomin, Golovach, Sau, Stamoulis, and Thilikos developed in [120] such a logic, the Θ-logic, for

which Model-Checking can be done in quadratic FPT-time. This logic is based on the modulator
versus target scheme. In particular, it can express graph modification problems where:

• the torso of the modulator X has treewidth at most k and G[X] or torso(G,X) belongs to a
CMSO-definable graph class, and

• G−X, or its connected components, belongs to a target graph class H expressible by a positive
boolean combination of sentences of the form σ ∧ µ, where σ is a FO-sentence and µ expresses
non-trivial minor-exclusion.

Most of the studied graph modification problems where the target class H is minor-closed or
FO-definable fit into this Θ-logic. In particular, this is the case of the problem of checking, given a
graph G and a k ∈ N, whether H-p(G) ≤ k, for any such target class H and any graph parameter p
with p ⪯ tw (not necessarily minor-closed) that can be expressed in CMSO logic.

The technique employed to construct the algorithm of [120] is based on the irrelevant vertex
technique developed by Robertson and Seymour in their Graph Minor series [271] (see Subsection 3.1.3
for more on the subject), that is further developed here to be applicable to many graph modification
problems. A subset of the authors of [120] later tried to push the irrelevant vertex technique to its
very limit and created an algorithmic meta-theorem in [287] that encompasses the results of [120].
To present their new logic, we first need to define annotated parameters.

1.6. Logic 25

Annotated parameters. Given two graphs G and H and a set X ⊆ V (G), we say that H is an
X-rooted minor of G (or simply an X-minor of G) if there is a collection S = {Sv | v ∈ V (H)} of
pairwise-disjoint connected10 subsets of V (G), each containing at least one vertex of X and such
that, for every edge xy ∈ E(H), the set Sx ∪ Sy is connected in G. An annotated graph is a pair
(G,X) where G is a graph and X ⊆ V (G). The annotated version of a graph parameter p is defined
as follows: for each annotated graph (G,X),

p(G,X) = max{p(H) | H is a X-rooted minor of G}.

Note that the annotated size of a set X is equal to its size, and that p(G,V (G)) = p(G) for each
graph G. Also, for each graph G and each X ⊆ V (G), tw(G,X) ≤ tw(torso(G,X)) [302].

Sau, Stamoulis, and Thilikos introduce in [287] the CMSO/tw logic. It extends CMSO logic by
replacing the quantifier ∃ by the quantifier ∃tw≤k := ∃X(tw(G,X) ≤ k). They prove that Model-
Checking, given a formula φ in CMSO/tw and a graph G, is solvable in time f(|φ|, hw(G)) · n2.
This generalizes all algorithmic meta-theorems described above in the context of graph modification
problems, where the target class is restricted to being minor-closed. Additionally, it implies that, for
any graph modification problem Π where the target class H is minor-closed, where the modulator is
quantified by some parameter p larger than tw, and the modification is expressible in CMSO logic,
Π is solvable in quadratic FPT-time.

In all the algorithmic meta-theorems presented above, the parametric dependence is not explicit,
because it is typically huge. From this stems one of the main goals of this thesis:

Prove algorithmic meta-theorems for graph modification problems to minor-closed graph
classes with an explicit parametric dependence.

This is what we do in Part III, whose results are described in Section 2.2, Section 2.3, and Section 2.4.

Bidimensionality

Let us discuss about what the annotated treewidth tw(G,X) represents. The biggest grid bg is the
maximum k such that G contains a (k × k)-grid as a minor (see Figure 1.19). A (k × k)-grid has

Figure 1.19: A (11× 11)-grid.

treewidth k, implying that bg ⪯ tw. A fundamental structural result is the celebrated “grid exclusion
theorem” proved by Robertson and Seymour [261] for the opposite direction. It states the existence
of a function f : N → N such that, for every graph G, tw(G) ≤ f(bg(G)), and thus implies that

10A set X is connected in G if the subgraph of G induced by X is a connected graph.

1.7. Structure theorems 26

tw ∼ bg. Chekuri and Chuzhoy in [56] prove that the function f can be chosen to be polynomial,
and the current best upper bound is f(k) = k9 · logO(1) k by Chuzhoy and Tan in [65].

The bidimensionality of a vertex set X of G is defined as bg(G,X), that is, the maximum bg(H)
over all X-minors H of G. Intuitively, bidimensionality measures to what extent X can be “spread”
as a 2-dimensional grid inside the graph G. The irrelevant vertex technique that is used to prove
the result of [287] and most of the results on graph modification problems to minor-closed graph
classes actually relies in particular on the existence of a big enough grid Γ as a subgraph in G that
avoids the modulator X. If the bidimensionality of X, and its annotated treewidth, is bounded,
then such a Γ can always be found in a bigger grid that is a minor of G (possibly containing vertices
of X). If the annotated treewidth of X is unbounded however, then we might not be able to find
such a Γ, and thus we cannot use the irrelevant vertex technique in this case. This explains why the
meta-theorems of [120,287] only work for graph modification problems where the modulator X has
bounded bidimensionality (i.e., such that tw(torso(G,X)) or tw(G,X) is bounded).

One of the motivations of this thesis is thus the following:

Develop new techniques to solve graph modification problems where the modulator has
unbounded bidimensionality.

See Section 2.6 for a description of our results on this subject and Chapter 10 for the proof of those
results.

While the algorithmic meta-theorem of [287] pushes the irrelevant vertex technique to its very
limit, its authors do not provide any studied graph modification problem expressible by CMSO/tw
logic but not in the Θ-logic of [120]. There actually exist such results with modifications of bounded
bidimensionality, but, for this, we need to turn our attention towards structure theorems.

1.7 Structure theorems

Graph structure theorems describe the structure of graphs with some property, which often corre-
sponds to the exclusion of some graph H in some way. Interestingly, some structure theorems can
be expressed using terminology from graph modification problems.

1.7.1 Excluding a graph as a minor

Grid exclusion theorem

The “grid exclusion theorem”, proved by Robertson and Seymour in [261], asserts that, for every
planar graph H, there is a constant cH such that every graph excluding H as a minor has a tree
decomposition of width most cH (see also Section 1.6).

The grid exclusion theorem implies win/win strategies to solve graph modification problems.
A first example is when the target class is minor-closed. If the treewidth of the input graph
G is big, then G contains a big grid as a minor, to which we can apply the irrelevant vertex
technique that is mentioned in Section 1.6 and is detailed more in Chapter 3 to reduce the size
of G. Otherwise, the treewidth of G is small, in which case we may apply Courcelle’s theorem or
use a dynamic programming approach to conclude. A second example follows from the theory of
bidimensionality [81], which examines various consequences of grid-containment in graph algorithms.
Here, a big grid minor usually translates into an immediate no (or yes) answer, while one may, for

1.7. Structure theorems 27

instance, solve the problem in subexponential time (in the parameter) otherwise. Other applications
of bidimensionality theory concern EPTAS [83] and kernelization [129].

Graph minors structure theorem

An important question is whether a “similar” tree decomposition theorem exists when the excluded
graph is a non-planar graph. Just as is the case for the grid exclusion theorem, knowing such
a tree-like decomposition for a graph G could imply efficient algorithms to solve some problems
on G. A general answer to this question was provided by the celebrated graph minors structure
theorem (GMST) of Robertson and Seymour [275] asserting that graphs excluding a (non-necessarily
planar) graph H as a minor can be tree-decomposed such that the torso at each node is “cH -almost
embeddable” after removing at most cH vertices called apices, where cH is a constant depending
of |V (H)| (see Figure 1.20). Intuitively, a graph G is k-almost embeddable if G can be drawn in
a surface Σ of Euler genus at most k such that crossings only happen in at most k regions called
vortices of “width” at most k. The width of a vortex essentially corresponds to its pathwidth11. Let
us mention that Gorsky, Seweryn, and Wiederrecht very recently proved that the function mapping
H to cH is polynomial [148], while it was immense in [275]. See also [84] for some applications of
the GMST.

Figure 1.20: Artistic illustration by Felix Reidl of the structure of a graph excluding another graph
as a minor. Vortices are represented by spirals and the apices are the points above the surfaces.

The GMST is one of the cornerstone results of the Graph Minors series of Robertson and Seymour
(see [194,195] for a relatively simpler and self-contained proof). This result, being general enough,
does not provide refined enough structure when the excluded graphs enjoy particular structural
properties. The general research program of proving refined versions of GMST can be outlined as
follows.

Given a class of graphs H, find a graph parameter, defined in terms of tree decom-
positions, such that its value is bounded for graphs excluding some graph in H as a
minor and, moreover, its value is unbounded for the graphs in H.

(1.1)

Clearly the GMST, being a general and “all purpose” theorem, provides only a partial answer to
Question (1.1) and it is a challenge to detect which tree decomposition parameter is the suitable
answer for certain instantiations of the class H. As we already mentioned, when H is the class of
planar graphs, denoted by Gplanar, the parameter in Question (1.1) can be chosen to be the parameter
of treewidth (or any other parameter that is equivalent to treewidth).

11A path decomposition of a graph G is a tree decomposition (T, β) such that T is a path, and the pathwidth of G is
the smallest width of a path decomposition of G.

1.7. Structure theorems 28

Clique-sum extension of parameters

To further formalize Question (1.1), we introduce a general framework based on tree decompositions.
The clique-sum closure of a graph class G, denoted by G⋆, is the graph class containing every graph
that has a tree decomposition such that the torso at each node belongs in G. One may use tree
decompositions in order to define graph parameters using simpler ones as follows: if p : Gall → N is a
graph parameter, where Gall is the class of all graphs, then we define the clique-sum extension of p
as the graph parameter p⋆ : Gall → N such that

p⋆(G) = min
{
k | G ∈ {H | p(H) ≤ k}⋆

}
,

in other words, p⋆(G) ≤ k if and only if G is in the clique-sum closure of the graphs where the value
of p is at most k. Using this notation and given some graph class H, we may formalize Question (1.1)
as follows:

Find a minor-monotone parameter pH : Gall → N, such that

(A) there is a function f : N→ N where for every H ∈ H, if a graph G excludes the
graph H as a minor then p⋆H(G) ≤ f(|H|), and

(B) the values of p⋆H for the graphs in H are unbounded.

(1.2)

For the case of the class Gplanar of planar graphs, we may pick pGplanar := size, where size : Gall → N
maps a graph G to its size |V (G)|. Indeed, it is enough to observe that the treewidth of a graph G
is equal to size⋆(G)− 1.

In the most general case where H = Gall, an answer to Question (1.2) is given by the GMST.
Here, we may pick pGall as the parameter mapping a graph G to the minimum k for which G contains
at most k apices whose removal yields a graph that is k-almost embeddable.

Excluding an almost planar graph

Researchers studied Question (1.2) for graph classes H that are “close to be planar”. In this direction,
Robertson and Seymour consider in [268] the class of singly-crossing graphs, i.e., graphs that can be
drawn in the sphere such that there is at most one pair of edges that share a common point. For
this, we define Gsingly-crossing as the class of all minors of singly-crossing graphs. According to [268], if
G excludes a singly-crossing graph H as a minor, then G has a tree decomposition whose non-planar
torsos have size that is bounded by some constant, depending on H. Assume now that psize : Gall → N
is the graph parameter where psize(G) is zero if G is planar, and otherwise psize(G) is the size of G.
It can be proved that the values of psize⋆ are unbounded for the graphs in Gsingly-crossing. This, along
with the the aforementioned result of [268] implies that we may pick pGsingly-crossing := psize so as to
provide an answer to Question (1.2) when H = Gsingly-crossing.

More recently, Dvořák and Thomas consider in [101] the class Gt-apex of t-apex graphs, i.e., graphs
that are planar after removing t vertices (an apex graph is exactly a 1-apex graph). They prove that,
if G excludes a t-apex graph H as a minor, then p∗Gt-apex

(G) ≤ cH for some constant cH depending
on |V (H)|, where pGt-apex is the parameter mapping each graph F to the minimum k for which

• F contains at most k apices whose removal yields a graph that is k-almost embeddable and

• such that all apices but at most t are only adjacent to other apices and vertices in vortices.

1.7. Structure theorems 29

Bounded bidimensionality modulator

Thilikos and Wiederrecht [302] restate the GMST using a modification operation. They prove
that pGall can also be picked to be the parameter mapping each graph G to the minimum k such
that there is a set X ⊆ V (G) of bidimensionality at most k such that G − X is embeddable in
a surface of genus at most k. So the modification is stated in terms of vertex removals and the
target of this modification is surface embeddability. More refined results have been proved in [302]
providing an answer to Question (1.2) in the case where H is the class of graphs embeddable in
some particular surface. For every choice of a surface, the resulting graph parameter is defined in
terms of modifications based on vertex deletion.

Hence, one of our goals is the following.

Find a structure theorem for the exclusion of a graph class G that is “close to be planar” such
that pG can be expressed in terms of modifications.

See Section 2.1 and Chapter 5 for our structural results related to the above question.

1.7.2 Excluding a graph as an odd-minor

Structure theorems also exist for partial orders on graphs other than minor containment. Given
that we explain in Subsection 1.3.2 that odd-minor-closed graph classes might be as promising as
minor-closed graph classes, let us study structure theorems for odd-minors more in details.

Demaine, Hajiaghayi, and Kawarabayashi prove in [85] that, if G excludes a graph H as an
odd-minor, then p∗odd,Gall

(G) ≤ cH for some constant cH depending on |V (H)|, where podd,Gall is the
parameter mapping each graph F to the minimum k for which F contains at most cH apices whose
removal yields either

• a bipartite graph or

• a cH -almost-embeddable graph.

Similar results exist for other containment relations on graphs [102,154,185].

Bipartite treewidth modulator

Tazari observe in [299] from the proof of [85] that the structure theorem for odd-minors can be
alternatively stated as follows12: if G excludes a graph H as an odd-minor, then HH -btw(G) ≤ cH ,
where HH is the class of graphs excluding KdH ,eH as a minor, for some constants cH , dH , and eH
depending on |V (H)|. Here, the bipartite treewidth btw of a graph G is the minimum width of a
bipartite tree decomposition of G, which is a tree decomposition such that the bag of each node
induces a bipartite graph after the removal of at most k vertices and such that the intersection
of two bags contains at most one vertex of the bipartite part of each side (see Figure 1.21 for an
illustration).

Bipartite treewidth is used implicitly by Kawarabayashi and Reed [192] in order to solve
Odd Cycle Transversal parameterized by the solution size. Campbell, Gollin, Hendrey, and
Wiederrecht [49] are also currently studying bipartite tree decompositions. In particular, they provide
universal obstructions characterizing bounded btw in the form of a “grid exclusion theorem” (actually

12Our statement is a bit different from the one in [299], but can easily be deduced from [85,299].

1.7. Structure theorems 30

node t

|α(t)| ≤ k

β(t) induces a bipartite graph

≤ 1 ”bipartite” vertex in the
adhesion with another node

Figure 1.21: Illustration of a bipartite tree decomposition. The blue part induces a bipartite graph,
while the additional vertices are depicted in red. This bipartite tree decomposition has width at
most k if there are at most k additional vertices in each bag.

the result of [49] applies in the much more general setting of undirected group labeled graphs). They
also design an algorithm that either constructs a bipartite tree decomposition of the input graph G
of width at most f(k) in time g(k) · n4 log n for some computable functions f, g, or reports that
btw(G) > k.

From this characterization of graph classes excluding an odd-minor, it appears that a first step to
be able to solve problems on odd-minor-closed graph classes is to be able to solve the corresponding
problems on graphs of bounded bipartite treewidth. Hence, one of our objective is the following.

Solve (graph modification) problems parameterized by bipartite treewidth.

See Section 2.5 and Chapter 9 for our results on the subject.

Organization of the thesis. The thesis is organized as follows. The results of the thesis are
presented in Chapter 2. The main techniques used throughout the thesis are discussed in Chapter 3.
In Chapter 4, we give some preliminary definitions and results. Chapter 5, Chapter 6, Chapter 7,
Chapter 8, Chapter 9, and Chapter 10 are dedicated to proving the results of this thesis, and are
presented more in detail in Chapter 2. Finally, concluding remarks and research directions are
available in Chapter 11.

CHAPTER 2

Results

Contents
2.1 Excluding edge-apex graphs . 31
2.2 Identification to a forest . 33
2.3 Bounded size modulators to minor-closedness 34
2.4 Elimination distance to minor-closedness 36
2.5 Odd-minors and bipartite treewidth . 37
2.6 Global modulators . 38
2.7 Papers . 41

In this chapter, we present the results of this thesis.
In Part II of the thesis, we give a new example of the use of bounded bidimensionality modulators

via a structure theorem, which is presented in Section 2.1.
In Part III, we design FPT-algorithms with a better running time for many graph modification

problems that are already solvable using algorithmic meta-theorems, in particular improving the
parametric dependence. Those results towards efficiency are presented in Section 2.2, Section 2.3,
and Section 2.4.

In Part IV, we develop new techniques to solve graph modification problems beyond the scope of
current algorithmic meta-theorems. Those results towards generalization are presented in Section 2.5
and Section 2.6.

Finally, the papers written during this thesis are listed in Section 2.7.

2.1 Excluding edge-apex graphs

In Subsection 1.7.1, we mention that the GMST can be expressed in terms of deletion of a set of
bounded bidimensionality [302]. We present here a new structure theorem that can also be expressed
in terms of modification of a modulator of bounded bidimensionality, though the modification is not
vertex deletion anymore. This structure theorem concerns the exclusion of graphs that are close to
planar in yet another sense than singly-crossing graphs or apex graphs.

31

2.1. Excluding edge-apex graphs 32

An edge-apex graph is a graph G containing an edge e such that G− e is planar. Note that we
have the inclusion

singly-crossing graphs ⊆ edge-apex graphs ⊆ apex graphs.

Therefore, if Gedge-apex is the class of edge-apex graphs, then the corresponding parameter pGedge-apex (cf.
Subsection 1.7.1) should be such that pGt-apex ⪯ pGedge-apex ⪯ pGsingly-crossing , i.e. the tree decomposition
when excluding an edge-apex graph should be more refined than the one when excluding an apex
graph.

Let us give an equivalent definition of Gedge-apex via pinched surfaces.

Pinched surfaces. Given a surface Σ, the pinched version of Σ, denoted by Σ◦, is the pseudo-
surface obtained if we identify two distinct points of Σ. According to Knor [199], for every surface Σ,
the class of graphs embeddable in Σ◦ is minor-closed. Clearly, one may define pseudo-surfaces
by identifying more sets of points of surfaces or unions of surfaces. However, as proved in [199],
minor-closedness of graphs embeddable in pseudo-surfaces holds only for the pinched surfaces and
for the pseudo-surfaces that are “spherically reducible” to them (see also [293]).

Equivalently, Gedge-apex is the class of graphs embeddable in the pseudo-surface S◦0 obtained from
the sphere S0 by identifying two points of S0, that we call the pinched sphere. Clearly the pinched
sphere S◦0 can be seen as the set of points of the horn-torus

{(x, y, z) ∈ R3 | (x2 + y2 + z2)2 = 4(x2 + y2)}

depicted in Figure 2.1.

Figure 2.1: The pinched sphere with a hole, permitting the visibility of the pinch point (picture by
Dimitrios M. Thilikos).

We first prove the following (see also Theorem 5.2.36).

Theorem 2.1.1. Let H be an edge-apex graph. Then there is a constant cH such that, if a graph G
is H-minor-free, then p⋆(G) ≤ cH , where p is the parameter mapping each graph F to the minimum
k such that F is k-almost embeddable in the projective plane.

In other words, an edge-apex minor-free graph has a tree decomposition such that the torso of
each bag can be drawn in the projective plane with only a few vortices of small width. Interestingly,
to our knowledge, this is the first structure theorem with vortices but no apices. Additionally, the
constant cH is essentially a function of the minimum number of crossings of the edge e in the planar
embedding of G− e (the “length of the jump”).

Given that the GMST can be restated in terms of deletion of a vertex set of bounded bidimen-
sionality to a surface [302], one may suspect that Theorem 2.1.1 can also be restated with some

2.2. Identification to a forest 33

modification-based parameter where the modification operation is vertex deletion. As we show, it is
correct that we have to consider some modification-based parameter, however vertex deletion does
not work in this case. Instead, we need a modification operation based on vertex identifications.
To formalize this, we need some more definitions. Given a graph G and a set X ⊆ V (G), we set
I(G,X) to be the set of all graphs G′ obtained from G by identifying each part Xi of a partition
(X1, . . . , Xr) of X to a single vertex xi, i ∈ [r]. Let Gprojective be the class of graphs embeddable in
the projective plane. We define idpr : Gall → N as the graph parameter where

idpr(G) := min{k | ∃X ⊆ V (G), bg(G,X) ≤ k and I(G,X) ∩ Gprojective ̸= ∅}, (2.1)

in other words, idpr(G) ≤ k if and only if G contains a set X of bidimensionality at most k such
that a projective graph can be obtained by identifying vertices of X in G.

Then we prove the following (see also Theorem 5.2.39), which corresponds to item (A) of
Question (1.2) for edge-apex graphs.

Theorem 2.1.2. Let H be an edge-apex graph. There is a constant cH such that, if a graph G is
H-minor-free, then idpr⋆(G) ≤ cH .

Moreover, this result is “parametrically tight”, in the sense of Question (1.2), given that we prove
the following (see also Theorem 5.3.8), which corresponds to item (B) of Question (1.2).

Theorem 2.1.3. For any h ∈ N, there is an edge-apex graph H such that idpr⋆(H) ≥ h.

Identification versus contraction. Actually, Theorem 2.1.2 could have been stated using
contractions instead of identifications (with a bit more work). However, we crucially use the fact
that idpr is a minor-monotone parameter to prove Theorem 2.1.3, which is not the case anymore if
we contract edges instead of identifying vertices, as discussed in Section 6.4.

Suppose now that we define a variant of idpr, namely idpl by considering in (2.1) Gplanar instead
of Gprojective, i.e., we now demand that the surfaces where the torsos of the tree decomposition are
almost embedded are spheres. By a simple variant of our proof strategy, we obtain the following
variant of Theorem 2.1.2 (see also Theorem 5.2.40).

Theorem 2.1.4. For every H1 ∈ Gprojective and every H2 ∈ Gedge-apex, there exist a constant cH1,H2

such that, if a graph G excludes both H1 and H2 as a minor, then idpl⋆(G) ≤ cH1,H2.

The optimality of the decomposition of Theorem 2.1.4 for the set of classes {Gprojective,Gedge-apex}
follows by Theorem 2.1.3 and its counterpart for Gprojective and idpl⋆, shown in Theorem 5.3.9.

All those results are proved in Chapter 5.

2.2 Identification to a forest

To our knowledge, graph modification problems where the modification is vertex identification have
yet to be studied. The closest study is the one of [66] on vertex fusion, where the goal is to find a
vertex set X of small size that can be identified to a single vertex x such that the remaining graph is
in the target class. While close, this modification does not correspond to our structure theorem (cf.
Section 2.1). Also, although we will not dwell on the subject, those familiar with quotient graphs or
homomorphisms may observe the following equivalence: G admits an identification to H if and only
if G admits a quotient graph that belongs to H if and only if there is a surjective homomorphism
from G to a graph in H (sometimes called H-coloring [31]). However, we are not aware of any

2.3. Bounded size modulators to minor-closedness 34

optimization version of graph homomorphism (or graph quotient) to a fixed graph class that would
fit our setting. Hence, after intuiting Theorem 2.1.2, we decided to tackle the problem.

We begin with the simplest measure on the modulator, that is the size of the modulator, instead
of its bidimensionality. We define Identification to H as follows:

Input: A graph G, a k ∈ N.
Question: Is there a set X ⊆ V (G) of size at most k such that I(G,X) ∩H ≠ ∅?

Identification to H

When H is the class of edgeless graphs, (G, k) is trivially a yes-instance of Identification to H if
and only if there are at least n− k isolated vertices (each connected component C containing some
edge needs to be identified to a single vertex vC). When the target class is the class of forests F , the
problem is not as trivial.

A problem that is similar to Identification to F is Contraction to F , asking whether
it is possible to contract k edges in a graph G so to obtain an acyclic graph. According to the
results by Heggernes, van ’t Hof, Lokshtanov, and Paul in [165], this problem can be solved in
time 4.98k · |G|O(1). As edge contractions are special cases of vertex identifications, if (G, k) is a
yes-instance of Contraction to F then (G, 2k) is also a yes-instance of Identification to F .
However, vertex identifications may not be edge contractions, and it is certainly possible that a
yes-instance of Identification to F is certified by the identifications of non-adjacent vertices that
cannot be simulated by a small number of edge contractions.

We prove the following hardness and parameterized results from a reduction to Vertex Cover
(see also Theorem 6.1.7 and Theorem 6.1.10 respectively).

Theorem 2.2.1. Identification to Forest is NP-complete.

Theorem 2.2.2. There is an algorithm that, given an instance (G, k) of Identification to Forest,
outputs in time O(k

√
log k · n + k3) an equivalent instance (G′, k′) where |V (G′)| ≤ 2k + 1 and

k′ ≤ k+1. Alternatively, one can solve Identification to Forest in time O(1.2738k+k
√
log k ·n).

Given k ∈ N, the class F (k) of graphs such that (G, k) is a yes-instance of Identification to
Forest is a minor-closed graph class. Therefore, F (k) has a finite set of (minor-)obstructions, that
we can try to compute. We actually prove that the obstructions of F (k) can be obtained from the
obstructions of Vertex Cover by adding edges, and deduce the following (see also Theorem 6.2.13).

Theorem 2.2.3. Let k ∈ N. The obstructions of F (k) have at most 2k + 4 vertices.

A linear upper bound as the above is known for the obstructions of the class Vk of graphs such
that (G, k) is a yes-instance of Vertex Cover: Dinneen and Lai proved that 2k + 2 is an upper
bound on the size of the graphs in obs(Vk) [90, 92].

All these results, plus some more about “identification-minors” and WQO, are available in
Chapter 6.

2.3 Bounded size modulators to minor-closedness

After this study on identification to forests, we turned our attention towards identification to any
minor-closed graph class, still parameterized by the size of the modulator.

2.3. Bounded size modulators to minor-closedness 35

Given that the yes-instances of Identification to H form a minor-closed graph class when
H is minor-closed, we know from [205,278] that there exists (non-constructively) an algorithm in
time OsH(f(k) · n1+o(1)). By the algorithm meta-theorems of [120,287], we can actually construct
an algorithm solving Identification to H in time OsH(f(k) · n2) for some computable function f .
Now, our goal is to construct such an algorithm with the best (explicit) parametric dependence.

Prior to this thesis, the only results regarding bounded size modulators to minor-closedness
(with an explicit parametric dependence) is the result of Sau, Stamoulis, and Thilikos [284] for
Vertex Deletion to H, with a running time of 2k

OsH (1)

· n3, where sH is the maximum size of an
obstruction of H, which is any minor-closed graph class. We actually first improved the algorithm for
Vertex Deletion to H from a cubic to a quadratic time in [235]. However, when we later tried
to solve Identification to H for any minor-closed graph class H, we observed that the techniques
used to solve Vertex Deletion to H can be generalized to solve Identification to H, along
with many other graph modification problems, in the same running time. We only present this more
general result in this thesis.

To represent many possible modifications at once, we readapt the problem of L-Replacement
to H from [121] (see Section 1.4). While the authors of [121] define a replacement action L so
that it maps each graph to a collection of graphs of the same size, we now generalize the definition
so that L maps each graph to a collection of graphs of smaller or equal size. That is, we extend
L-Replacement to H so that it can simulate any modification problem where the modification is
a combination of edge removal, edge addition, vertex removal, and vertex identification of bounded
size. However, we now require that the replacement action is “hereditary”, which essentially means
that, when some modification is allowed, then modifying less is also allowed (see Subsection 7.1.1
for a formal definition). With this new definition, L-Replacement to H with L hereditary can
simulate in particular (non-exhaustively) Vertex Deletion to H, Identification to H, Edge
Deletion/Addition/Edition to H, Edge Contraction to H, Independent Set Deletion
to H, Matching Deletion/Contraction to H, Connected Vertex Deletion to H, as
well as Subgraph Complementation to H.

When H is a minor-closed graph class, L-Replacement to H is solvable in time f(k) · n2
by the meta-theorem of [287]. However, as already mentioned, for all these problems other than
Vertex Deletion to H, prior to our next result, the only minor-closed graph classes where
an explicit parametric dependence was known (to our knowledge), if any, were classes of bounded
treewidth [165,210,218,219,307]. We prove the following (see also Theorem 7.1.3).

Theorem 2.3.1. Let H be a minor-closed graph class and L be a hereditary replacement action.
Then L-Replacement to H can be solved in time 2k

OsH (1)

· n2.

The exponent of k in the running time of Theorem 2.3.1 depends on the maximum size of a graph
in obs(H). Thus, the algorithm of Theorem 2.3.1, while being uniformly FPT in k, is not uniform
in the target class H, as one needs to know an upper bound on the size of the minor-obstructions.
This “meta-non-uniformity” applies to all the algorithms presented in this chapter and the next
(Chapter 8), and it is also the case, among many others, of the FPT-algorithm in [284] solving
Vertex Deletion to H in time 2k

OsH (1)

· n3.
In the running time of Theorem 2.3.1, the exponent of k depends very badly on the size of the

obstructions of H. However, when we restrict ourself to H being the graphs embeddable in some
surface, we managed to remove the dependence on H from the exponent (see also Theorem 7.1.4).

Theorem 2.3.2. Let GΣ be the class of graphs embeddable in a surface Σ of Euler genus at most g.
Then L-Replacement to GΣ can be solved in time 2Og(k9) · n2.

2.4. Elimination distance to minor-closedness 36

An ingredient of both algorithm is a dynamic programming algorithm solving the problem param-
eterized by both k and the treewidth, which may be of independent interest (see also Theorem 7.3.4).

Theorem 2.3.3. Let H be a minor-closed graph class. Then L-Replacement to H can be solved
in time 2O(k2+(k+w) log(k+w)) · n on graphs of treewidth at most w.

Those results can be found in Chapter 7.

2.4 Elimination distance to minor-closedness

Let us now try to lift our results on modulator of bounded size from modulators of unbounded size
(but still bounded bidimensionality). For this, we chose to study Elimination Distance to H (cf.
Section 1.5), where H is any minor-closed graph class. In other words, the modification is vertex
deletion, and the measure on the modulator is the treedepth of its torso.

For Elimination Distance to H when H is minor-closed, no explicit parametric dependence
is known, with the notable exception of treedepth, for which Reidl, Rossmanith, Villaamil, and
Sikdar [256] give an algorithm deciding whether td(G) ≤ k in time 2O(k·tw) · n, where tw := tw(G)
(see also [36]). Using our terminology, and given that tw(G) ≤ td(G) for every graph G, this yields
an FPT-algorithm for Elimination Distance to G∅, where G∅ is the class consisting of the empty
graph, running in time 2O(k2) · n.

Hence, we give the first algorithm with an explicit parametric dependence for the problem (see
also Theorem 8.3.1).

Theorem 2.4.1. Let H be a minor-closed graph class. Then there is an algorithm that solves

Elimination Distance to H in time 22
2k

OsH (1)

· n2.
If H is apex-minor-free, then this algorithm runs in time 22

OsH (k2 log k)

· n2.

If H is apex-minor-free, then we give a second algorithm with a better parametric dependence,
but a worse dependence on the size of the input graph (see also Theorem 8.4.1).

Theorem 2.4.2. Let H be an apex-minor-free graph class. Then there is an algorithm that solves
Elimination Distance to H in time 2k

OsH (1)

· n3.

Again, both these algorithms employ a dynamic programming algorithm that solves the problem
on graphs of bounded treewidth, which may be of independent interest (see also Theorem 8.3.2).

Theorem 2.4.3. Let H be a minor-closed graph class. Then there is an algorithm that solves
Elimination Distance to H in time 2O(k·w+w logw) · n on graphs of treewidth at most w.

The algorithm of Theorem 2.4.3 can be seen as a generalization of the algorithm of Reidl,
Rossmanith, Villaamil, and Sikdar [256] deciding whether td(G) ≤ k in time 2O(k·tw) · n. Since, for
any graph G and any graph class H, H-td(G) ≤ td(G) ≤ tw(G) · log n, Theorem 2.4.3 implies the
existence of an XP-algorithm for Elimination Distance to H parameterized by treewidth, when
H is minor-closed, running in time nO(tw2). Given that the question of whether Treedepth is
in FPT parameterized by tw is still open, this is the best type of algorithm that one can expect
for Elimination Distance to H parameterized by treewidth. Furthermore, since tw ⪯ td,
Theorem 2.4.3 implies an FPT-algorithm for Elimination Distance to H parameterized by
treedepth, running in time 2O(td2) · n.

Given that the class Ek(H) of graphs G such that H-td(G) ≤ k is minor-closed when H is
minor-closed, one can once again try to find the (minor-)obstructions of Ek(H). We prove the
following (big but at least explicit) bound on the size of the obstructions (see also Theorem 8.6.1).

2.5. Odd-minors and bipartite treewidth 37

Theorem 2.4.4. Let H be a minor-closed graph class. Then the obstructions of Ek(H) have

22
22

k
OsH (1)

vertices.
Moreover, this bound drops to 22

k
OsH (1)

when H is apex-minor-free.

Dvořák, Giannopoulou, and Thilikos prove in [100] that every graph in obs(Ek(G∅)) has at most
22

k−1 vertices. Hence, our double-exponential bound for apex-minor-free graphs is “as good” as
the double-exponential bound for treedepth. Theorem 2.4.4 can be seen as a generalization of the
results of Sau, Stamoulis, and Thilikos [285], who provide similar upper bounds for the graphs in
obs(Ak(G)).

Those results are proved in Chapter 8.

2.5 Odd-minors and bipartite treewidth

In order to study graph classes beyond minor-closed graph classes, a promising option is odd-minor-
closed graph classes (cf. Subsection 1.3.2). As mentioned in Section 1.7, a first step towards solving
(graph modification) problems on odd-minor-closed graph classes, and later graph modification
problems to odd-minor-closedness, is to solve (graph modification) problems on graphs of bounded
bipartite treewidth btw.

Let us argue that an algorithm on graphs of bounded bipartite treewidth is more general than
an algorithm on graphs of bounded treewidth or that are “almost bipartite”. It follows easily from
the definition that btw(G) = 0 if and only if G is bipartite (indeed, to prove the sufficiency, just
take a single bag containing the whole bipartite graph, with no apex vertices). More generally, for
every graph G it holds that btw(G) ≤ oct(G), where oct denotes the size of a minimum odd cycle
transversal, that is, a vertex set X such that G−X is bipartite. On the other hand, since a bipartite
tree decomposition is a tree decomposition whose width is not larger than the maximum size of a bag
(in each bag, just declare all vertices as apices), for every graph G it holds that btw(G) ≤ tw(G) + 1,
where tw denotes treewidth. Thus, a graph class of bounded treewidth or bounded oct also has
bounded bipartite treewidth.

We designed a general dynamic programming scheme to solve problems on graphs of bounded btw
(see Theorem 9.4.1). Using this scheme, we solved several well-known problems and, in particular,
several graph modification problems parameterized by btw (given an instance (G, k) where G is a
graph on n edges and m vertices). As such, we prove the following (see also Corollary 9.5.6 for
Theorem 2.5.1, Corollary 9.5.8 and Corollary 9.5.12 for Theorem 2.5.2, and Corollary 9.5.20 for
Theorem 2.5.3). Note that Campbell, Gollin, Hendrey, and Wiederrecht [49] recently announced an
FPT-approximation algorithm to construct a bipartite tree decomposition (cf. Proposition 9.3.2).

Theorem 2.5.1. Let Ht be the class of graphs that exclude Kt as a subgraph. Then, there is an
algorithm that, given a graph G and a bipartite tree decomposition of G of width w, solves Vertex
Deletion to Ht in time O(2w · (wt · (n+m) +m

√
n)).

Theorem 2.5.2. There is an algorithm that, given a graph G and a bipartite tree decomposition of
G of width w, solves Weighted (resp. Unweighted) Vertex Cover in time O(2w · (w · (w +
m) +m · n)) (resp. O(2w · (w · (w +m) +m

√
n))).

Theorem 2.5.3. There is an algorithm that, given a graph G and a bipartite tree decomposition of
G of width w, solves Odd Cycle Transversal in time O(3w · w · (m+ k2) · n).

2.6. Global modulators 38

Unfortunately, many graph modification problems are unlikely to be solved in FPT-time, or
even XP-time, parameterized by bipartite treewidth, as proved in [314]: if H is a bipartite graph
containing P3 as a subgraph and H is the class of graphs that excludes H as a subgraph, or an
induced subgraph, or a minor, or an odd-minor, then Vertex Deletion to H is NP-complete
even on graphs with bipartite treewidth zero, that is, bipartite graphs.

See Chapter 9 for the proof of those results, and see more particularly Table 9.1 for an overview
of all other results we actually obtain in [171], concerning problems such as MaxCut and packing
problems.

2.6 Global modulators

We explain in Section 1.6 that the current algorithmic meta-theorems for graph modification
problems [120,287] employ the irrelevant vertex technique of [271] that only works up to modulators
of bounded bidimensionality. In this part, we abandon efficiency towards generality, and we break
the limit of bounded bidimensionality. That is, we consider graph modification problems with a
modulator of unbounded bidimensionality, starting with a modulator whose torso is planar, and we
create a new irrelevant vertex technique that works in this case (cf. Subsection 3.1.3).

Planar modulators

Taking inspiration from the definition of H-p (cf. Section 1.5), we can define H-Planarity as
follows (see Figure 2.2 for an illustration).

Input: A graph G.
Question: Is there a set X ⊆ V (G) whose torso is planar and such that G−X ∈ H?

H-Planarity

X

∈ H
∈ H

∈ H

∈ H

Figure 2.2: A yes-instance of H-Planarity. The additional edge of the torso of X are depicted in
dashed red.

The set X may here have unbounded size, or even unbounded bidimensionality, so it escapes the
scope of the meta-theorem of [287]. And for this problem, we prove the following.

Theorem 2.6.1. Let H be a graph class that is hereditary, CMSO-definable, and decidable in
time O(nc) for some constant c. Then, there is an algorithm solving H-Planarity in time
O(n4 + nc log n).

2.6. Global modulators 39

Observe that we do not restrict ourselves here to target classes that are minor-closed, but instead
to a far more general family of graph classes.

If we define pplanar to be the parameter that maps each graph to zero if it is planar, and to
its treewidth otherwise, then H-Planarity is the problem of deciding whether H-pplanar = 0. As
said previously, we know from [6] that, if Vertex Deletion to H is FPT, then checking whether
H-tw(G) ≤ k is FPT (where H has the mild constraints of Theorem 2.6.1 and is closed under disjoint
union). Hence, it implies from Theorem 2.6.1 that, if Vertex Deletion to H is FPT, then the
same holds for checking whether H-pplanar(G) ≤ k (under the same constraints for H). Therefore,
pplanar is a minor-monotone parameter p such that hw ⪯ p ⪯ tw and such that the following holds.

Let H be a hereditary, CMSO-definable, closed under disjoint union, and polynomial-time
decidable graph class such that Vertex Deletion to H is FPT. Then, given a graph
G and k ∈ N, checking whether H-p(G) ≤ k is FPT.

As we said in Section 1.5, the above statement is likely to hold for any parameter p such that
tw ⪯ p ⪯ size using the techniques from [6]. So now, the main challenge is focusing on parameters p
such that hw ⪯ p ⪯ tw.

After pplanar, we studied two other parameters combining treedepth or treewidth with planarity.

Planar treedepth

We first created a planar variant of treedepth where, instead of removing a single vertex from each
connected component at each step, we now remove a set whose torso is planar. The planar treedepth
of a graph G, denoted by ptd(G), is defined as follows:

ptd(G) =


0 if G is the empty graph,
1 + min{ptd(G−X) | X ⊆ V (G), torso(G,X) is planar} if G is connected,
max{ptd(H) | H is a connected component of G} otherwise.

Then, the H-planar treedepth of G is the minimum k such that H-ptd(G) ≤ k. Said in another way,
given that planarity is closed under disjoint union, this corresponds to removing recursively k sets
X1, . . . , Xk whose torso is planar, such that the remaining components are in H (see Figure 2.3).
Intuitively, ptd(G) expresses the minimum number of “planar layers” that should be removed in
order to obtain the target property H. Using the technique created for Theorem 2.6.1, we prove the

X1

X2

X3

H

≤ 4

Figure 2.3: A graph of H-planar treedepth at most three.

following.

Theorem 2.6.2. Let H be a hereditary and CMSO-definable graph class that is closed under disjoint
union. Suppose that there is an FPT-algorithm solving Vertex Deletion to H parameterized by

2.6. Global modulators 40

the solution size k in time Ok(n
c). Then there is an FPT-algorithm that, given a graph G and k ∈ N,

decides whether G has H-planar treedepth at most k in time Ok(n
4 + nc log n).

Note that, given that we solve problems from uncharted territories, we do not optimize the
parametric dependence of our algorithms in this part.

Planar treewidth

We also study a planar variant of treewidth. The planar width of a tree decomposition T is the
maximum size (minus one) of a bag of T whose torso is not planar. The planar treewidth of a
graph G, denoted by ptw(G), is the minimum planar width among all tree decompositions of G.
This parameter is not new: as mentioned in Section 1.7, given a singly-crossing graph H, there is a
constant cH such that, if a graph G excludes H as a minor, then G has planar treewidth at most
cH [268]. The H-planar treewidth of G is the minimum k such that H-ptw(G) ≤ k. Using once again
the technique created for Theorem 2.6.1, we prove the following.

Theorem 2.6.3. Let H be a hereditary and CMSO-definable graph class that is closed under disjoint
union. Suppose that there is an FPT-algorithm solving Vertex Deletion to H parameterized by
the solution size k in time Ok(n

c). Then there is an FPT-algorithm that, given a graph G and k ∈ N,
decides whether G has H-planar treewidth at most k in time Ok(n

4 + nc log n).

We refer the reader to Chapter 10 for our results on unbounded bidimensionality modulators as
well as applications for instance in designing an algorithm for Counting Perfect Matchings or
EPTASes.

The chapters of this thesis are presented ordered by the parameterization on the modulator in
Figure 2.4.

hw

Chapter 10

Chapter 5

Chapter 8

Chapter 7

Chapter 6

Chapter 9

planar

ptd

ptw

tw

size

td

Figure 2.4: Overview of the parameterization of the modulators in the different chapters. Note that
ptd and ptw are actually incomparable, and that our result for tw is on its annotated version, while
the other results are on the torso-version of the parameters.

2.7. Papers 41

2.7 Papers

This thesis covers the following articles (here by chronological order of submission).

In Chapter 8, we present parts of the following:
Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos.
Faster parameterized algorithms for modification problems to minor-closed classes,
ICALP 2023: 10.4230/LIPIcs.ICALP.2023.93,
TheoretiCS: 10.48550/arXiv.2210.02167.

In Chapter 9, we present parts the following:
Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos.
Dynamic Programming on Bipartite Tree Decompositions,
IPEC 2023: 10.4230/LIPIcs.IPEC.2023.26,
JCSS: 10.1016/j.jcss.2025.103722,
arXiv: 10.48550/arXiv.2309.07754.

In Chapter 6, we present the following:
Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos.
Vertex identification to a forest,
Discrete Mathematics: 10.1016/j.disc.2025.114699,
arXiv: 10.48550/arXiv.2409.08883.

In Chapter 7, we present the following:
Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos.
Graph modification of bounded size to minor-closed classes as fast as vertex deletion,
ESA 2025: 10.4230/LIPIcs.ESA.2025.7,
arXiv: 10.48550/arXiv.2504.16803, submitted to a journal.

In Chapter 10, we present the following:
Fedor Fomin, Petr Golovach, Laure Morelle, and Dimitrios M. Thilikos.
H-Planarity and Parametric Extensions: when Modulators Act Globally,
arXiv: 10.48550/arXiv.2507.08541, accepted in SODA 2026.

In Chapter 5, we present the following:
Laure Morelle, Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wieder-
recht.
Excluding Pinched Spheres,
arXiv: 10.48550/arXiv.2506.14421, submitted to a journal.

The following articles were written during the PhD project, but are not part of the thesis.

Gaétan Berthe, Yoann Coudert-Osmont and Alexander Dobler, Laure Morelle,
Amadeus Reinald, and Mathis Rocton.
PACE Solver Description: Touiouidth,
IPEC 2023: 10.4230/LIPIcs.IPEC.2023.38.

Nicolas Bousquet, Quentin Chuet, Victor Falgas-Ravry, Amaury Jacques, and Laure
Morelle.

https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.48550/arXiv.2210.02167
https://doi.org/10.4230/LIPIcs.IPEC.2023.26
https://doi.org/10.1016/j.jcss.2025.103722
https://doi.org/10.48550/arXiv.2309.07754
https://doi.org/10.1016/j.disc.2025.114699
https://doi.org/10.48550/arXiv.2409.08883
https://doi.org/10.4230/LIPIcs.ESA.2025.7
https://doi.org/10.48550/arXiv.2504.16803
https://doi.org/10.48550/arXiv.2507.08541
https://doi.org/10.48550/arXiv.2506.14421
https://doi.org/10.4230/LIPIcs.IPEC.2023.38

2.7. Papers 42

A note on locating sets in twin-free graphs,
Discrete Mathematics: 10.1016/j.disc.2024.114297,
arXiv: 10.48550/arXiv.2405.18162.

Davi de Andrade, Júlio Araújo, Morelle Laure, Ignasi Sau, and Ana Silva.
On the parameterized complexity of computing good edge-labelings,
arXiv: 10.48550/arXiv.2408.15181, submitted to a journal.

Matthias Bentert, Fedor Fomin, Petr Golovach, and Laure Morelle.
When does FTP become FPT?,
arXiv: 10.48550/arXiv.2506.17008, accepted in WG 2025 and submitted to a journal.

Matthias Bentert, Fedor Fomin, Petr Golovach, and Laure Morelle.
Fault-tolerant Matroid Bases,
ESA 2025: 10.4230/LIPIcs.ESA.2025.83,
arXiv: 10.48550/arXiv.2506.22010, submitted to a journal.

Marthe Bonamy, Laure Morelle, Timothé Picavet, and Alexander Scott.
Faster Algorithms for the Pre-Assignment Problem for Unique Minimum Vertex Cover,
submitted to a conference.

https://doi.org/10.1016/j.disc.2024.114297
https://doi.org/10.48550/arXiv.2405.18162
https://doi.org/10.48550/arXiv.2408.15181
https://doi.org/10.48550/arXiv.2506.17008
https://doi.org/10.4230/LIPIcs.ESA.2025.83
https://doi.org/10.48550/arXiv.2506.22010

CHAPTER 3

Techniques

Contents
3.1 Graph modification problems . 43

3.1.1 Flatness . 43
3.1.2 Flat wall theorem . 45
3.1.3 Irrelevant vertex technique . 46
3.1.4 Bounded treewidth . 47
3.1.5 Obligatory sets . 47

3.2 Structure theorem . 48

To obtain the results of this thesis, we revisit and readapt old techniques, as well as create new
ones when necessary. Let us discuss the main techniques employed throughout the thesis.

3.1 Graph modification problems

The key technique to solve problems related to Graph Minor Theory is the irrelevant vertex technique
developed by Robertson and Seymour [271]. Here is how it usually goes. If our problem Π is
such that yes-instances of the problem exclude some bounded size clique as a minor, then this
permits us to apply the flat wall theorem (see Subsection 3.1.2) from [194, 271, 286], in order to
find a big enough structure called flat wall in it (see Subsection 3.1.1). Our algorithm repetitively
produces equivalence instances of the problem by removing “irrelevant vertices” in the middle of this
wall (see Subsection 3.1.3), until the treewidth is bounded. Then, it suffices to apply Courcelle’s
theorem [18,67] or a dynamic programming algorithm (see Subsection 3.1.4) to conclude.

We use a somewhat similar approach in Chapter 7, Chapter 8, and Chapter 10 to solve our
graph modification problems, with the addition, sometimes, of an “obligatory set” technique (see
Subsection 3.1.5). Let us discuss these techniques more in detail, as well as the generalizations we
brought.

3.1.1 Flatness

Let us begin by sketching some necessary notions.

43

3.1. Graph modification problems 44

Walls. A wall is a subdivided hexagonal grid, such as the one pictured in Figure 3.1. See
Subsection 4.6.1 for the formal definition. Notice that a wall can easily be contracted to a grid, and

Figure 3.1: A 5-wall. Its first layer is depicted in red and its second layer in orange. Its central
vertices are depicted in a green square.

a grid contains a wall as a subgraph. As discussed in Section 1.6 and Subsection 1.7.1, a graph either
has bounded treewidth, or contains a big grid as a minor. One can actually prove instead that a
graph either has bounded treewidth, or contains a wall as a subgraph. Subgraphs are easier to work
with than minors, so researchers prefer to use walls instead of grids.

Renditions. A rendition is essentially a way to draw a graph on a disk such that crossings are
localized into cells with at most three vertices on the boundary, as depicted in Figure 3.2. See
Section 4.5 for the formal definition. If we find such a drawing, it means that two disjoint paths

Figure 3.2: A (vortex-free) rendition. The cells are the orange disks with a dotted boundary.

cannot enter a cell, cross one another, and then exit this cell. That is, seen from afar (meaning if
we remove the interior of each cell and only add edges between the vertices on the boundary), the
graph looks planar, hence the notion of “flatness”.

Flat walls. A flat wall is a combination of both a wall and a rendition. More precisely, this
is a wall W such that there is a rendition on the disk containing W and whose boundary is the
perimeter of W . Also, the perimeter of W separates the “rendition part” from the rest of the graph.
See Figure 3.3 for an illustration. This informal definition is missing many crucial elements (see

3.1. Graph modification problems 45

Figure 3.3: A flat wall (picture by Dimitrios M. Thilikos).

Subsection 4.6.2 for the formal definition), but what is crucial to remember it that flat walls retain
the nice structural properties of walls (and grids), with the addition of some “flatness” property.

3.1.2 Flat wall theorem

The flat wall theorem, in its original form in Robertson and Seymour’s Graph Minor series [271],
states that a graph G either

• has a big clique as a minor, or

• has bounded treewidth, or

• has a big enough wall W that is flat in G − A, where A is a vertex set of small size, called
apex set.

Since then, several improvements and variants of the flat wall theorem were created [64,138,141,188,
194,286].

The flat wall theorem is useful for problems whose yes-instances exclude a big clique as a minor,
such as L-Replacement to H or Elimination distance to H where H is minor-closed. Hence, in
Chapter 7 and Chapter 8, we use the variants from [194,286] (Proposition 4.6.2 and Proposition 4.6.3)
to find a flat wall in the input graph.

In Chapter 10 for H-Planarity however, H is possibly not minor-closed, and yes-instances
of H-Planarity might contain arbitrarily cliques as minors. To solve this issue, we first use the
meta-theorem of Lokshtanov, Ramanujan, Saurabh, and Zehavi from [224] and the random-sampling
technique from [60], in order to first prove that the problem of solving H-Planarity can be reduced
to the problem of solving a restricted version of the problem, called H(k)-Planarity, which may
be of independent interest. The task of this problem is to decide, given a graph G and a positive
integer k, whether G has an H(k)-planar modulator, where H(k) is the subclass of H composed
by the graphs of H with at most k vertices. The yes-instances of H(k)-Planarity are minor-free
(and even apex-minor-free) and thus we can apply the flat wall theorem here. More specifically,
we require a flat wall of G. To find such a flat wall without apex set A, we need a variant of the
flat wall theorem where, instead of searching a clique as a minor, we search for an apex graph as a
minor. While it is known that apex-minor-free graphs with big treewidth contain a flat wall [141],
we do not know of any algorithmic variant of this result that we may refer to, so we created our own
algorithmic variant of the flat wall theorem (Theorem 10.2.2). In Chapter 10, we use both the new
variant created for Chapter 10 and the variant from [286].

3.1. Graph modification problems 46

While we do not use any irrelevant vertex technique to prove the structure theorem of Chapter 5,
we do need to find a flat wall, as is often the case for structure theorems [195]. Here, we require again
a flat wall of G, without apex set. While we could use the flat wall theorem proved in Chapter 10,
given that we exclude an edge-apex graph as a minor, we create a new variant with better constants
where we replace the clique by an edge-apex graph (Lemma 5.2.22).

3.1.3 Irrelevant vertex technique

A vertex v such that (G, k) and (G − v, k) are equivalent instances of a problem Π is called an
irrelevant vertex (for Π). The irrelevant vertex technique was originally developed by Robertson and
Seymour in their Graph Minor series [271] to solve the 2-Disjoint Path problem, but was later
generalized to many problems related to graph minors, such as those from the following non-exhaustive
list [3,4,24,53,77,120,121,126,126,142,143,151,166,174,178,179,186,189–191,229,284–287,301]. Its
general applicability can be guaranteed by a series of algorithmic meta-theorems that have been
recently developed in [120, 146] and, in its more powerful version, in [287]. The irrelevant vertex
technique essentially asserts the following: if a graph G contains a small apex set A and a big wall
W that is a flat wall of G−A, then one can find a vertex v of W that is irrelevant. Hence, we can
remove this vertex v and recurse.

Bounded bidimensionality modifications. Typically, the applicability of the irrelevant vertex
technique requires that the modifications are affecting only a restricted area of a big flat wall, so
that we find a smaller flat wall avoiding the modified vertices. In technical terms, according to [287],
a sufficient condition is that the modifications affect a set of vertices with low bidimensionality, such
as is the case in the algorithmic meta-theorems in [120,146,287].

In particular, the authors of [284,285] adapt the original irrelevant vertex technique to Vertex
Deletion to H when H is minor-closed, and more generally, to any problem where one decides
whether H-p ≤ k for tw ⪯ p ≤ size (see Proposition 8.2.4). Given that tw ⪯ td and that the running
time of the algorithm of [284, 285] comes with a nice parametric dependence, we use their result
(Proposition 8.2.4) for Elimination Distance to H in Chapter 8 to find an irrelevant vertex in a
flat wall.

For L-Replacement to H in Chapter 7, we cannot use the result of [284,285] as a blackbox,
as our modifications are more general than just deleting vertices. Hence, we prove a more general
irrelevant vertex result that works for L-Replacement to H whenH is minor-closed (Theorem 7.3.1)
and another one with a better parametric dependence when H has bounded genus (Theorem 7.3.2).

Global modifications. In Chapter 10, the modifications are global and they may occur everywhere
along the two-dimensional area of the flat wall. Therefore, precisely because our modulator has
potentially unbounded bidimensionality, it is not possible to apply any of the results in [120,146,287]
in order to find an irrelevant vertex. This initiates the challenge of applying the irrelevant vertex
technique under the setting that the modification potentially affects any part of the flat wall. Hence,
we need to, and we did, create a new irrelevant vertex technique beyond the meta-algorithmic
framework of [287] which, we believe, may have independent use for other problems involving global
modification (Corollary 10.2.22). The rough idea is that, given a vertex v in the center of the flat
wall W , if we find a solution restricted to W , and another one in G − v, then we may glue these
two solutions on a disk inside W to obtain a solution for G. The main technicality is how to glue
solutions correctly, which requires topological arguments.

3.1. Graph modification problems 47

3.1.4 Bounded treewidth

When the input graph has bounded treewidth, the meta-theorem of Courcelle [18, 67] (see also
Section 1.6 and Proposition 4.3.2) is often enough to conclude. This is for instance what we do in
Chapter 10. However, Courcelle’s theorem does not give an explicit dependence on |φ|+ tw. To get
this explicit parametric dependence, we have to design instead dynamic programming algorithms
(DP) on tree decompositions.

Representative-based technique. Baste, Sau, and Thilikos [23] developed a representative-based
technique that gives a DP solving Vertex Deletion to H when H is minor-closed in efficient
FPT-time parameterized by treewidth (cf. Section 4.4, Proposition 4.4.1 and Proposition 4.4.2). We
use the technique of [23] to develop in Chapter 7 (Section 7.6) a DP solving this time the more
general problem of L-Replacement to H (Theorem 2.3.3). Additionally, we combine in Chapter 8
(Section 8.5) the representative-based technique of [23] with the DP of [256] deciding whether the
treedepth is at most k in FPT-time parameterized by tw + k (Proposition 8.5.4), to create the first
DP deciding whether the elimination distance to H is at most k in in FPT-time parameterized by
tw + k (Theorem 2.4.3).

DP for other treewidth-related parameters. In Chapter 9, we go further and develop DPs on
tree decompositions where the parameter is not the treewidth anymore, but the bipartite treewidth
instead. Given that bipartite treewidth is a relatively unknown parameter, there is no Courcelle-like
meta-theorem expliciting the types of problems that may be solved efficiently parameterized by
btw. Hence, we created our own self-standing general DP scheme to solve problems efficiently
parameterized by btw (Theorem 9.4.1), and applied it to various problems.

3.1.5 Obligatory sets

In Chapter 7, if we just apply the flat wall theorem to find an irrelevant vertex and recurse until the
treewidth is bounded, we will not obtain the parametric dependence claimed in Theorem 2.3.1. To
achieve this running time, we use an additional technique. If we find in our graph a “sunflower” of
k + 1 obstructions of the target class H that intersect in some small vertex set A, called obligatory
set, then it implies that some modification must be done in A, since otherwise, one of the k + 1
obstructions will remain in the modified graph (see Figure 3.4 and Lemma 7.3.3). Hence, we may

∈ obs(H)

A

Figure 3.4: A “sunflower” composed of obstructions of H intersecting in a vertex set A.

simply use branching to guess which part of A is modified and how, and then apply this partial
modification and recurse. Given that the modification has bounded size, the depth of the search tree
will not be too big. This sunflower technique is inspired from [229] and in our case, is a generalization

3.2. Structure theorem 48

from [285]. The main technicality in our case is to find such a sunflower efficiently in the input
graph.

In Chapter 8 unfortunately, we cannot use this technique, given that the modification has
unbounded size, and thus that the depth of the search tree might be unbounded. This explains
the triple exponential dependence on k of Theorem 2.4.1. The only case when we may still use the
sunflower technique is when the target class is apex-minor-free. In this case, the obligatory set A
that we find is a singleton. Therefore, there is no need to branch, and the only possible modification,
if any, is to delete A. Hence, the improved running time of Theorem 2.4.2.

3.2 Structure theorem

The graph minor structure theorem of [275] (cf. Subsection 1.7.1), and more specifically the self-
contained proof of [194,195], gives a global strategy to design a structure theorem. Using the flat
wall theorem, we find a flat wall W inside the input graph G. Inside W , as depicted in Figure 3.3,
there is a drawing of the graph such that crossings are localized, in the sense that they only happen
in cells with at most three vertices on the boundary. We put the rest of the graph (whatever is
outside of W) inside a single cell whose boundary contains the vertices in the perimeter of W . Such
a cell with at least four vertices is called a vortex. The goal is then, using techniques from [195], to
split the vortex into smaller vortices, until we obtain a flat drawing in some surface (in our case
the projective plane; cf. Theorem 2.1.1) with only a few vortices of small “depth”, where the depth
essentially corresponds to the number of crossings that may “escape” from the vortex. Such an
almost flat drawing in a surface Σ is called a Σ-decomposition of breadth b (the number of vortices)
and depth d (the maximum depth of a vortex). Hence, we obtain what we call a local structure
theorem, that is a statement along the lines of:

There exist a surface ΣH and constants bH and dH such that, if G is H-minor-free, then
there is a ΣH -decomposition of G of breadth at most bH and depth at most dH .

From this, the goal is to obtain a (global) structure theorem stated along the lines of:

There exist a surface ΣH and constants bH and wH such that, if G is H-minor-free,
then there is a tree decomposition of G such that the torso of each bag has an “almost
embedding” in ΣH of breadth at most bH and “width” at most wH .

An almost embedding of G in Σ is similar to a Σ-decomposition, but where the non-vortex cells
have no vertex drawn in their interior. To obtain an almost embedding from a Σ-decomposition, we
essentially push out the interior of cells to create new bags of the tree decomposition (hence the tree
decomposition). Also, the parameter we want to bound on vortices is not their depth anymore, but
their width, which is essentially their pathwidth. To bound the width of vortices instead of their
depth, we once again push out (more carefully) vertices in the interior of vortices to new bags.

The described strategy is essentially enough to prove that the graph induced by each bag β(t)
has an almost embedding of small depth and breadth. The problem in our case is to prove the same
for the torso of β(t). In most structure theorems, such as the ones of [101, 195], what is actually
stated is that the torso of each bag has an almost embedding in ΣH of breadth at most bH and
“width” at most wH after the removal of aH vertices. While we do not enter the details here, those
aH vertices, called apices, make it easy to deduce an almost embedding of torso(G, β(t)) from an
almost embedding of G[β(t)], by simply adding a bounded number of apices. In our case, this
method does not work, given that we want no apices. Hence, we created a new “local-to-global”
technique to go from our local theorem to the global one. The idea, without entering into detail, is

3.2. Structure theorem 49

to create new vortices whose depth is still bounded to handle the “torsification” (see Subsection 5.2.3,
Theorem 5.2.32).

From this global theorem, it is easy to obtain Theorem 2.1.2 by identifying each vortex to a
single point.

As for Theorem 2.1.3, we find, for any k ∈ N, a graph embeddable in the pinched sphere that
cannot be made projective by identifying a vertex set of bidimensionality at most k. Then, using
techniques of [302], we derive Theorem 2.1.3.

CHAPTER 4

Preliminaries on graphs

In this chapter, we formally define the notions that will be used throughout this work and we give
some preliminary results.

Contents
4.1 Sets and functions . 50
4.2 Basic concepts on graphs . 51
4.3 Tree decompositions . 53
4.4 Boundaried graphs . 54
4.5 Drawing on surfaces . 56
4.6 Flat walls . 60

4.6.1 Walls and subwalls . 60
4.6.2 Flatness pairs . 62
4.6.3 Canonical partitions . 65
4.6.4 Homogeneous walls . 66
4.6.5 Tight renditions . 67

4.1 Sets and functions

Let us first give some basic definitions and notations on sets and functions.

Sets and integers. We denote by N the set of non-negative integers. Given two integers p, q,
where p ≤ q, we denote by [p, q] the set {p, . . . , q}. For an integer p ≥ 1, we set [p] = [1, p] and
N≥p = N \ [0, p− 1]. For a set S, we denote by 2S the set of all subsets of S and, given an integer
r ∈ [|S|], we denote by

(
S
r

)
the set of all subsets of S of size r and by

(
S
≤r

)
(resp.

(
S
<r

)
) the set of all

subsets of S of size at most r (resp. r − 1). If S is a collection of objects where the operation ∪
is defined, then we denote

⋃⋃⋃⋃⋃⋃⋃⋃⋃
S =

⋃
X∈S X. The function odd : R→ N maps x to the smallest odd

non-negative integer larger than x.

50

4.2. Basic concepts on graphs 51

Functions. Given a set A, we denote the identity function mapping each a ∈ A to itself by idA.
Given two sets A,B, v ∈ B, S ⊆ B, and a function f : A → B, f−1(v) is the set of elements
u ∈ A such that f(u) = v, and f−1(S) =

⋃
v∈S{f−1(v)}. If B is a collection of objects where the

operation + is defined, then, given R ⊆ A, we set f(R) =
∑

r∈R f(r). Otherwise, given R ⊆ A, we
set f(R) =

⋃
r∈R{f(r)}, and the restriction of f to R is denoted by f |R. Additionally, for some new

vertex u /∈ A, f ∪ (u 7→ v) : A ∪ {u} → B is the function that maps u to v and whose restriction to
A is f . Given two sets A and B, and two functions f, g : A→ 2B, we denote by f ∪ g the function
that maps x ∈ A to f(x) ∪ g(x) ∈ 2B. Let f : A→ B be an injective function. Let K ⊆ B be the
image of f . By convention, if f is referred to as a bijection, it means that f maps A to K.

Partitions. Given p ∈ N, a p-partition of a set X is a tuple (X1, . . . , Xp) of pairwise disjoint
subsets of X such that X =

⋃
i∈[p]Xi. We denote by Pp(X) the set of all p-partitions of X. Given a

partition X ∈ Pp(X), its domain X is also denoted as ∪X . A partition is a p-partition for some p ∈ N.
Given Y ⊆ X, X = (X1, . . . , Xp) ∈ Pp(X), and Y = (Y1, . . . , Yp) ∈ Pp(Y), we say that Y ⊆ X if
Yi ⊆ Xi for each i ∈ [p]. Given a set U , two subsets X,A ⊆ U , and X = (X1, . . . , Xp) ∈ Pp(X),
X ∩ A denotes the partition (X1 ∩ A, . . . ,Xp ∩ A) of X ∩ A. Given two disjoint sets X and
Y , and X = (X1, . . . , Xp) ∈ P(X) and Y = (Y1, . . . , Yq) ∈ P(Y), X ∪ Y denotes the partition
(X1, . . . , Xp, Y1, . . . , Yq) ∈ P(X ∪ Y).

4.2 Basic concepts on graphs

Let us now give some basic definitions on graphs. We use standard graph-theoretic notation and we
refer the reader to [87] for any undefined terminology on graphs.

Basic notations on graphs. A graph G is a pair (V,E) where V is a finite set and E ⊆
(
V
2

)
, i.e.,

all graphs in this thesis are undirected, finite, and without loops or parallel edges. For convenience,
we use uv (or vu) instead of {u, v} to denote an edge of a graph. We write Gall for the set of all
graphs. We also define V (G) = V and E(G) = E. We always use n = |G| for the size of G, i.e., the
cardinality of V (G), and m for the cardinality of E(G), where G is the input graph of the problem
under consideration.

For S ⊆ V (G), we set G[S] = (S,E ∩
(
S
2

)
) and use the shortcut G−S to denote G[V (G) \S]. We

may also use G− v instead of G−{v} for v ∈ V (G). We say that G[S] is an induced (by S) subgraph
of G. The detail of G is max{|V (G)|, |E(G)|}. Given A,B ⊆ V (G), we also denote by EG(A,B)
the set of edges of G with one endpoint in A and the other in B. We may also use E(A,B) instead
of EG(A,B) when there is no risk of confusion. We say that E′ ⊆ E(G) is an edge cut of G if there
is a partition (A,B) of V (G) such that E′ = E(A,B). Given two graphs G1 and G2, we denote
G1 ∪G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). Given a graph G, we define the set of partitions of G
to be the set P(G) := {X ∈ P(X) | X ⊆ V (G)}.

Some graphs. For t ∈ N, the complete graph Kt (alternatively a clique of size t) is the graph with
t vertices and all edges between vertices. For a, b ∈ N, the complete bipartite graph Ka,b is the graph
whose vertex set is the union of a vertex set A of size a and a vertex set B of size b and whose edge
set is E(A,B). A bipartite graph is a graph that is a subgraph of a complete bipartite graph. For
k ∈ N, the path Pk is the graph with k vertices v1, . . . , vk and edges vivi+ 1 for i ∈ [k − 1]. We say
that Pk has length k − 1 (i.e., the length of a path is its number of edges). For k ∈ N, the cycle Ck

is the graph obtained from the path Pk by adding an edge v1vk. A planar graph is a graph that can
be drawn on a plane without edge crossing.

4.2. Basic concepts on graphs 52

Neighbors. Given a vertex v ∈ V (G), we denote by NG(v) the set of vertices of G that are adjacent
to v in G and we set NG[v] = NG(v)∪{v}. Also, given a set S ⊆ V (G), we set NG[S] =

⋃
v∈S NG[v]

and NG(S) = NG[S] \ S. A vertex v ∈ V (G) is isolated if NG(v) = ∅. The degree of a vertex
v ∈ V (G) is its number |NG(v)| of neighbors.

Connectivity. A graph G is connected if every pair of vertices of G is joined by a path. A
connected component of a graph G is a connected subgraph of G of maximum size. We denote by
cc(G) the connected components of G. A bridge (resp. cut vertex) in G is an edge (resp. a vertex)
whose removal increases the number of connected components of G. Given k ∈ N≥1, we say that a
graph G is k-connected if, for any set X of size at most k− 1, G−X is connected. A block of G is a
maximal connected subgraph of G without a cut vertex.

Separations. A separation of a graph G is a pair (L,R) ∈ 2V (G) × 2V (G) such that L ∪R = V (G)
and there is no edge in G between L \R and R \ L. The order of (L,R) is |L ∩R|.

Some graph properties. We say that a graph class H is hereditary (resp. monotone) if it contains
all the induced subgraphs (resp. subgraphs) of its graphs. A class H is closed under disjoint union if
it contains the disjoint union of every two of its graphs.

Torsos and clique-sums. The torso of a set X ⊆ V (G), denoted by torso(G,X), is the graph
obtained from G[X] by making NG(V (C)) a clique for each C ∈ cc(G−X). Given two graphs G1

and G2, and q ∈ N, a q-clique-sum of G1 and G2 is obtained from their disjoint union by identifying
a q-clique of G1 with a q-clique of G2, and then possibly deleting some edges of that clique. A graph
class G is closed under q-clique-sums if for each G1, G2 ∈ G, any q-clique-sum of G1 and G2 also
belongs to G.

Dissolutions and subdivisions. Given a vertex v ∈ V (G) of degree two with neighbors u and
w, we define the dissolution of v to be the operation of deleting v and, if u and w are not adjacent,
adding the edge uw. Given two graphs H and G, we say that H is a dissolution of G if H can
be obtained from G after dissolving vertices of G. Given an edge e = uv ∈ E(G), we define the
subdivision of e to be the operation of deleting e, adding a new vertex w and making it adjacent to
u and v. Given two graphs H and G, we say that H is a subdivision of G if H can be obtained from
G by subdividing edges. Observe that G is a subdivision of H iff H is a dissolution of G.

Colorings. A coloring of a graph G is a function c : V (G)→ N. Given v ∈ V (G), c(v) is called
the color of v by c. Given k ∈ N, a k-coloring is a coloring c : V (G)→ [k]. Given a coloring c of
a graph G and an edge uv ∈ E(G), we say that uv is monochromatic if c(u) = c(v). Otherwise,
we say the uv is bichromatic. A coloring c of a graph G is said to be proper if every edge of G is
bichromatic. We say that a graph G is k-colorable if there exists a proper k-coloring of G.

Contractions and minors. The contraction of an edge e = uv ∈ E(G) results in a graph G/e
obtained from G \ {u, v} by adding a new vertex w adjacent to all vertices in the set NG({u, v}).
Vertex w is called the heir of e. A graph H is a minor of a graph G, denoted by H ⪯m G, if H can
be obtained from a subgraph of G after a series of edge contractions. Equivalently, H is a minor
of G if there is a collection S = {Sv | v ∈ V (H)} of pairwise-disjoint connected subsets of V (G),
called branch sets such that, for each edge xy ∈ E(H), the set Sx ∪ Sy is connected in V (G). The
collection S is called a model of H in G and, for each x ∈ V (H), the set Sx is called model of x in

4.3. Tree decompositions 53

G. Given a finite collection of graphs F and a graph G, we use notation F ⪯m G to denote that
some graph in F is a minor of G.

Minor-closed graph classes. A graph class H is minor-closed if it contains all the minors of
its graphs. Given a collection of graphs F , we denote by exc(F) the class of graphs that do not
contain a graph in F as a minor. Obviously, exc(F) is minor-closed. We call each graph in exc(F)
F-minor-free. A (minor-)obstruction of a graph class H is a graph F that is not in H, but whose
minors are all in H. The set of all the obstructions of H is denoted by obs(H). By the seminal work
of Robertson and Seymour [278], if H is a minor-closed graph class, then obs(H) is finite. Note that,
if F = obs(H), then exc(F) = H. We use G∅ for the graph class containing only the empty graph
G∅. Notice that obs(G∅) = {K1}.

Thomason proved in [305] that graphs excluding some graph as a minor have the following
density property.

Proposition 4.2.1 ([305]). Let t ∈ N. If a graph is Kt-minor-free, then it has O(t
√
log t · n) edges.

Apex number. The apex number of a graph G is the smallest integer a for which there is a set
A ⊆ V (G) of size a such that G−A is planar.

Identifications. Let G be a graph and X ⊆ V (G). The identification of X in G, denoted by
G//X, is the result of the operation that transforms G into a graph G′ obtained from G by deleting
X and adding instead a new vertex x adjacent to every vertex in NG(X). The vertex x is called the
heir of X. Note that, if X = {u, v} with uv ∈ E(G), then this corresponds to the contraction of uv.

Let X = (X1, ..., Xp) ∈ P(G). The identification of X inG is the graphG//X := G//X1//X2//...//Xp.
Note that the ordering of the members of the partition does not matter in this definition.

We denote by I(G,S) the set of all graphs G′ that can be obtained by a sequence of identifications
of vertices of S. In other words, for each G′ ∈ I(G,S), there is a partition P = (S1, ..., Sr) ∈ P(X)
such that G′ = G//P.

4.3 Tree decompositions

Let us give some more definitions and results related to treewidth.

Tree decompositions. A tree decomposition of a graph G is a pair T = (T, β) where T is a tree
and β : V (T)→ 2V (G) is a function, whose images are called the bags of T , such that

•
⋃

t∈V (T) β(t) = V (G),

• for every e ∈ E(G), there exists t ∈ V (T) with e ⊆ β(t), and

• for every v ∈ V (G), the set {t ∈ V (T) | v ∈ β(t)} induces a subtree of T.

The width of T is the maximum size of a bag minus one and the treewidth of G, denoted by tw(G),
is the minimum width of a tree decomposition of G. Given tt′ ∈ E(T), the adhesion of t and t′,
denoted by adh(t, t′), is the set β(t) ∩ β(t′). The adhesion of a node t ∈ V (T) is the maximum
adhesion of t and t′ over all neighbors t′ of t and the adhesion of T is the maximum adhesion of a
node of T . The torso of T at node t is the graph obtained from G[β(t)] by making a clique out of
each adhesion of t with a neighbor t′.

4.4. Boundaried graphs 54

A rooted tree decomposition is a triple (T, β, r) where (T, β) is a tree decomposition and (T, r) is
a rooted tree.

To compute a tree decomposition of a graph of bounded treewidth, we can use the single-
exponential 2-approximation algorithm for treewidth of Korhonen [203].

Proposition 4.3.1 ([203]). There is an algorithm that, given a graph G and an integer k, outputs
either a report that tw(G) > k, or a tree decomposition of G of width at most 2k+1 with O(n) nodes.
Moreover, this algorithm runs in time 2O(k) · n.

As mentioned in Section 1.6, Courcelle’s theorem implies that many problems are solvable in
linear time on graphs of bounded treewidth.

Proposition 4.3.2 (Courcelle’s Theorem [18, 67]). Let H be a graph class that is definable by a
CMSO formula φ. There is a function f : N2 → N and an algorithm that, given a graph G of
treewidth at most tw, checks whether G ∈ H in time f(|φ|, tw) · n.

To describe our dynamic programming algorithms presented in Section 7.6 and Section 8.5, we
need a particular type of tree decompositions, namely nice tree decompositions.

Nice tree decompositions. A nice tree decomposition of a graph G is a rooted tree decomposition
(T, β, r) such that:

• every node has either zero, one or two children,

• if x is a leaf of T , then β(x) is a singleton (x is a leaf node),

• if x is a node of T with a single child y, then |β(x) \ β(y)| = 1 (x is an introduce node) or
|β(y) \ β(x)| = 1 (x is a forget node), and

• if x is a node with two children x1 and x2, then β(x) = β(x1) = β(x2) (x is a join node).

To find a nice tree decomposition from a given tree decomposition, we use the following well-known
result proved, for instance, in [12].

Proposition 4.3.3 ([12]). Given a graph G with n vertices and a tree decomposition (T, β) of G of
width w, there is an algorithm that computes a nice tree decomposition of G of width w with at most
O(w · n) nodes in time O(w2 · (n+ |V (T)|)).

The following result has been proved by Adler, Dorn, Fomin, Sau, and Thilikos in [2].

Proposition 4.3.4 ([2]). There is an algorithm that, given a graph G on m edges, a graph H on h
edges without isolated vertices, and a tree decomposition of G of width at most k, outputs, if it exists,
a minor of G isomorphic to H. Moreover, this algorithm runs in time 2O(k log k) · hO(k) · 2O(h) ·m.

4.4 Boundaried graphs

In this part, we define boundaried graphs and notions related to them.
Boundaried graphs are in particular needed for the representative-based technique of [23] that

is mentioned in Subsection 3.1.4 and that is used in Section 7.6 and Section 8.5. The idea is the
following. Given a minor-closed graph class H, for any graph G with a small boundary B ⊆ V (G),
there exist a “representative” graph Rep(G) of small size (depending on H and |B|) and with same
boundary B, such that, for any graph H with boundary B, the graph G⊕H obtained by gluing G

4.4. Boundaried graphs 55

G
Rep(G)

= OsH(tw)

≤ tw

H

B B

Figure 4.1: Illustration of the representative-based technique of [23].

and H on B is in H if and only if Rep(G)⊕H is in H (see Figure 4.1). This technique is used in
dynamic programming algorithms on tree decompositions in order to be able to keep, at each node t
of the tree decomposition, information about a small graph instead of the entire graph induced by
the tree rooted at t.

Boundaried graphs. Let t ∈ N. A t-boundaried graph is a triple G = (G,B, ρ) where G is a
graph, B ⊆ V (G), |B| = t, and ρ : B → N is an injective function. We say that B is the boundary
of G and we write B = bd(G). In other words, a t-boundaried graph is a graph G with a boundary
B of t vertices and a labeling ρ of the vertices of B. We call G trivial if all its vertices belong to
the boundary. We say that two t-boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2) are
isomorphic if ρ1(B1) = ρ2(B2) and there is an isomorphism from G1 to G2 that extends the bijection
ρ−1
2 ◦ ρ1. The triple (G,B, ρ) is a boundaried graph if it is a t-boundaried graph for some t ∈ N. We

denote by Bt the set of all (pairwise non-isomorphic) t-boundaried graphs.

Equivalent boundaried graphs and representatives. We say that two boundaried graphs
G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2) are compatible if ρ−1

2 ◦ ρ1 is an isomorphism from G1[B1]
to G2[B2]. Given two compatible boundaried graphs G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we
define G1 ⊕G2 as the graph obtained if we take the disjoint union of G1 and G2 and, for every
i ∈ [|B1|], we identify vertices ρ−1

1 (i) and ρ−1
2 (i). We also define G1

⊕
G2 as the boundaried graph

(G1 ⊕G2, B1, ρ1). Given h ∈ N, we say that two boundaried graphs G1 and G2 are h-equivalent,
denoted by G1 ≡h G2, if they are compatible and, for every graph H with detail at most h and
every boundaried graph F compatible with G1 (hence, with G2 as well), it holds that

H ⪯m F⊕G1 ⇐⇒ H ⪯m F⊕G2.

Note that ≡h is an equivalence relation on B. A minimum-sized (in terms of number of vertices)
element of an equivalent class of ≡h is called representative of ≡h. For t ∈ N, a set of t-representatives
for ≡h, denoted by Rt

h, is a collection containing a minimum-sized representative for each equivalence
class of ≡h restricted to Bt.

The following results were proved by Baste, Sau, and Thilikos [24] and give a bound on the size
of a representative and on the number of representatives for this equivalence relation, respectively.

Proposition 4.4.1 ([24]). For every t ∈ N, q, h ∈ N≥1, and G = (G,B, ρ) ∈ Rt
h, if G is does not

contain Kq as a minor, then |V (G)| = Oq,h(t).

Proposition 4.4.2 ([24]). For every t ∈ N≥1, |Rt
h| = 2Oh(t log t).

Moreover, given a boundaried graph of bounded size, the following lemma gives an algorithm to
find its representative. While this is might be considered folklore, we include here its proof for the
sake of completeness.

4.5. Drawing on surfaces 56

Lemma 4.4.3. Given a finite collection of graphs F , h, t, k ∈ N, the set R of representatives in
Rt

h whose underlying graphs are F-minor-free, and a t-boundaried graph G with k vertices whose
underlying graph is F-minor-free, there is an algorithm that outputs the representative of G in R in
time 2OℓF ,h(t log t+log(k+t)).

Proof. Let H be the set of graphs with detail at most h. For a t-boundaried graph G of size k whose
underlying graph is F -minor-free, we define the matrix MG, whose rows are the representatives in R
and whose columns are the graphs of H, such that for R ∈ R and H ∈ H, we have MG(R, H) = 1
if G and R are compatible and H ⪯m G⊕R, and MG(R, H) = 0 otherwise. Observe that R ∈ R
is the representative of G if and only if MR =MG. According to Proposition 4.4.2, MG has size
2Oh(t log t) · Oh(1) = 2Oh(t log t).

For all R ∈ R, we compute MR. Every representative in R has size at most OsF ,h(t) by
Proposition 4.4.1, so when two representatives R and R′ are compatible, R⊕R′ has size OℓF ,h(t)
as well. From [188], we know that checking if a graph H ∈ H is a minor of R⊕R′ can be done in
time OℓF ,h(t

2). Therefore, we can compute MR in time 2Oh,sF (t log t).
Let G be a t-boundaried graph of size k whose underlying graph is F-minor-free. For R ∈ R

compatible with G, G ⊕R has size OℓF ,h(k + t), so checking if H ∈ H is a minor of G ⊕R can
be done in time OℓF ,h((k + t)2). Thus we can compute MG in time 2Oh(t log t) · OℓF ,h((k + t)2) =

2OℓF ,h(t log t+log(k+t)).
Finally, we just need to find R ∈ R such that MR =MG, which can be done in time 2Oh(t log t).

Thus, we can find the representative of G in time 2OℓF ,h(t log t+log(k+t)).

Minors of boundaried graphs. We say that a t-boundaried graph G1 = (G1, B1, ρ1) is a minor
of a t-boundaried graph G2 = (G2, B2, ρ2), denoted by G1 ⪯m G2, if there is a sequence of removals
of non-boundary vertices, edge removals, and edge contractions in G2, not allowing contractions of
edges with both endpoints in B2, that transforms G2 to a boundaried graph that is isomorphic to
G1 (during edge contractions, boundary vertices prevail). Note that this extends the usual definition
of minors in graphs without boundary.

Topological minors of boundaried graphs and folios. Let v be a vertex of degree two in
a graph G. We say that a boundaried graph H is a topological minor of a boundaried graph
G = (G,B, ρ) if H can be obtained from G after a sequence of deletion of edges of G and deletion
and dissolution of vertices of G−B. Given G ∈ B and ℓ ∈ N, we define the ℓ-folio of G, denoted by
ℓ-folio(G), as the set of all boundaried graphs H such that H is a topological minor of G of detail at
most ℓ.

4.5 Drawing on surfaces

In this section, we define Σ-decompositions, that are necessary to prove our structure theorem in
Chapter 5, sphere decompositions, that are required in Chapter 10 to prove our new irrelevant vertex
technique, and renditions, that are used to define flat walls in Subsection 4.6.2. We also provide
related notions and notations.

Drawing a graph in a surface. Let Σ be a surface, possibly with boundary. A drawing (with
crossings) in Σ is a triple Γ = (U, V,E) such that

• V and E are finite,

4.5. Drawing on surfaces 57

• V ⊆ U ⊆ Σ,

• V ∪
⋃

e∈E e = U and V ∩ (
⋃

e∈E e) = ∅,
• for every e ∈ E, e = h((0, 1)), where h : [0, 1]R → U is a homeomorphism onto its image with
h(0), h(1) ∈ V and

• if e, e′ ∈ E are distinct, then |e ∩ e′| is finite.

We call the set V, sometimes denoted by V (Γ), the vertices of Γ and the set E, denoted by E(Γ),
the edges of Γ. We also denote U(Γ) = U. If G is a graph and Γ = (U, V,E) is a drawing with
crossings in a surface Σ such that V and E naturally correspond to V (G) and E(G) respectively, we
say that Γ is a drawing of G in Σ (possibly with crossings). In the case where no two edges in E(Γ)
have a common point, we say that Γ is a drawing of G in Σ without crossings. In this last case, the
connected components of Σ \ U, are the faces of Γ. See Figure 4.2 for an illustration of a drawing Γ.

Figure 4.2: A rendition ρ = (Γ,D) in the plane with one vortex (in red). Γ is the drawing in
the plane composed of the black vertices and edges. D is the set of orange and red disks. More
specifically, the red disk corresponds to a vortex cell and the orange disks are non-vortex cells.

We remind that a closed disk D on S2 is a set of points homeomorphic to the set {(x, y) ∈ R2 |
x2 + y2 ≤ 1} on the Euclidean plane. We use bd(D) to denote the boundary of D.

Σ-decompositions. Let Σ be a surface. When Σ has a boundary, then we denote it by bd(Σ).
Also we refer to Σ \ bd(Σ) as the interior of Σ. A Σ-decomposition of a graph G is a pair δ = (Γ,D),
where Γ is a drawing of G in Σ with crossings, and D is a collection of closed disks, each a subset of
Σ such that

1. the disks in D have pairwise disjoint interiors,

2. the boundary of each disk in D intersects Γ in vertices only,

3. if ∆1,∆2 ∈ D are distinct, then ∆1 ∩∆2 ⊆ V (Γ), and

4. every edge of Γ belongs to the interior of one of the disks in D.

When Σ is the sphere, then we call Σ-decompositions sphere decompositions.

4.5. Drawing on surfaces 58

Σ-embeddings. A Σ-embedding of a graph G, is a Σ-decomposition δ = (Γ,D) where D is a
collection of closed disks such that, for any disk in D, only a single edge of Γ is drawn in its interior.
For simplicity, we make the convention that, when we refer to a Σ-embedding, we just refer to
the drawing of Γ, as the choice of D is obvious in this case. When Σ is the sphere, then we call
Σ-embeddings sphere embeddings.

Nodes, cells, and ground vertices. For a Σ-decomposition δ = (Γ,D), let N be the set of all
vertices of Γ that do not belong to the interior of the disks in D. We refer to the elements of N as
the nodes of δ. If ∆ ∈ D, then we refer to the set ∆−N as a cell of δ. We denote the set of nodes
of δ by N(δ) and the set of cells by C(δ). For a cell c ∈ C(δ), the set of nodes that belong to the
closure of c is denoted by c̃. Given a cell c ∈ C(δ), we define its disk as ∆c = bd(c) ∪ c. We define
πδ : N(δ)→ V (G) to be the mapping that assigns to every node in N(δ) the corresponding vertex
of G. We also define ground vertices in δ as ground(δ) = πδ(N(δ)). For a cell c ∈ C(δ) we define the
graph σδ(c), or σ(c) if δ is clear from the context, to be the subgraph of G consisting of all vertices
and edges drawn in ∆c. Note that, for any cell c ∈ C(δ) such that σδ(c) is not connected, we can
split c into |cc(σδ(c))| cells, and obtain a sphere decomposition δ′ such that each cell c ∈ C(δ′) is
such that σδ(c) is connected. Hence, without loss of generality, when introducing a sphere rendition
δ, we assume σδ(c) to be connected for each c ∈ C(δ).

Vortices. Let G be a graph, Σ be a surface, and δ = (Γ,D) be a Σ-decomposition of G. A cell
c ∈ C(δ) is called a vortex if |c̃| ≥ 4. Moreover, we call δ vortex-free if no cell in C(δ) is a vortex.

Societies. Let Ω be a cyclic permutation of the elements of some set which we denote by V (Ω). A
society is a pair (G,Ω), where G is a graph and Ω is a cyclic permutation with V (Ω) ⊆ V (G).

Crosses. A cross in a society (G,Ω) is a pair (P1, P2) of disjoint paths1 in G such that Pi has
endpoints si, ti ∈ V (Ω) and is otherwise disjoint from V (Ω), and the vertices s1, s2, t1, t2 occur in Ω
in the order listed.

Renditions. Let (G,Ω) be a society and let ∆ be a closed disk in Σ. A rendition in Σ of (G,Ω)
is a Σ-decomposition ρ of G such that πρ(N(ρ) ∩ bd(∆)) = V (Ω), mapping one of the two cyclic
orders (clockwise or counterclockwise) of bd(∆) to the order of Ω. See Figure 4.2 for an illustration.

Rural societies. A society is rural if it has a vortex-free rendition.

Proposition 4.5.1 ([194,265]). A society (G,Ω) in the disk has no cross if and only if it is rural.

Deleting a set. Given a set X ⊆ V (G), we denote by δ−X the sphere decomposition δ′ = (Γ′,D′)
of G−X where Γ′ is obtained by the drawing Γ after removing all points in X and all drawings
of edges with an endpoint in X. For every point x ∈ π−1

δ (X ∩ N(δ)), we pick ∆x to be an open
disk containing x and not containing any point of some remaining vertex or edge and such that no
two such disks intersect. We also set ∆X =

⋃
x∈π−1

δ (X)∆x and we define D′ = {D \∆X | D ∈ D}.
Clearly, there is a one to one correspondence between the cells of δ and the cells of δ′. If a cell c of δ
corresponds to a cell c′ of δ′, then we call c′ the heir of c in δ′ and we call c the precursor of c′ in δ.

1When we say two paths are disjoint we mean that their vertex sets are disjoint.

4.5. Drawing on surfaces 59

Grounded graphs. Let δ be a Σ-decomposition of a graph G in a surface Σ. We say that a cycle
C of G is grounded in δ if C uses edges of σ(c1) and σ(c2) for two distinct cells c1, c2 ∈ C(δ). A
2-connected subgraph H of G is said to be grounded in δ if every cycle in H is grounded in δ.

Tracks. Let δ be a Σ-decomposition of a graph G in a surface Σ. For every cell c ∈ C(δ) with
|c̃| = 2 we select one of the components of bd(c)− c̃. This selection is called a tie-breaker in δ, and
we assume every Σ-decomposition to come equipped with a tie-breaker. Let C be a cycle grounded
in δ. We define the track of C as follows Let P1, . . . , Pk be distinct maximal subpaths of C such
that Pi is a subgraph of σ(c) for some cell c. Fix an index i. The maximality of Pi implies that
its endpoints are πδ(n1) and πδ(n2) for distinct δ-nodes n1, n2 ∈ N(δ). If |c̃| = 2, define Li to be
the component of bd(c) − {n1, n2} selected by the tie-breaker, and if |c̃| = 3, define Li to be the
component of bd(c)− {n1, n2} that is disjoint from c̃. Finally, we define L′

i by slightly pushing Li to
make it disjoint from all cells in C(δ). We define such a curve L′

i for all i while ensuring that the
curves intersect only at a common endpoint. The track of C is defined to be

⋃
i∈[k] L

′
i. So the track

of a cycle is the homeomorphic image of the unit circle.

δ-aligned disks. We say a closed disk ∆ in Σ is δ-aligned if its boundary intersects Γ only in
nodes of δ. We denote by Ω∆ one of the cyclic orderings of the vertices on the boundary of ∆. We
define the inner graph of a δ-aligned closed disk ∆ as

innerδ(∆) :=
⋃

c ∈ C(δ) and c ⊆ ∆

σ(c)

and the outer graph of ∆ as

outerδ(∆) :=
⋃

c ∈ C(δ) and c ∩∆ ⊆ ground(δ)

σ(c).

If ∆ is δ-aligned, we define Γ ∩∆ to be the drawing of innerδ(∆) in ∆ which is the restriction
of Γ in ∆. If moreover |Ω∆| ≥ 4, we denote by δ[∆] the rendition (Γ ∩∆, {∆c ∈ D | c ⊆ ∆}) of
(innerδ(∆),Ω∆) in ∆.

Let δ = (Γ,D) be a Σ-decomposition of a graph G in a surface Σ. Let C be a cycle in G that is
grounded in δ, such that the track T of C bounds a closed disk ∆C in Σ. We define the outer (resp.
inner) graph of C in δ as the graph outerδ(C) := outerδ(∆C) (resp. innerδ(C) := innerδ(∆C)).

Paths. If P is a path and x and y are vertices on P, we denote by xPy the subpath of P with
endpoints x and y. Moreover, if s and t are the endpoints of P, and we order the vertices of P by
traversing P from s to t, then xP denotes the path xPt and Px denotes the path sPx. Let P be a
path from s to t and Q be a path from q to p. If x is a vertex in V (P) ∩ V (Q) such that Px and xQ
intersect only in x, then PxQ is the path obtained from the union of Px and xQ. Let X,Y ⊆ V (G).
A path is an X-Y -path if it has one endpoint in X and the other in Y and is internally disjoint
from X ∪ Y , Whenever we consider X-Y -paths we implicitly assume them to be ordered starting in
X and ending in Y, except if stated otherwise. An X-path is an X-X-path of length at least one. In
a society (G,Ω), we write Ω-path as a shorthand for a V (Ω)-path.

Segments. Let (G,Ω) be a society. A segment of Ω is a set S ⊆ V (Ω) such that there do
not exist s1, s2 ∈ S and t1, t2 ∈ V (Ω) \ S such that s1, t1, s2, t2 occur in Ω in the order listed. A
vertex s ∈ S is an endpoint of the segment S if there is a vertex t ∈ V (Ω) \ S which immediately

4.6. Flat walls 60

precedes or immediately succeeds s in the order Ω. For vertices s, t ∈ V (Ω), if t immediately
precedes s, we define sΩt to be the trivial segment V (Ω), and otherwise we define sΩt to be the
uniquely determined segment with first vertex s and last vertex t.

4.6 Flat walls

In this section, we define formally walls and related notions, that are essential to find an irrelevant
vertex (cf. Subsection 3.1.3), using the framework of [286]. More precisely, in Subsection 4.6.1, we
introduce walls and several notions concerning them. Using the above notions, in Subsection 4.6.2,
we define flat walls and provide some results about them, including two versions of the Flat Wall
theorem. In Subsection 4.6.3, we define canonical partitions, that essentially express how to contract
a wall to obtain a grid and are necessary to find an obligatory set (cf. Subsection 3.1.5). Finally, we
define in Subsection 4.6.4 homogeneous flat walls and in Subsection 4.6.5 tight flat walls, which are
necessary to find an irrelevant vertex.

These definitions and results are used in Chapter 5, Chapter 7, Chapter 8, and Chapter 10.

4.6.1 Walls and subwalls

We start with some basic definitions about walls.

Grids. Let k, r ∈ N. The (k × r)-grid, denoted by Γk,r, is the graph whose vertex set is [k]× [r]
and two vertices (i, j) and (i′, j′) are adjacent if and only if |i− i′|+ |j − j′| = 1. See Figure 1.19 for
an illustration. We call the path where vertices appear as (i, 1), (i, 2), . . . , (i, r) the i-th row and the
path where vertices appear as (1, j), (2, j), . . . , (k, j) the j-th column of the grid.

Central grids. Let k, r ∈ N≥2. We define the perimeter of a (k × r)-grid to be the unique cycle
of the grid of length at least three that does not contain vertices of degree four. We shorten the
notation (r × r)-grid as an r-grid.

Let r ∈ N≥2 and Γr be an r-grid. Given an i ∈ ⌈ r2⌉, we define the i-th layer of Γr recursively as
follows. The first layer of Γr is its perimeter, while, if i ≥ 2, the i-th layer of Γr is the (i − 1)-th
layer of the grid created if we remove from Γr its perimeter. Given two odd integers q, r ∈ N≥3 such
that q ≤ r and an r-grid Γr, we define the central q-grid of Γr to be the q-grid obtained from Γr if
we remove from Γr its r−q

2 first layers.

Elementary walls. An elementary (k, ℓ)-wall Wk,ℓ for k, ℓ ≥ 3, is obtained from the (k × 2ℓ)-grid
Γk,2ℓ by deleting every odd edge in every odd column and every even edge in every even column, and
then deleting all degree-one vertices. The rows of Wk,ℓ are the subgraphs of Wk,ℓ induced by the rows
(or horizontal paths) of Γk,2ℓ, while the jth column (or j-th vertical path) of Wk,ℓ is the subgraph
induced by the vertices of columns 2j − 1 and 2j of Γk,2ℓ. We define the perimeter of Wk,ℓ to be the
subgraph induced by {(i, j) ∈ V (Wk,ℓ) | j ∈ {1, 2, 2ℓ, 2ℓ− 1} and i ∈ [k], or i ∈ {1, k} and j ∈ [2ℓ]}.

Walls. A (k, ℓ)-wall W is a graph isomorphic to a subdivision of Wk,ℓ. The vertices of degree three
in W are called the 3-branch vertices. In other words, W is obtained from a graph W ′ isomorphic
to Wk,ℓ by subdividing each edge of W ′ an arbitrary (possibly zero) number of times. We define
rows and columns of (k, ℓ)-walls analogously to their definition for elementary walls. A (elementary)
k-wall W is a (elementary) (k, k)-wall (see Figure 4.3) and we refer to k as the height of W . Note
that we will prefer to choose k odd for symmetry. A wall is a (k, ℓ)-wall for some k, ℓ. The vertices

4.6. Flat walls 61

in the perimeter of an elementary r-wall that have degree two are called pegs, while the vertices
(1, 1), (2, r), (2r − 1, 1), (2r, r) are called corners (notice that the corners are also pegs).

An h-wall W ′ is a subwall of some k-wall W where h ≤ k if every row (column) of W ′ is contained
in a row (column) of W.

Notice that, as k ≥ 3, an elementary k-wall is a planar graph that has a unique (up to topological
isomorphism) embedding in the plane R2 such that all its finite faces are incident to exactly six
edges. The perimeter of an elementary r-wall is the cycle bounding its infinite face, while the cycles
bounding its finite faces are called bricks. A cycle of a wall W, obtained from the elementary wall W ′,
is the perimeter of W , denoted by D(W), if its 3-branch vertices are the vertices of the perimeter of
W ′. A brick of W is internal if it is disjoint from D(W).

We present the following result of Kawarabayashi and Kobayashi [187], which provides a linear
relation between the treewidth and the height of a largest wall in a minor-free graph.

Proposition 4.6.1 ([187]). There is a function f4.6.1 : N → N such that, for every t, r ∈ N and
every graph G that does not contain Kt as a minor, if tw(G) ≥ f4.6.1(t) · r, then G contains an r-wall
as a subgraph. In particular, one may choose f4.6.1(t) = 2O(t2·log t).

Layers. The layers of an r-wall W are recursively defined as follows. The first layer of W is its
perimeter. For i = 2, . . . , (r − 1)/2, the i-th layer of W is the (i − 1)-th layer of the subwall W ′

obtained from W after removing from W its perimeter and removing recursively all occurring vertices
of degree one. We refer to the (r − 1)/2-th layer as the inner layer of W . The central vertices of an
r-wall are its two 3-branch vertices that do not belong to any of its layers and that are connected
by a path of W that does not intersect any layer. See Figure 4.3 for an illustration of the notions
defined above.

Figure 4.3: A 5-wall. Its first layer is depicted in red and its second layer in orange. Its central
vertices are depicted in a green square.

Central walls. Given an r-wall W and an odd q ∈ N≥3 where q ≤ r, we define the central
q-subwall of W , denoted by W (q), to be the q-wall obtained from W after removing its first (r− q)/2
layers and all occurring vertices of degree one.

Tilts. The interior of a wall W is the graph obtained from W if we remove from it all edges of
D(W) and all vertices of D(W) that have degree two in W . Given two walls W and W̃ of a graph
G, we say that W̃ is a tilt of W if W̃ and W have identical interiors.

Minor models grasped by walls. Let G be a graph and W be an r-wall in G. Let P1, . . . , Pr

be the horizontal paths and Q1, . . . , Qr be the vertical paths of W . Let t ∈ N≥1. A model
{Sv | v ∈ V (Kt)} of Kt in G is grasped by W if, for all v ∈ V (Kt), there exist (i, j) ∈ [r]2 such that
V (Pi) ∩ V (Qj) ⊆ Sv.

4.6. Flat walls 62

4.6.2 Flatness pairs

In this subsection we define the notion of a flat wall. In order for the formal statements of this
section to be mathematically correct, we need to introduce a number of notions originating in [286].
We would like to stress that these notions are needed for the formal statements of the results, but
that most of them are not fundamental for the main conceptual contributions of this thesis. We
refer the reader to [286] for a more detailed exposition of these definitions and the reasons for which
they were introduced.

Flat walls. Let G be a graph and let W be an r-wall of G, for some odd integer r ≥ 3. We say that
a pair (P,C) ⊆ V (D(W))× V (D(W)) is a choice of pegs and corners for W if W is a subdivision of
an elementary r-wall W̄ where P and C are the pegs and the corners of W̄ , respectively (clearly,
C ⊆ P). To get more intuition, notice that a wall W can occur in several ways from the elementary
wall W̄ , depending on the way the vertices in the perimeter of W̄ are subdivided. Each of them
gives a different selection (P,C) of pegs and corners of W .

We say that W is a flat r-wall of G if there is a separation (X,Y) of G and a choice (P,C) of
pegs and corners for W such that:

• V (W) ⊆ Y ,

• P ⊆ X ∩ Y ⊆ V (D(W)), and

• if Ω is the cyclic ordering of the vertices X ∩ Y as they appear in D(W), then there exists a
vortex-free rendition ρ of (G[Y],Ω) in the sphere.

We say that W is a flat wall of G if it is a flat r-wall for some odd integer r ≥ 3.

Figure 4.4: Illustration of a flatness pair (W,R) of a graph G (adapted from [24, Figure 4]). The
edges of W are depicted in orange and the R-compass of W is the union of all parts of G that are
drawn in light orange cells. The yellow vertices are the vertices of V (Ω) and the squared vertices are
the choice of pegs (in purple) and corners (in black) of W .

Flatness pairs. Given the above, we say that the choice of the 5-tuple R = (X,Y, P,C, ρ) certifies
that W is a flat wall of G. We call the pair (W,R) a flatness pair of G and define the height of the
pair (W,R) to be the height of W . See Figure 4.4 for an illustration.

We call the graph G[Y] the R-compass of W in G, denoted by CompassR(W). We can assume
that CompassR(W) is connected, updating R by removing from Y the vertices of all the connected

4.6. Flat walls 63

components of CompassR(W) except for the one that contains W and including them in X (Γ can
also be easily modified according to the removal of the aforementioned vertices from Y). We define
the flaps of the wall W in R as FlapsR(W) := {σ(c) | c ∈ C(ρ)}. Given a flap F ∈ FlapsR(W), we
define its base as ∂F := V (F) ∩ π(N(Γ)).

The Flat Wall theorem is a result of Robertson and Seymour [271] that says that a graph G
either contains a big clique as a minor, or has bounded treewidth, or contains a flat wall. Many
versions of the Flat Wall theorem were proved over time, including the following one.

Proposition 4.6.2 ([194]). There are two functions f4.6.2, g4.6.2 : N→ N, such that the images of
f4.6.2 are odd integers, and an algorithm with the following specifications:

Grasped-or-Flat(G, r, t,W)
Input: A graph G, an odd r ∈ N≥3, t ∈ N≥1, and an f4.6.2(t) · r-wall W of G.
Output: One of the following:

• Either a model of a Kt-minor in G grasped by W , or

• a set A ⊆ V (G) of size at most g4.6.2(t) and a flatness pair (W ′,R′) of G−A of heigth r such
that W ′ is a tilt of some subwall W̃ ′ of W .

Moreover, f4.6.2(t) = O(t26), g4.6.2(t) = O(t24), and the algorithm runs in time O(t24m+ n).

Cell classification. Given a cycle C of CompassR(W), we say that C is R-normal if it is not
a subgraph of a flap F ∈ FlapsR(W). Given an R-normal cycle C of CompassR(W), we call a
cell c of R C-perimetric if σ(c) contains some edge of C. Notice that if c is C-perimetric, then
πρ(c̃) contains two points p, q ∈ N(ρ) such that πρ(p) and πρ(q) are vertices of C where one, say
P in
c , of the two (πρ(p), πρ(q))-subpaths of C is a subgraph of σ(c) and the other, denoted by P out

c ,
(πρ(p), πρ(q))-subpath contains at most one internal vertex of σ(c), which should be the (unique)
vertex z in πρ(c̃) \ {πρ(p), πρ(q)}. We pick a (p, q)-arc Ac in ĉ := c ∪ c̃ such that π−1

ρ (z) ∈ Ac if and
only if P in

c contains the vertex z as an internal vertex.
We consider the circle KC =

⋃⋃⋃⋃⋃⋃⋃⋃⋃
{Ac | c is a C-perimetric cell of R} and we denote by ∆C the

closed disk bounded by KC that is contained in ∆. A cell c of R is called C-internal if c ⊆ ∆C

and is called C-external if ∆C ∩ c = ∅. Notice that the cells of R are partitioned into C-internal,
C-perimetric, and C-external cells.

A cell c of R is untidy if πρ(c̃) contains a vertex x of W such that two of the edges of W that
are incident to x are edges of σ(c). Notice that if c is untidy then |c̃| = 3. A cell c of R is tidy if it
is not untidy.

Let c be a tidy C-perimetric cell of R where |c̃| = 3. Notice that c\Ac has two arcwise-connected
components and one of them is an open disk Dc that is a subset of ∆C . If the closure Dc of Dc

contains only two points of c̃ then we call the cell c C-marginal.

Influence. For every R-normal cycle C of CompassR(W) we define the set influenceR(C) = {σ(c) |
c is a cell of R that is not C-external}.

A wall W ′ of CompassR(W) is R-normal if D(W ′) is R-normal. Notice that every wall of W (and
hence every subwall of W) is an R-normal wall of CompassR(W). We denote by SR(W) the set of all
R-normal walls of CompassR(W). Given a wall W ′ ∈ SR(W) and a cell c of R, we say that c is W ′-
perimetric/internal/external/marginal if c is D(W ′)-perimetric/internal/external/marginal, respec-
tively. We also use KW ′ , ∆W ′ , influenceR(W ′) as shortcuts for KD(W ′), ∆D(W ′), influenceR(D(W ′)),
respectively.

4.6. Flat walls 64

Regular flatness pairs. We call a flatness pair (W,R) of a graph G regular if none of its cells is
W -external, W -marginal, or untidy.

The next result is another version of the Flat Wall theorem. Compared to Proposition 4.6.2, in
Proposition 4.6.3, we lose the fact that the clique-minor is grasped by the wall given in the input,
but we gain the fact that the compass of the flat wall has bounded treewidth.

Proposition 4.6.3 ([286]). There exist a function f4.6.3 : N→ N and an algorithm with the following
specifications:

Clique-Or-twFlat(G, r, t)
Input: A graph G, an odd r ∈ N≥3, and t ∈ N≥1.
Output: One of the following:

• Either a report that Kt is a minor of G, or

• a tree decomposition of G of width at most f4.6.3(t) · r, or

• a set A ⊆ V (G) of size at most g4.6.2(t) and a regular flatness pair (W ′,R′) of G−A of height
r whose R′-compass has treewidth at most f4.6.3(t) · r.

Moreover, f4.6.3(t) = 2O(t2 log t) and this algorithm runs in time 2Ot(r2) · n. The algorithm can be
modified to obtain an explicit dependence on t in the running time, namely 22

O(t2 log t)·r3 log r · n.

Tilts of flatness pairs. Let (W,R) and (W̃ ′, R̃′) be two flatness pairs of a graph G and let
W ′ ∈ SR(W). We assume that R = (X,Y, P,C, ρ) and R̃′ = (X ′, Y ′, P ′, C ′, ρ′). We say that
(W̃ ′, R̃′) is a W ′-tilt of (W,R) if

• R̃′ does not have W̃ ′-external cells,

• W̃ ′ is a tilt of W ′,

• the set of W̃ ′-internal cells of R̃′ is the same as the set of W ′-internal cells of R and their
images via σρ′ and σρ are also the same,

• CompassR̃′(W̃ ′) is a subgraph of
⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR(W

′), and

• if c is a cell in C(Γ′) \ C(Γ), then |c̃| ≤ 2.

The next observation follows from the third item above and the fact that the cells corresponding
to flaps containing a central vertex of W ′ are all internal (recall that the height of a wall is always
at least three).

Observation 4.6.4. Let (W,R) be a flatness pair of a graph G and W ′ ∈ SR(W). For every W ′-tilt
(W̃ ′, R̃′) of (W,R), the central vertices of W ′ belong to the vertex set of CompassR̃′(W̃ ′).

Also, given a regular flatness pair (W,R) of a graph G and a W ′ ∈ SR(W), for every W ′-tilt
(W̃ ′, R̃′) of (W,R), by definition none of its cells is W̃ ′-external, W̃ ′-marginal, or untidy – thus,
(W̃ ′, R̃′) is regular. Therefore, regularity of a flatness pair is a property that its tilts “inherit”.

Observation 4.6.5. If (W,R) is a regular flatness pair, then for every W ′ ∈ SR(W), every W ′-tilt
of (W,R) is also regular.

Furthermore, we need the following propositions, that are the main results of [286].

4.6. Flat walls 65

Proposition 4.6.6 ([286]). There exists an algorithm that, given a graph G, a flatness pair (W,R)
of G, and a wall W ′ ∈ SR(W), outputs a W ′-tilt of (W,R) in time O(n+m).

Proposition 4.6.7 ([286]). There exists an algorithm that, given a graph G and a flatness pair
(W,R) of G, outputs in time O(n+m) a regular flatness pair (W ∗,R∗) of G with the same weight
as (W,R) such that CompassR∗(W ∗) ⊆ CompassR(W).

4.6.3 Canonical partitions

In this subsection, we define the notion of canonical partition of a graph G with respect to some
wall W of G. This refers to a partition of the vertex set of G into bags that follow the structure of
W . Essentially, the goal is to be able to contract each of these bags to obtain a grid that is a minor
of W and thus of G. In particular, we prove in Section 7.5 that if G contains as a minor a grid Γ
along with a set A whose vertices have sufficiently many neighbors in the grid, then some vertex in
A is obligatory. We use canonical partitions here to easily find such a structure given a wall of G.
We also use such a result in Section 8.4.

For this reason, we start by defining the canonical partition of a wall, as a “canonical” way to
partition the vertices of the wall into connected subsets that preserve the grid-like structure of the
wall.

Canonical partition of a wall. Let r ≥ 3 be an odd integer. Let W be an r-wall and let
P1, . . . , Pr (resp. L1, . . . , Lr) be its vertical (resp. horizontal) paths. For every even (resp. odd)
i ∈ [2, r− 1] and every j ∈ [2, r− 1], we define A(i,j) to be the subpath of Pi that starts from a vertex
of Pi ∩Lj and finishes at a neighbor of a vertex in Lj+1 (resp. Lj−1), such that Pi ∩Lj ⊆ A(i,j) and
A(i,j) does not intersect Lj+1 (resp. Lj−1). Similarly, for every i, j ∈ [2, r− 1], we define B(i,j) to be
the subpath of Lj that starts from a vertex of Pi ∩ Lj and finishes at a neighbor of a vertex in Pi−1,
such that Pi ∩ Lj ⊆ B(i,j) and B(i,j) does not intersect Pi−1.

Figure 4.5: A 5-wall and its canonical partition Q. The green bag is the external bag Qext and the orange
bags are the internal bags of Q. Observe that if we contract each internal bag of Q, then we obtain a
(3× 3)-grid.

For every i, j ∈ [2, r − 1], we denote by Q(i,j) the graph A(i,j) ∪ B(i,j) and by Qext the graph
W −

⋃
i,j∈[2,r−1] V (Qi,j). Now consider the collection Q = {Qext} ∪ {Qi,j | i, j ∈ [2, r − 1]} and

observe that the graphs in Q are connected subgraphs of W and their vertex sets form a partition of
V (W). We call Q the canonical partition of W . Also, we call every Qi,j , i, j ∈ [2, r − 1] an internal
bag of Q, while we refer to Qext as the external bag of Q. See Figure 4.5 for an illustration of the
notions defined above. For every i ∈ [(r − 1)/2], we say that a set Q ∈ Q is an i-internal bag of Q if
V (Q) does not contain any vertex of the first i layers of W . Notice that the 1-internal bags of Q are
the internal bags of Q.

4.6. Flat walls 66

Canonical partitions of a graph with respect to a wall. Let W be a wall of a graph G.
Consider the canonical partition Q of W . The enhancement of the canonical partition Q on G is the
following operation. We set Q̃ := Q and, as long as there is a vertex x ∈ G−V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Q̃) that is adjacent

to a vertex of a graph Q ∈ Q̃, we update Q̃ := Q̃ \ {Q} ∪ {Q̃}, where Q̃ = G[{x} ∪ V (Q)]. We call
the Q̃ ∈ Q̃ that contains Qext as a subgraph the external bag of Q̃, and we denote it by Q̃ext, while
we call internal bags of Q̃ all graphs in Q̃ \ {Q̃ext}. Moreover, we enhance Q̃ by adding all vertices
of G−

⋃
Q̃∈Q̃ V (Q̃) to its external bag, i.e., by updating Q̃ext := G[V (Q̃ext) ∪ V (G) \

⋃
Q̃∈Q̃ V (Q̃)].

We call such a partition Q̃ a W -canonical partition of G. Notice that a W -canonical partition
of G is not unique, since the sets in Q can be “expanded” arbitrarily when introducing vertex x.
However, the canonical partition Q of W is unique.

Let W be an r-wall of a graph G, for some odd integer r ≥ 3 and let Q̃ be a W -canonical
partition of G. For every i ∈ [(r − 1)/2], we say that a set Q ∈ Q̃ is an i-internal bag of Q̃ if it
contains an i-internal bag of Q as a subgraph.

The next result is proved in [285] and intuitively states that, given a flatness pair (W,R) of big
enough height and a W -canonical partition Q̃ of G, we can find a packing of subwalls of W that are
inside some central part of W and such that the vertex set of every internal bag of Q̃ intersects the
vertices of the flaps in the influence of at most one of these walls.

Proposition 4.6.8 ([285]). There exist a function f4.6.8 : N3 → N and an algorithm with the
following specifications:

Packing(l, r, p,G,W,R, Q̃)
Input: Integers l, r, p ∈ N≥1, where r ≥ 3 is odd, a graph G, and a flatness pair (W,R) of G of
height at least f4.6.8(l, r, p).
Output: A collection W = {W 1, . . . ,W l} of r-subwalls of W such that, for every W -canonical
partition Q̃ of G,

• for every i ∈ [l],
⋃
influenceR(W

i) is a subgraph of
⋃
{Q | Q is a p-internal bag of Q̃} and

• for every i, j ∈ [l], with i ̸= j, there is no internal bag of Q̃ that contains vertices of both
V (

⋃
influenceR(W

i)) and V (
⋃
influenceR(W

j)).

Moreover, f4.6.8(l, r, p) = O(
√
l · r + p) and the algorithm runs in time O(n+m).

4.6.4 Homogeneous walls

In this subsection, we define homogeneous flat walls. Intuitively, homogeneous flat walls are flat
walls where each brick has the same “color”, where a “color” express what kind of topological minor
can be routed in the (augmented) flaps of the brick. This essentially implies that a topological minor,
and by extension a minor, can be routed similarly through any brick of a homogeneous flat wall.

Augmented flaps. Let G be a graph, A be a subset of V (G) of size a, and (W,R) be a flatness
pair of G−A. For each flap F ∈ FlapsR(W), we consider a labeling ℓF : ∂F → {1, 2, 3} such that the
set of labels assigned by ℓF to ∂F is one of {1}, {1, 2}, {1, 2, 3}. We consider a bijection ρA : A→ [a].
The labelings in L = {ℓF | F ∈ FlapsR(W)} and the labeling ρA will be useful for defining a set of
boundaried graphs that we will call augmented flaps. We first need some more definitions.

Given a flap F ∈ FlapsR(W), we define an ordering Ω(F) = (x1, . . . , xq), with q ≤ 3, of the
vertices of ∂F so that

4.6. Flat walls 67

• (x1, . . . , xq) is a counter-clockwise cyclic ordering of the vertices of ∂F as they appear in the
corresponding cell of C(Γ). Notice that this cyclic ordering is significant only when |∂F | = 3,
in the sense that (x1, x2, x3) remains invariant under shifting, i.e., (x1, x2, x3) is the same as
(x2, x3, x1) but not under inversion, i.e., (x1, x2, x3) is not the same as (x3, x2, x1), and

• for i ∈ [q], ℓF (xi) = i.

Notice that the second condition is necessary for completing the definition of the ordering Ω(F),
and this is the reason why we set up the labelings in L.

For each F ∈ FlapsR(W) with tF := |∂F |, we fix ρF : ∂F → [a+ 1, a+ tF] such that (ρ−1
F (a+

1), . . . , ρ−1
F (a+ tF)) = Ω(F). Also, we define the boundaried graph

FA := (G[A ∪ F], A ∪ ∂F, ρA ∪ ρF)

and we denote by FA the underlying graph of FA. We call FA an A-augmented flap of the flatness
pair (W,R) of G−A in G.

Palettes and homogeneity. For each R-normal cycle C of CompassR(W), we define (A, ℓ)-palette(C) =
{ℓ-folio(FA) | F ∈ influenceR(C)}. We say that the flatness pair (W,R) of G−A is ℓ-homogeneous
with respect to A if every internal brick of W has the same (A, ℓ)-palette (seen as a cycle of
CompassR(W)). Given a ∈ N and a graph G, let exta(G) denote the set of all pairs (G′, A) such that
A ⊆ V (G′) has size at most a and G = G′ −A. We say that a flatness pair (W,R) of a graph G is
(a, ℓ)-homogeneous if, for each (G′, A) ∈ exta(G), (W,R), that is a flatness pair of G = G′ − A, is
ℓ-homogeneous with respect to A.

The following observation is a consequence of the fact that, given a wall W and a subwall W ′ of
W, every internal brick of a tilt W ′′ of W ′ is also an internal brick of W.

Observation 4.6.9 ([285]). Let a, ℓ ∈ N, G be a graph, and (W,R) be a flatness pair of G.
If (W,R) is (a, ℓ)-homogeneous, then for every subwall W ′ of W, every W ′-tilt of (W,R) is also
(a, ℓ)-homogeneous.

4.6.5 Tight renditions

A tight rendition is a vortex-free rendition of some society (G,Ω) with a few more properties, the
main one being that there are |c̃| disjoint paths from each cell c to V (Ω).

Tight renditions. We call tight rendition a vortex-free rendition ρ in the sphere such that the
following conditions are satisfied:

1. if there are two points x, y of N(ρ) such that e = {πρ(x), πρ(y)} ∈ E(G), then there is a cell
c ∈ C(ρ) such that σ(c) is the two-vertex connected graph (e, {e}),

2. for every c ∈ C(ρ), every two vertices in πρ(c̃) belong to some path of σ(c),

3. for every c ∈ C(ρ) and every connected component C of the graph σ(c)−πρ(c̃), ifNσρ(c)(V (C)) ̸=
∅, then Nσ(c)(V (C)) = πρ(c̃),

4. there are no two distinct non-trivial cells c1 and c2 such that πρ(c̃1) = πρ(c̃2), and

5. for every c ∈ C(ρ), there are |c̃| vertex-disjoint paths in G from πρ(c̃) to the set V (Ω).

4.6. Flat walls 68

We say that a flatness pair is tight if the underlying rendition is tight.

Because of the next result, renditions are often implicitly assumed to be tight in papers such
as [24,286].

Proposition 4.6.10 ([286]). There is a linear-time algorithm that, given a vortex-free rendition of a
society (G,Ω), outputs a tight rendition of (G,Ω).

Irrelevant sets. Let G be a graph and let ℓ ∈ N. We say that a vertex set X ⊆ V (G) is ℓ-irrelevant
if every graph H with detail at most ℓ that is a minor of G is also a minor of G−X.

Linkages. A linkage L of order k in a graph G is the union of a collection of k pairwise vertex-
disjoint paths of G. The set of pairs of vertices corresponding to the endpoints of these paths is the
pattern of L. The Unique Linkage Theorem, proven in [279,281] and also [196], asserts that there is
a function ful such that if L is a linkage of pattern P of order k in a graph G with V (G) = V (L)
and L is unique with pattern P, then the treewidth of G is at most ful(k). The linkage function
appears in the general dependency of several results related to the application of the irrelevant vertex
technique (see [4, 24,120,144,146,285,286]).

We state the following result from [24]. In fact, [24, Theorem 5.9] is stated for boundaried graphs.
Proposition 4.6.11 is derived by the same proof if we consider graphs with empty boundary.

Proposition 4.6.11 ([24]). There exist two functions f4.6.11 : N3 → N and g4.6.11 : N2 → N, where
the images of f4.6.11 are odd numbers, such that the following holds.

Let a, ℓ ∈ N, q ∈ N≥3 be an odd integer, and G be a graph. Let A be a subset of V (G) of size at
most a and (W,R) be a regular tight flatness pair of G− A of height at least f4.6.11(a, ℓ, q) that is
g4.6.11(a, ℓ)-homogeneous with respect to A.

Then the vertex set of the compass of every W (q)-tilt of (W,R) is ℓ-irrelevant.
Moreover, it holds that f4.6.11(a, ℓ, q) = O((ful(16a + 12ℓ))3 + q) and g4.6.11(a, ℓ) = a + ℓ + 3,

where ful is the function of the Unique Linkage Theorem.

The following result states that a tight and homogeneous flatness pair can be found inside
any big enough flatness pair. Actually, the result was stated in [284] (and previously in [286]) for
ℓ-homogeneity with respect to every subset of A, but the proofs all work the same way for the more
general case of (a, ℓ)-homogeneity.

Proposition 4.6.12 ([284]). There is a function f4.6.12 : N4 → N, whose images are odd integers,
and an algorithm with the following specifications:

Homogeneous(r, a, ℓ, t, G,W,R)
Input: Integers r ∈ N≥3, a, ℓ, t ∈ N, a graph G, and a flatness pair (W,R) of G of height f4.6.12(r, a, ℓ)
whose R-compass has treewidth at most t.
Output: A flatness pair (W̆ , R̆) of G of height r that is tight, (a, ℓ)-homogeneous, and is a W ′-tilt
of (W,R) for some subwall W ′ of W .
Moreover, f4.6.12(r, a, ℓ) = O(rg4.6.12(a,ℓ)) where g4.6.12(a, ℓ) = 22

O((a+ℓ)·log(a+ℓ)) and the algorithm runs
in time 2O(g4.6.12(a,ℓ)·r log r+t log t) · (n+m).

Part II

A structure theorem

69

CHAPTER 5

Excluding pinched spheres

Contents
5.1 Proof structure . 70
5.2 The upper bound . 72

5.2.1 Excluding a long-jump transaction from a society 73
5.2.2 From societies to a local structure theorem 88
5.2.3 The global structure theorem . 93

5.3 The lower bound . 106
5.3.1 Identifications in a long-jump grid . 106
5.3.2 Lower bound under the presence of clique-sums 107

In this chapter, we prove the results presented in Section 2.1, which are restated here for
convenience.

Theorem 2.1.1. Let H be an edge-apex graph. Then there is a constant cH such that, if a graph G
is H-minor-free, then p⋆(G) ≤ cH , where p is the parameter mapping each graph F to the minimum
k such that F is k-almost embeddable in the projective plane.

Theorem 2.1.2. Let H be an edge-apex graph. There is a constant cH such that, if a graph G is
H-minor-free, then idpr⋆(G) ≤ cH .

Theorem 2.1.3. For any h ∈ N, there is an edge-apex graph H such that idpr⋆(H) ≥ h.

Theorem 2.1.4. For every H1 ∈ Gprojective and every H2 ∈ Gedge-apex, there exist a constant cH1,H2

such that, if a graph G excludes both H1 and H2 as a minor, then idpl⋆(G) ≤ cH1,H2.

More particularly, in Section 5.1, we redefine the structure theorem using the terminology of
“parametric graphs” and give an overview of the proof structure. In Section 5.2, we prove Theorem 2.1.1
and deduce from it Theorem 2.1.2 and Theorem 2.1.4. Finally, we prove Theorem 2.1.3 in Section 5.3.

5.1 Proof structure

An important tool in our proofs is to express the class Gedge-apex using parametric graphs.

70

5.1. Proof structure 71

Parametric graphs. A parametric graph is a sequence H := ⟨Ht⟩t∈N of graphs such that, for every
t ∈ N, Ht is a minor of Ht+1. Given two parametric graphs H 1 = ⟨H 1

t ⟩t∈N and H 2 = ⟨H 2
t ⟩t∈N,

we write H 1 ≲ H 2 if there is a function f : N→ N such that, for every k ∈ N, H 1
k is a minor of

H 2
f(k). In case f is a linear function, we write H 1 ≲L H 2. We say that H 1 and H 2 are equivalent

if H 1 ≲ H 2 and H 2 ≲ H 1. When we can replace ≲ by ≲L then we say that H 1 and H 2 are
linearly equivalent.

Given a parametric graph H := ⟨Ht⟩t∈N, we define the parameter pH : Gall → N so that pH (G)
is the maximum k for which G contains Hk as a minor. Notice that H 1 and H 2 are equivalent if
and only if pH 1 and pH 2 are equivalent. Moreover, notice that pH is a minor-monotone parameter.

Cylindrical grids and their enhancements. For every two non-negative integers t1 and t2, we
define the (t1 × t2)-cylindrical grid as the Cartesian product of a cycle on t1 vertices and a path on
t2 vertices. Notice that the (t1 × t2)-cylindrical grid contains t2 cycles (each with t1 vertices) and t1
paths crossing them (each with t2 vertices).

The annulus grid or order t, denoted by At, is the (4t × t)-cylindrical grid. We define four
parametric graphs: The annulus grid A = ⟨At⟩t∈N, the single-cross grid S = ⟨St⟩t∈N, the long-jump
grid J = ⟨Jt⟩t∈N, and the crosscap grid Ct, where St (resp. Jt, Ct) is obtained if we add two
(resp. t+ 1, 2t) edges in At, as indicated in Figure 5.1. In any case, we refer to the index t as the
order of the corresponding parametric graph.

Figure 5.1: The annulus grid A9, the single-cross grid S9, the long-jump grid J9, and the crosscap
grid C9.

As was already observed in [282, (1.5)], the class Gplanar of planar graphs are exactly the minors
of the graphs in A (actually [282, (1.5)] is stated in terms of grids that, seen as parametric graphs,
are equivalent to the annulus grids). With a simple adaptation of the proof of [282, (1.5)] (see
also [136]), one may prove the following

Proposition 5.1.1. Gsingly-crossing is the set of all minors of the graphs in S and Gedge-apex is the
set of all minors of the graphs in J .

Using the terminology of parametric graphs and Proposition 5.1.1, the answer to Question (1.2)
for the case of Gplanar is size, because pA ∼ size⋆ (from [261]), and the answer to Question (1.2) for
the case of Gsingly-crossing is psize, because pS ∼ psize⋆ (from [268]).

Our objective is to prove that the the answer to Question (1.2) for the case of Gedge-apex is idpr,
because pJ ∼ idpr⋆. Indeed, Theorem 2.1.2 is equivalent to idpr⋆ ⪯ pJ and Theorem 2.1.3 is
equivalent to pJ ⪯ idpr⋆. The proof of the upper bound idpr⋆ ⪯ pJ is given in Section 5.2 and the
proof of the lower bound pJ ⪯ idpr⋆ is given in Section 5.3.

For the proof of the upper bound idpr⋆ ⪯ pJ , we assume that a graph G excludes Jk as a minor
and our main task is to prove that G admits a tree decomposition where each torso is t-almost

5.2. The upper bound 72

embeddable (see Subsection 5.2.3 for the formal definition) in the projective plane, for some t
depending on k.

Our proof is inspired from the local structure theorem in [195], stating that for every “big enough”
wall W in G there is a bounded-size vertex set A such that G−A has a Σ-decomposition of bounded
breadth and bounded depth, where Σ is a surface of bounded genus. We prove a local structural
theorem, assuming the absence of Jk as a minor, that obtains a restriction of this Σ-decomposition
so that Σ becomes the projective plane or the sphere. In Subsection 5.2.1 we give some preliminary
results that permit to refine the structure of the graphs inside the vortices. These results are used in
Subsection 5.2.2 in order to prove that the absence of Jk as a minor makes it possible to further
modify the Σ-decomposition so that it becomes “apex-less”, i.e., A = ∅. This completes the proof of
our local structure theorem. Our next aim is to transform our local structure theorem to a global
one that is a tree decomposition where every torso with a “big enough” size is t-almost embeddable
on the projective plane. It appears that the standard proof technique to go “from local to global”
used in [87, 88, 101, 195, 303] does not work in our cases as it introduces new apices which, in our
case, we need to avoid. For this, we propose a new approach of going from local to global without
introducing apices. Our approach is presented in Subsection 5.2.3 and is tailor-made to the type of
decomposition that we are looking for. It is based on the fact that the surface of our decomposition
is the projective plane or the sphere and that these are the only two surfaces where the removal
of a cycle creates a connected component that is a disk. The next step is to transform our global
decomposition to one that bounds idpr(G). Let X be the set of all vertices in vortices. An important
property of t-almost embeddablility, proved in [302], is that the bidimensionality of X in Gt is
bounded by some function of t. As each vortex Gi

t, i ∈ [t] is drawn in the closure of some face, we
may identify all vertices of Gt that are drawn in the interior of this face to a single vertex and, by
doing these identifications for all the vortices, obtain a projective graph. This completes the outline
of the steps we used in order to prove that idpr⋆ ⪯ pJ .

For the proof of the lower bound pJ ⪯ idpr⋆, we observe first that idpr, and therefore idpr⋆

as well, is minor-monotone (Lemma 5.3.1), and we prove that idpr⋆(Jk) = Ω(kα) for some α > 0
(Lemma 5.3.3). For the latter, in Subsection 5.3.1 using the main result of [82], we first prove that
idpr(Jk) = Ω(k1/4) and then we use some general purpose result from [302] proving that this lower
bound holds also for the clique-sum extension of idpr with a worse, however positive, exponent
(Subsection 5.3.2).

We also stress that the proof of Theorem 2.1.4 follows an easy variant of all the steps above where
the absence of a crosscap as a minor further imposes that the surfaces in the obtained decompositions
are all spheres (see Theorem 5.2.27).

Convention on J and C . Above, we defined the parametric graphs J (the long-jump grid)
and C (the crosscap grid) presented in Figure 5.1. For ease of proof in the rest of the chapter, in
place of J and C , we will consider the parametric graphs given in Figure 5.2, that are obviously
linearly equivalent to the ones presented above (they are more practical but are not as beautiful).

5.2 The upper bound

In this section, we prove Theorem 2.1.2. To prove this structure theorem, we proceed in three
steps. We first prove a result (Theorem 5.2.20) on societies (the relevant definitions are provided
in Section 4.5 and Section 5.2.1) in Subsection 5.2.1 that essentially says the following: a society
(G,Ω) either contains a big long-jump transaction, or has a rendition in the projective plane with
a bounded number of vortices, that are of small depth. We then combine our result on societies

5.2. The upper bound 73

Figure 5.2: The long-jump grid Jk (left) and the crosscap grid Ck (right) for the rest of the chapter
(here k = 9).

with a new version of the flat wall theorem (Theorem 5.2.25) to obtain a local structure theorem
(Theorem 5.2.26) in Subsection 5.2.2 that does not have apex vertices and where the surface of
the Σ-decomposition is the projective plane, i.e., in other words, it says the following: if G has big
treewidth, then either G contains a big long-jump grid as a minor, or G has a Σ-decomposition with
a bounded number of vortices, that are of small depth, where Σ is the projective plane. We then use
in Subsection 5.2.3 our local structure theorem to prove a first global theorem (Theorem 2.1.1, and
more precisely Theorem 5.2.32) that says that if G excludes a long-jump grid as a minor, then G
has a tree decomposition such that the torso at each bag has an almost embedding in the projective
plane with a bounded number of vortices, that are of small depth. Finally, we deduce from this first
global structure theorem the one of Theorem 2.1.2 (more precisely Theorem 5.2.39) by identifying
each vortex to a single vertex. As our local decomposition is “apex-less”, this needs some special
attention due to the fact that the classic “local to global” argument may introduce apices. In fact,
we prove that a global decomposition without apices may be constructed. Interestingly, this is quite
particular to the decomposition that we are looking for. It is essentially based to the fact that one
of the connected components created after the removal of a cycle in the projective plane is always a
disk.

Additionally, we also give similar results in case we exclude both a long-jump grid and a crosscap
grid (Theorem 5.2.27, Theorem 5.2.37, Theorem 5.2.40). The results are similar (and simpler), as
the surface is now the sphere instead of the projective plane.

5.2.1 Excluding a long-jump transaction from a society

The proof of the main result (Theorem 5.2.20) of this part is rather involved, so we provide here a
quick sketch of the proof.

As said above, the goal here is to prove that a society (G,Ω) excluding a long-jump transaction
(hence such that G excludes a long-jump grid has minor) has a rendition in the projective plane
with a bounded number of vortices of small depth (Section 5.2.1, Theorem 5.2.20). We use many
techniques from [195], where Kawarabayashi, Thomas, and Wollan in particular prove that a society
(G,Ω) such that G excludes a big clique as a minor has a rendition in the some bounded genus
surface, with a bounded number of apices, and a bounded number of vortices, all of small depth.
Given that we exclude here a simpler graph, a lot of results in terms of cliques can be simplified by
recognizing the long-jump under many forms (Section 5.2.1, Lemma 5.2.4). In particular, our first
aim is to get rid of apices.

To prove Theorem 5.2.20, we first prove that a society (G,Ω) excluding a long-jump transaction

5.2. The upper bound 74

either has a crosscap transaction Q, or has a rendition in the plane with a bounded number of vortices,
that are of small depth (Section 5.2.1, Theorem 5.2.16). In the second case, we can immediately
conclude. In the first case, we find another society (G′,Ω′) inside (G,Ω) avoiding Q, to which we
again apply Section 5.2.1, Theorem 5.2.16. If we find a second crosscap transaction, then we can
actually prove that (G,Ω) would contain a long-jump, a contradiction. Otherwise, (G′,Ω′) has a
rendition in the plane with a bounded number of vortices of small depth, and thus (G,Ω) has a
rendition in the projective plane with a bounded number of vortices of small depth.

To prove Theorem 5.2.16, we first observe that if (G,Ω) excludes a long-jump of order k as a
minor, then it either has a rendition in the plane with a unique vortex of small depth, or contains a
big crosscap transaction, or contains a big planar transaction Q. In the first two cases, we can already
conclude. In the third case, there is Q′ ⊆ Q such that the (strip) society (GQ′ ,ΩQ′) corresponding to
Q′ (Section 5.2.1, Lemma 5.2.6) has a vortex-free rendition in the plane. In this case, we split (G,Ω)
into two societies (G1,Ω1) and (G2,Ω2) so that they are separated by (GQ′ ,ΩQ′) (Section 5.2.1,
Lemma 5.2.13). For i ∈ [2], if ki is the maximum order of a long-jump in (Gi,Ωi), then (Gi,Ωi)
excludes a long-jump of order ki + 1. Given that (G,Ω) excludes a long-jump of order k, we can
actually prove that ki +1 < k. We can thus recurse on (G1,Ω1) and (G2,Ω2), excluding a long-jump
of order k1 + 1 and k2 + 1, respectively. If one of them contains a big crosscap transaction, then we
can conclude. Otherwise, both have a rendition in the plane with a bounded number of vortices of
small depth, where the number of vortices and the depth depends of ki + 1. We can then combine
both renditions along with the one of (GQ′ ,ΩQ′) to get a rendition in the plane with a bounded
number of vortices of small depth (depending on k).

Transactions in societies

Let us define transactions and cylindrical renditions and give additional results.

Linkages. Let G be a graph. A linkage in G is a set of pairwise vertex-disjoint paths. In slight
abuse of notation, if L is a linkage, we use V (L) and E(L) to denote

⋃
L∈L V (L) and

⋃
L∈LE(L)

respectively. Given two sets A and B, we say that a linkage L is an A-B-linkage if every path in L
has one endpoint in A and one endpoint in B. We call |L| the size of L.

Transactions. Let (G,Ω) be a society. A transaction in (G,Ω) is an A-B-linkage for disjoint
segments A,B of Ω. We define the depth of (G,Ω) as the maximum order of a transaction in (G,Ω).

Let T be a transaction in a society (G,Ω). We say that T is planar if no two members of T
form a cross in (G,Ω). An element P ∈ T is peripheral if there exists a segment X of Ω containing
both endpoints of P and no endpoint of another path in T . A transaction is crooked if it has no
peripheral element.

Let T = {P1, ..., Pt} be a transaction between segments A and B. For i ∈ [t], let ai (resp. bi)
be the endpoint of Pi in A (resp. B). Up to a permutation, we may assume that a1, ..., at occur in
this order in Ω. We say that T is a t-crosscap transaction if b1, ..., bt occur in this order in Ω. We
say that T is a crosscap transaction if it is a t-crosscap transaction for any t ∈ N. A transaction is
called monotone if it is either a planar or a crosscap transaction. Suppose t ≥ 1. We say that T is
a (t− 1)-long-jump transaction if b1, bt, bt−1, . . . , b3, b2 occur in this order in Ω. In other words, P1

crosses the t− 1 paths of the planar transaction {P2, ..., Pt}.

Proposition 5.2.1 ([107]). Let r, s ∈ N. Let (G,Ω) be a society. Let Q be a transaction in (G,Ω) of
size (r − 1)(s− 1) + 1. Then Q contains either a planar transaction Q′ ⊆ Q of size r, or a crosscap
transaction Q′ ⊆ Q of size s.

5.2. The upper bound 75

Vortex societies. Let Σ be a surface and G be a graph. Let δ = (Γ,D) be a Σ-decomposition
of G. Every vortex c defines a society (σ(c),Ω), called the vortex society of c, by saying that Ω
consists of the vertices in πδ(c̃) in the order given by Γ (there are two possible choices of Ω, namely Ω
and its reversal. Either choice gives a valid vortex society). The breadth of δ is the number of
cells c ∈ C(δ) which are a vortex and the depth of ∆ is the maximum depth of the vortex societies
(σ(c),Ω) over all vortex cells c ∈ C(∆).

Cylindrical renditions. Let (G,Ω) be a society, ρ = (Γ,D) be a rendition of (G,Ω) in a disk,
and let c0 ∈ C(ρ) be such that no cell in C(ρ) \ {c0} is a vortex. We say that the triple (Γ,D, c0) is
a cylindrical rendition of (G,Ω) around c0.

Proposition 5.2.2 (Lemma 3.6, [195]). Let (G,Ω) be a society and p ≥ 4 be a positive integer.
Then (G,Ω) has a crooked transaction of size p, or a cylindrical rendition of depth at most 6p.

Nests and railed nests. Let δ = (Γ,D) be a Σ-decomposition of a graph G in a surface Σ
and let ∆ ⊆ Σ be an arcwise connected set. A nest in δ around ∆ of order s is a sequence
C = ⟨C1, C2, . . . , Cs⟩ of disjoint cycles in G such that each of them is grounded in δ and the track
of Ci bounds a closed disk ∆Ci in such a way that ∆ ⊆ ∆C1 ⊊ ∆C2 ⊊ · · · ⊊ ∆Cs ⊆ Σ. We call C1

(resp. Cs) the internal (resp. external) cycle of C. We call the sequence ⟨∆C1 ,∆C2 , . . . ,∆Cs⟩ the
disk sequence of the nest in δ around ∆. If δ = (Γ,D, c0) is a cylindrical rendition, then we say that
C is a nest in ρ around c0.

Moreover, let A = V (C1) ∩ πδ(N(δ)), B = V (Cs) ∩ πδ(N(δ)), and assume that {P1, . . . , Pr} is
an A-B-linkage such that for every (i, j) ∈ [s]× [r] the graph Ci ∩ Pj is a (possibly edgeless) path.
We call the pair (C,P) a railed nest in δ around ∆ of order (s, r). Notice that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
P is disjoint from

innerδ(C1)− V (C1) and outerδ(Cs)− V (Cs).

Orthogonal and unexposed transactions. Let ρ = (Γ,D, c0) be a cylindrical rendition in a
society (G,Ω). Let C be a nest in ρ around c0 and Q be a transaction in (G,Ω). We say that Q is
orthogonal to C if, for each C ∈ C and each Q ∈ Q, the graph C ∩Q has at most two components.
We say that Q is unexposed in ρ if each Q ∈ Q has at least one edge in σ(c0). Note that any crooked
transaction is necessarily unexposed. If Q is orthogonal and unexposed, then every element of Q
contains exactly two disjoint minimal subpaths which each have one endpoint in V (Ω) and the other
in V (σ(c0)). Let P be the union of all such minimal subpaths over the elements of Q. P is called
the rail truncation of Q. Note that (C,P) is a railed nest.

Coterminal transactions. Let ρ = (Γ,D, c0) be a cylindrical rendition in a society (G,Ω).
Let (C = (C1, . . . , Cs),P) be a railed nest in ρ around c0 and Q be a transaction in (G,Ω).
We say that Q is coterminal with P up to level Ci if there exists a subset P ′ ⊆ P such that
outerρ(Ci) ∩Q = outerρ(Ci) ∩ P. When it is clear from the context which nest we are referring to,
we say that Q is coterminal with P up to level i.

Proposition 5.2.3 (Lemma 4.5, [195]). Let r, s be positive integers with s ≥ 2r+ 7. Let (G,Ω) be a
society and ρ = (Γ,D, c0) be a cylindrical rendition of (G,Ω). Let ((C1, C2, . . . , Cs),P) be a railed
nest of order (s, 4r + 6) in ρ around c0. If there exists a crooked transaction of size at least r in
(G,Ω), then there exists a crooked transaction of size at least r in (G,Ω) that is coterminal with P
up to level C2r+7.

5.2. The upper bound 76

Recognizing a long-jump

In this part, we define a few more parametric graphs (resp. types of transactions), and prove that
they all contain a long-jump grid as a minor (resp. a long-jump transaction).

We consider here five new parametric graphs defined by adding edges in the double-parameterized
annulus grid Γ = ⟨Γk,r⟩, where Γk,r is the (k × r)-cylindrical grid, as indicated in Figure 5.3. These

k1
r

k2

2k 2k
r r

k1

k2

r
k1

r

k2

r

k

Figure 5.3: From up to down and left to right: the alternative jump Ĵ r
k , the nested-crosses grid

N C r
k, the twisted-crosses grid T C r

k, the double-jump grid Pr
k1,k2

, the alternative double-jump grid
Qr

k1,k2
, and the klein grid K r

k1,k2
.

are the the alternative jump grid Ĵ r
k ,the nested-crosses grid N C r

k, the twisted-crosses grid T C r
k,

the double-jump grid Pr
k1,k2

, the alternative double-jump grid Qr
k1,k2

, and the klein grid K r
k1,k2

.
We also define the transactions corresponding to the grids N C r

k, T C r
k, Pr

k1,k2
, Qr

k1,k2
, and

K r
k1,k2

, respectively. Let (G,Ω) be a society and k, k1, k2 ∈ N. Let A and B be two segments in
(G,Ω) and P = {P1, . . . , Pt} be a transaction in (G,Ω) between A and B such that the endpoints of
Pi are ai and bi with a1, . . . , at occurring in A in this order.

• P is a k-nested crosses transaction if t = 2k and for all 1 ≤ i < j ≤ 2k, Pi and Pj cross if and
only if i is odd and j = i+ 1.

• P is a twisted k-nested crosses transaction if t = 2k and for all 1 ≤ i < j ≤ 2k, Pi and Pj do not
cross if and only if i is odd and j = i+1. In other words, b2, b1, b4, b3, . . . , b2k−2, b2k−3, b2k, b2k−1

occur in Ω in this order.

5.2. The upper bound 77

• P is a (k1, k2)-double-jump transaction if t = k1 + k2 + 2 and P can be partitioned into two
planar transactions Q1 and Q2 of size k1 and k2 respectively and two isolated paths Q1 and
Q2 such that Q′

i := Qi ∪Qi is a ki-long-jump transaction for i ∈ [2], Q′
1 and Q′

2 do not cross,
and there is an endpoint q1 of Q1 and an endpoint q2 of Q2 such that P \ {Q1, Q2} is a either
a q1Ωq2-linkage or a q2Ωq1-linkage. In other words, no path of P \ {Q1, Q2} has an endpoint
in one of q1Ωq2 and q2Ωq1.

• P is an alternative (k1, k2)-double-jump transaction if t = k1+k2+3 and P can be partitioned
into two planar transactions Q1 and Q2 of size k1 and k2 respectively and three isolated paths
Q, Q1, and Q2 such that Q′

i := Qi ∪ Qi is a ki-long-jump transaction for i ∈ [2], for any
endpoint q1 of Q1 and endpoint q2 of Q2, P \ {Q1, Q2} is a neither a q1Ωq2-linkage nor a
q2Ωq1-linkage, and if a and b are the endpoints of Q, then one of Q1 and Q2 is a aΩb-linkage,
and the other is a bΩa-linkage.

• Finally, P is an (k1, k2)-klein transaction if t = k1 + k2 and P can be partitioned into two
crosscap transactions Q1 and Q2 of size k1 and k2 respectively that do not cross.

Lemma 5.2.4. Let k, k1, k2, r ∈ N such that k1 + k2 ≥ k. Then J r
k is a minor of Ĵ 2r+k−2

2r ,
N C r+1

k , T C r+1
k+2r, Pr+1

k1,k2
, Qr+1

k1,k2
, and K r+k

k,k+1.

Proof. For this proof, an illustration is more convenient than a long description. See Figure 5.4. In
each grid, we need to find a path (in orange in Figure 5.4), jumping over a parallel linkage (in blue).
The annulus grid is represented in green.

Lemma 5.2.5. Let k, k1, k2, r ∈ N such that k1 + k2 ≥ k. Let (G,Ω) be a society and ρ = (Γ,D, c0)
be a cylindrical rendition of (G,Ω) with a railed nest (C,P) in ρ around c0, where C = (C1, . . . , Cs)
is of order s ≥ a and a = 2 for items (i)-(iv) and a = k + 1 for item (v). Let Q be a transaction in
(G,Ω) orthogonal to P that is either:

(i) a k-nested crosses transaction, or

(ii) a twisted 3k-nested transaction, or

(iii) a (k1, k2)-double-jump transaction, or

(iv) an alternative (k1, k2)-double-jump transaction, or

(v) a (k, k + 1)-klein transaction.

Then there is a k-long-jump transaction that is coterminal with P up to level a.

Proof. Let H be the graph obtained from the union of C, P , Q, and a cycle C with vertex set V (Ω)
and an edge uv between any two consecutive vertices u, v in the cyclic ordering of Ω (note that these
edges may not be edges in G). If Q is one of items (i) to (v), then H is one of N C s+1

k , T C s+1
k ,

Ps+1
k1,k2

, Qs+1
k1,k2

, and K s+1
k1,k2

. Then, by Lemma 5.2.4, J s−a+2
k is a minor of H. Let X be the set of

vertices in the cycles C and Ca, . . . , Cs. More particularly, if we look at Figure 5.4, J s−a+2
k is an

X-minor of H. Hence, we deduce that there is Q′ ⊆ Q that is a k-long-jump transaction that is
coterminal with P up to level Ca.

5.2. The upper bound 78

Figure 5.4: Proof of Lemma 5.2.4.

Finding an isolated and rural strip in a vortex

In this part, we prove that a society (G,Ω) containing a planar transaction Q either contains a
long-jump transaction, or is such that the society (called strip society) bordered by some strip
Q′ ⊆ Q has a vortex-free rendition.

We first define H-bridges and strip societies (from [195]).

Bridges. Let H be a subgraph of a graph G. An H-bridge in G is a connected subgraph B of G
such that none of its edges is an edge of H and either E(B) consists of a unique edge with both
endpoints in H, or for some connected component C in G− V (H), E(B) consists of all edges of G
with at least one endpoint in V (C). The vertices in V (B) ∩ V (H) are called the attachments of B.

5.2. The upper bound 79

Strip societies. Let P = (P1, ..., Pm) be a monotone transaction of size m ≥ 2 in a society (G,Ω).
Let X1 and X2 be disjoint segments of Ω such that P is a linkage from X1 to X2. For each i ∈ [m],
the endpoints of Pi are denoted by ai and bi in such a way that ai ∈ X1, bi ∈ X2, and the endpoints
occur in Ω in the order a1, a2, . . . , am, bm, bm−1, . . . , b1 if P is a planar transaction, and in the order
a1, a2, . . . , am, b1, b2, . . . , bm if P is a crosscap transaction.

Let H denote the subgraph of G obtained from the union of the elements of P by adding the
elements of V (Ω) as isolated vertices. Let H ′ be the subgraph of H consisting of P, a1Ωam, and
b1Ωbm. Let us consider all H-bridges of G with at least one attachment in V (H ′) \ V (P1 ∪ Pn), and
for each such H-bridge B, let B′ denote the graph obtained from B by deleting all attachments that
do not belong to V (H ′). Finally, let G1 denote the union of H ′ and all the graphs B′ as above.

If P is a planar transaction, let the cyclic permutation Ω1 be defined by saying that V (Ω1) =
a1Ωam ∪ bmΩb1 and that the order on Ω1 is the one induced by Ω. If P is a crosscap transaction, let
the cyclic permutation Ω1 be defined by saying that V (Ω1) = a1Ωam ∪ b1Ωbm and that the order on
Ω1 is obtained by following a1Ωam in the order given by Ω, and then following b1Ωbm in the reverse
order from the one given by Ω.

Thus (G1,Ω1) is a society, and we call it the P-strip society of (G,Ω) with respect to (X1, X2).
When there can be no confusion as to the choice of the segments (X1, X2), we will omit specifying
them.

We say that P1 and Pm are the boundary paths of the P-strip society (G1,Ω1). We say that the
P-strip society of (G,Ω) is isolated in G if no edge of G has one endpoint in V (G1) \ V (P1 ∪ Pm)
and the other endpoint in V (G) \ V (G1). Thus (G1,Ω1) is isolated if and only if every H-bridge of
G with at least one attachment in V (H ′) \ V (P1 ∪ Pm) has all its attachments in V (H ′).

The following lemma, that is very much inspired from [195, Theorem 5.11], says that if a society
has a big monotone transaction Q, then either it contains a long-jump transaction, or the Q′-strip
society defined by some Q′ ⊆ Q is isolated and rural.

Lemma 5.2.6. Let l, k, s ∈ N with s ≥ 9. Let (G,Ω) be a society. Let ρ = (Γ,D, c0) be a cylindrical
rendition of (G,Ω). Let Q be an unexposed planar (resp. crosscap) transaction in (G,Ω) of order
l′ ≥ k(l + 3k) (resp. l′ ≥ 3k(l + 3k)). Let (C = (C1, . . . , Cs),P) be a railed nest of order (s, 2l′) in ρ
around c0 where P is the rail truncation of Q. Let X1, X2 be disjoint segments of Ω such that Q is a
linkage from X1 to X2. Then one of the following holds.

(i) there is a k-long-jump transaction in (G,Ω) that is coterminal with P up to level C9, or

(ii) there is a transaction Q′ ⊆ Q of size at least l such that the Q′-strip society of (G,Ω) with
respect to (X1, X2) is isolated and rural.

Proof. Assume the claim is false. Let k′ = k if Q is a planar transaction, and k′ = 3k if Q is a
crosscap transaction. Let X1 ⊆ X1 and X2 ⊆ X2 be the two disjoint minimal segments of Ω such
that every path in Q has one endpoint in X1 and the other point in X2. Let Q = {Q1, Q2, . . . , Ql′},
where the paths are numbered in such a way that their endpoints appear in X1 (and therefore also
in X2) in order.

Let I ′1, ..., I ′k′ be intervals of length l + 3k with union [l′]. For i ∈ [k′], let Ii be obtained from I ′i
by deleting the last k elements. Thus |Ii| = l + 2k.

For i ∈ [k′], let Qi be the set {Qj | j ∈ Ii}. For i ∈ [k′], and j ∈ [2], let Xj
i be the minimum

subset of Xj forming a segment of Ω containing an endpoint of every element of Qi. Let (Hi,Ωi) be
the Qi-strip society of (G,Ω) with respect to (X1

i , X
2
i).

Let i ∈ [k′]. We define a society (H ′
i,Ωi) which is closely related to the strip society (Hi,Ωi) as

follows. Let J be the graph consisting of the union of V (Ω) treated as isolated vertices and Q. For

5.2. The upper bound 80

every J-bridge B in G, let B′ be the subgraph obtained by deleting all attachments of B not in
V (Qi)∪X1

i ∪X2
i . Let α+1 be the smallest value in Ii. Let H ′

i be the union of J [V (Qi)∪X1
i ∪X2

i] and
B′ for every J-bridge B in G with at least one attachment in (V (Qi)∪X1

i ∪X2
i) \V (Qα+1 ∪Qα+|Ii|)

(that is, an attachment not in the first or last element of Qi). Note that the difference between Hi and
H ′

i is that, to define Hi, we consider Qi ∪ V (Ω)-bridges, while for H ′
i, we consider Q ∪ V (Ω)-bridges.

Claim 5.2.7. The subgraphs H ′
i are pairwise vertex disjoint.

Proof of claim. Assume the claim is false and let us show that there is a long-jump transaction of
order k in (G,Ω). Let i < i′ be indices such that H ′

i intersects H ′
i′ . Thus, there exists a path R in

G with one endpoint xi in X1
i ∪X2

i ∪ V (Qi), the other endpoint xi′ in X1
i′ ∪X2

i′ ∪ V (Qi′) and no
internal vertex in V (Ω) ∪ V (Q).

Let F be the subgraph formed by the union of C1 and the inner graph of C1. We fix the path R
to minimize the number of edges not contained in E(F). Let R̄ = R ∩ F .

Consider a maximal subpath T of R with all internal vertices contained in V (R) \ V (R̄). There
are two possible cases given the cylindrical rendition and the fact that R is internally disjoint from
Q: either T has one endpoint in {xi, xi′} and one endpoint in C1 or, alternatively, T has both
endpoints in a component of C1 − V (Q). By replacing any such subpath T with an appropriately
chosen subpath of C1, it follows that there exists a path R′ contained in C1 ∪ R̄ with endpoints x′i
and x′i′ such that

• R′ is internally disjoint from Q and,

• x′i is contained in V (Qi) and x′i′ is contained in V (Q′
i′).

Note that if xi is in an element of Q, we can choose x′i to be in the same element of Q as xi. If
xi ∈ V (Ω), we can choose x′i to be in either of the two elements of Q closest to xi on Ω.

We conclude, by the choice of R′, that R′ is a subgraph of F . Thus, both endpoints x′i and x′i′
are contained in V (Q)∩V (F). This path R′ along with the k paths (Qα+|Ii|+1, ..., Qα+|Ii|+k) as well
as Qi, and Qi′ , create a k-long-jump transaction in (G,Ω) that is coterminal with P up to level C2,
and hence C9, which is outcome (i). See Figure 5.6 for an illustration of the proof of Claim 5.2.23,
which is similar. ⋄

Claim 5.2.8. There exists an index i ∈ [k′], such that (H ′
i,Ω

′
i) is rural.

Proof of claim. The proof is exactly the same as the one of [195, Theorem 5.11, Claim 3] with the
specificity that for us, Z = ∅, and thus α = 0 and a = 5. The idea is that if none of the (H ′

i,Ω
′
i) is

rural, then each contain a cross. Thus, we will find a transaction Q′ from X1 to X2 that is coterminal
with Q up to level C8, such that Q′ is either a k′-nested crosses transaction (if Q is planar) or a
twisted k′-nested crosses transaction (if Q is a crosscap transaction). Then, by Lemma 5.2.5, there
is a k-long-jump transaction that is coterminal with P up to level C9, which is outcome (ii) of the
statement. ⋄

We fix, for the remainder of the proof, an index i such that (H ′
i,Ω

′
i) is rural, and fix a vortex-free

rendition ρ′ of (H ′
i,Ω

′
i) in the disk ∆. Let I⋆ be the interval obtained from Ii by deleting the first

and last k elements. Note that |I⋆| = l. Let the first element in I⋆ be β + 1. Let Q⋆ be the set
{Qj | j ∈ I⋆}, and X1∗ and X2∗ be the minimal segments contained in X1

i and X2
i , respectively,

containing an endpoint of each element of Q⋆. Let T1 and Tl be the track of Qβ+1 and Qβ+l in the
rendition ρ′.

5.2. The upper bound 81

Of the three connected components of ∆ \ (T1 ∪ Tl), let ∆⋆ be the (unique) component whose
boundary contains T1 and Tl. Let H⋆ =

⋃
c∈C(ρ′):c⊆∆⋆ σ(c) ∪Qβ+1 ∪Qβ+l. Let Ω⋆ be the cyclically

ordered set with V (Ω⋆) = X1∗ ∪X2∗ obtained by restricting Ω′
i to V (Ω⋆).

The rendition ρ′ restricted to the disk ∆⋆ can be extended to a vortex-free rendition of (H⋆,Ω⋆)
by mapping the vertices of Qβ+1 and Qβ+l to the boundary, and thus the following claim immediately
follows.

Claim 5.2.9. (H⋆,Ω⋆) is rural.

We now see that no edge to V (H⋆) avoids the paths Qβ+1 and Qβ+l. Recall that the definition
of the subgraph J of G is the subgraph consisting of the union of V (Ω) treated as isolated vertices
and Q.

Claim 5.2.10. There does not exist an edge xy of G with x in V (H⋆) \ (V (Qβ+1) ∪ V (Ql)) and y
in V (G) \ V (H⋆).

Proof of claim. Assume that such an edge xy exists. Given the rendition ρ′, it follows that the
edge xy /∈ E(H ′

i), and thus the vertex y is the attachment of a J-bridge B in G such that
y ∈ (V (Ω)\V (H ′

i))∪
⋃

j /∈Ii V (Qj) and B has an attachment x′ in V (Ω⋆)∪V (Q⋆). Fix a path P in B
from x′ to y which is internally disjoint from V (Ω)∪V (Q). Then, using P , Q⋆, and {Qj | j ∈ Ii \I⋆},
we conclude that there is a k-long-jump transaction in (G,Ω) that is coterminal with P up to level
C2, a contradiction. ⋄

Finally, we have the following.

Claim 5.2.11. The Q⋆-strip society of (G,Ω) is a subgraph of H⋆.

Proof of claim. The proof is exactly the same as the one of [195, Theorem 5.11, Claim 6] with Z = ∅.
Essentially, if that happened, then it would contradict Claim 5.2.10. ⋄

The theorem now follows as the vortex-free rendition of (H⋆,Ω⋆) restricted to the Q⋆-strip society
shows that the strip society is rural, and Claim 5.2.10 shows that the Q⋆-strip society is isolated.

Splitting a vortex

In this part, we prove that, if a society (G,Ω) contains a unique vortex c0 and a strip society that is
rural and isolated, then c0 can be split into two vortices c1 and c2 of smaller size that are separated
by the strip society.

We require the following technical result.

Proposition 5.2.12 (Lemma 5.15, [195]). Let (G,Ω) be a society with a cylindrical rendition
ρ = (Γ,D, c0). Let C = (C1, ..., Cs) be a nest in ρ and let Q be an unexposed monotone transaction
in (G,Ω) of order at least 3 orthogonal to C. Let (H,ΩH) be the Q-strip society in (G,Ω) and let Y1
and Y2 be the two segments of Ω \ V (H). Assume that there exists a linkage P = {P1, P2} such that
Pi links Yi and V (σ(c0)) for i ∈ {1, 2}, P is disjoint from Q, and P is orthogonal to C.

Let i ≥ 7. Let (G′,Ω′) be the inner society of Ci and let Q′ be the restriction of Q to (G′,Ω′). Let
ρ′ = (Γ′,D′, c0) be the restriction of ρ to be a cylindrical rendition of (G′,Ω′). Then Q′ is unexposed
and monotone in ρ′. Moreover, Q′ is a crosscap transaction if and only if Q is a crosscap transaction.
If the Q-strip society is rural and isolated in (G,Ω), then the Q′-strip society is rural and isolated in
(G′,Ω′).

5.2. The upper bound 82

The main result of this section is that, given a cylindrical rendition ρ of a society (G,Ω) and a
planar transaction Q such that the Q-strip society in (G,Ω) is rural and isolated, there is another
rendition ρ′ of (G,Ω) of breadth two containing two smaller cylindrical renditions, and otherwise
vortex-free.

Lemma 5.2.13. Let k, l,m, s, s′ ∈ N such that l ≥ 1, m ≥ max{2s′ + 5, k + 2}, and s ≥ s′ + 8. Let
(G,Ω) be a society and ρ = (Γ,D, c0) be a cylindrical rendition of (G,Ω) in a disk ∆. Let X1, X2

be two disjoint segments of Ω and let Y1, Y2 be the two segments of Ω \ (X1 ∪ X2). Let Q be an
unexposed planar transaction from X1 to X2 of size m such that the Q-strip society in (G,Ω) is
isolated and rural. Let (C = (C1, C2, . . . , Cs),P ∪ P1 ∪ P2) be a railed nest in ρ of order (s, 2m+ 2l)
around c0 such that P is the rail truncation of Q and, for i ∈ [2], Pi is a linkage in ρ from Yi to
V (σ(c0)) of size l.

Then either there is a k-long-jump transaction in (G,Ω) that is coterminal with P ∪ P1 ∪ P2 up
to level C8, or there is a rendition ρ′ of (G,Ω) in ∆ with exactly two vortices c1 and c2, and two
disjoint ρ′-aligned disks ∆′

1,∆
′
2 ⊆ ∆ such that

• for i ∈ [2], ρi = ρ′[∆′
i] is a cylindrical rendition of (innerρ′(∆′

i),Ω∆′
i
) with vortex ci,

• there is a railed nest (Ci = (Ci
1, . . . , C

i
s′),P ′

i) of order (s′, l) around ci in ρi, where, for each
P ∈ P ′

i, P is a subpath of an element of Pi and, for each j ∈ [s′], P ∩ Ci
j = P ∩ Cj+7,

• (C8, . . . , Cs) is a nest around both the closure of c1 and the closure of c2, and

• there is a path Q ∈ Q such that ∆′
1 and ∆′

2 are contained in different connected components of
∆ \ T , where T is the track of Q in ρ′.

Figure 5.5: The rails, the nest, and the planar transaction of the original cylindrical rendition are
represented in black and the rails and nests of the two new cylindrical renditions are represented in
blue.

Proof. See Figure 5.5 for an illustration. Let us assume that G does not contain a long-jump
transaction of order k in (G,Ω) that is coterminal with P1 ∪P2 ∪P up to level C8. Let the elements
of Q be enumerated Q1, Q2, . . . , Qm by the order in which their endpoints occur on X1.

5.2. The upper bound 83

Restricting the strip society. We have s ≥ 7. Let (H,ΩH) be the inner society of C7 in
(G,Ω) with respect to the rendition ρ. Let ∆H be the closed subdisk bounded by the track of C7.
Let QH be the restriction of Q to (H,ΩH). Let (J,ΩJ) be the QH -strip society in (H,ΩH).

Given that l ≥ 1, there are P1 ∈ P1 and P2 ∈ P2. By Proposition 5.2.12 applied to the society
(G,Ω), linkages Q and {P1, P2}, and cycle C7, the society (J,ΩJ) is rural and isolated in (H,ΩH).
There exists a vortex-free rendition ρJ of (J,ΩJ) in ∆H such that π−1

ρ (v) = π−1
ρJ

(v) for all v ∈ V (ΩJ).
Note that we are using the fact that Q is planar to ensure that the cyclic ordering ΩJ is the same as
the cyclic ordering of V (ΩJ) in ΩH .

Let T1 (resp. T2) be the track of Q1 (resp. Qm) restricted to (H,ΩH) in ρJ . There is a unique
connected component of ∆H \(T1∪T2) whose boundary includes both T1 and T2; let ∆∗ be the closure
of this connected component. Let J ′ be the subgraph formed by

⋃
{σρJ (c) : c ∈ C(ρJ), c ⊆ ∆∗}

along with any vertices v of J such that π−1
ρJ

(v) exists and belongs to ∆∗. Let ΩJ ′ be the cyclically
ordered set of vertices with V (ΩJ ′) = V (ΩJ) ∩ V (J ′) with the cyclic order induced by ΩJ . Let ρJ ′

be the restriction of ρJ to the disk ∆∗.
Defining a new vortex-free rendition ρ⋆ avoiding the two future vortices. We define

the society (G′,Ω) as follows. Let G′ be the union of J ′ and the outer graph of C7 with respect to ρ.
Thus, the union of ρJ ′ along with the restriction of ρ to the complement of the interior of ∆H gives
us a vortex-free rendition ρ⋆ of (G′,Ω) in the disk ∆.

Defining ∆1 and ∆2. Consider ∆H \∆∗. There is one connected component which contains T1
in its boundary and one which contains T2 in its boundary. For i ∈ [2], let Ui be the set of vertices
u ∈ V (G′) such that π−1

ρ∗ (u) exists and is contained in the boundary of the connected component of
∆H \∆∗ with Ti in the boundary. Thus by construction, (U1, U2) is a partition of the set of vertices
(V (ΩH) \ V (ΩJ ′)) ∪ πρJ′ ((T1 ∪ T2) ∩N(ρJ ′)). Finally, for i ∈ [2], fix the closed disk ∆i in ∆H \∆∗

such that ∆i ∩ (bd(∆H) ∪ Ti) = π−1
ρ⋆ (Ui).

Defining the subgraphs contained in ∆1 and ∆2. Let L be the minimal subgraph of G
such that G = G′ ∪ L. Note that L is a subgraph of H.

Claim 5.2.14. V (L) ∩ V (G′) ⊆ U1 ∪ U2.

Proof of claim. Consider a vertex x ∈ V (L)∩V (G′). By the minimality of L, the vertex x cannot be
deleted from L and still have the property that L ∪G′ = G. Thus, there exists an edge xy incident
to x which is not contained in G′ and consequently, xy is in H, the inner graph of C7. Given that
x ∈ V (G′), the vertex x is either in the outer graph of C7 or in J ′. If x is in the outer graph of C7,
but not in J ′, then x ∈ V (ΩH) \ V (ΩJ ′) and thus x ∈ U1 ∪ U2. Thus, we may assume x ∈ V (J ′).
However, in this case as (J ′,ΩJ ′) is isolated in (H,ΩH), it follows that x ∈ πρJ′ ((T1 ∪ T2) ∩N(ρJ ′)).
We conclude that x ∈ U1 ∪ U2 as claimed. ⋄

Claim 5.2.15. There is no U1 − U2-path in L.

Proof of claim. Assume otherwise that a U1 − U2-path R exists. R can be extended to a Ω-path R′

using Q1, Qm, and C7. Then R′ along with {Q2, ..., Qm−1} and C7 forms a k-long-jump transaction
in (G,Ω) that is coterminal with P1 ∪ P2 ∪Q up to level C8, given that m− 2 ≥ k. ⋄

Let K1 be the union of all components of L which contain a vertex of U1 and let K2 be the
union of all components of L which contain no vertex of U1. Hence, by Claim 5.2.15, K2 contains all
components of L which contain a vertex of U2.

Defining the new rendition ρ′. We are now ready to define the desired rendition ρ′ = (Γ′,D′)
of (G,Ω). Let ρ⋆ = (Γ⋆,D⋆). Define D′ = {D ∈ D⋆ : int(D) ⊆ ∆ \ (∆1 ∪∆2)} ∪ {∆1,∆2}. The
drawing Γ′ is obtained from the restriction of Γ⋆ to ∆ \ (int(∆1) ∪ int(∆2)) along with an arbitrary

5.2. The upper bound 84

drawing of Ki in ∆i such that the only points on the boundary of ∆i are exactly the vertices of
Ui ∩ V (Ki) for i ∈ [2].

Defining the nests. Observe that for all i ∈ [2,m − 1], the path Qi is contained in G′ and
the subgraph Qi ∪ C7+i contains exactly two cycles which are distinct from C7+i. If we consider
the track in ρ⋆ of each these two cycles, one bounds a disk in ∆ which contains ∆1 and the other
bounds a disk which contains ∆2. For i ∈ [s′ + 1], we define C1

i (resp. C2
i) to be the cycle contained

in Qi+1 ∪C7+i (resp. Qm−i ∪C7+i) and distinct from C7+i such that the disk bounded by the track
of C1

i (resp. C2
i) in ρ⋆ contains ∆1 (resp. ∆2). Observe that, for i ∈ [2], Ci = (Ci

1, . . . , C
i
s′) forms

a nest around ∆i. Additionally, note that C1 and C2 are disjoint given that they do not intersect
{Qi | i ∈ [s′+2,m− s′− 1]} and that m− s′− 1 ≥ s′+4. Moreover, P1 and P2 immediately validate
the conditions of the statement.

Defining ∆′
i. Let ∆′

i be the closed subdisk bounded by the track of Ci
s′+1. Then ρi = ρ′[∆′

i] is
indeed a cylindrical rendition with vortex ci = ∆i. Note that ∆′

1 and ∆′
2 do not intersect given that

m ≥ 2s′ + 5, and thus that the track of Qs′+3 is disjoint from both ∆′
1 and ∆′

2. Additionally, for
each P ∈ Pi, i ∈ [2], there is a unique subpath from ΩD′

i
to V (σ(ci)). Then the set P ′

i of all such
subpaths checks all constraint of the second item of the lemma. This concludes the proof.

Finding a planar rendition of small depth and breadth

We now prove that a cylindrical rendition contains either a long-jump transaction, or a crosscap
transaction, or has a rendition in the plane of small depth and small breadth.

We define recursively
f5.2.16(k, r) = akf5.2.16(k − 1, r) + bk

with f5.2.16(1, r) = 14, ak = 6(r − 1)(2k + 1), and bk = 6(r − 1)k(3k + 5) + 6. Hence,

f5.2.16(k, r) = (
k∏

i=1

ai)f5.2.16(1, r) +
k∑

i=2

(
k∏

j+1

aj)bi = 2O(k log(k·r)).

Theorem 5.2.16. Let k, r, s ∈ N with k ≥ 1 and s, t ≥ f5.2.16(k, r). Let (G,Ω) be a society and
ρ = (Γ,D, c0) be a cylindrical rendition of (G,Ω). Let (C = (C1, C2, . . . , Cs),P) be a railed nest in ρ
around c0 of order (s, t). Then one of the following holds.

(i) There is an r-crosscap transaction in (G,Ω) that is coterminal with P up to level f5.2.16(k, r),

(ii) There is a k-long-jump transaction in (G,Ω) that is coterminal with P up to level f5.2.16(k, r),
or

(iii) (G,Ω) has a rendition in the disk of breadth at most k − 1 and depth at most f5.2.16(k, r).

Additionally, in case (iii), the closures of the vortex cells are pairwise disjoint.

Proof. Assume the theorem is false, and pick a counterexample to minimize k.
We fix the following values. Let s′ = f5.2.16(k − 1, r) and t′ = ⌈f5.2.16(k − 1, r)/2⌉. Additionaly,

let

m3 =2s′ + 5,

m′
2 =k(m3 + 3k),

m2 =m
′
2 + 2t′, and

m1 =(m2 − 1)(r − 1) + 1 ≤ f5.2.16(k, r)/6.

5.2. The upper bound 85

Fix the cylindrical rendition ρ in a disk ∆. If (G,Ω) has no cross, then by Proposition 4.5.1
and given that k ≥ 1, it satisfies (iii). Given a cross in (G,Ω), since s ≥ 11 and t ≥ 14, by
Proposition 5.2.3, there is a cross in (G,Ω) that is coterminal with P up to level C11. Given that
f5.2.16(k, r) ≥ 11, (i) and (ii) hold in the case r ≤ 2 and k ≤ 1, respectively. We conclude that r ≥ 3
and k ≥ 2.

Step 1: Finding a crooked transaction. By Proposition 5.2.2, the society (G,Ω) has either
a cylindrical rendition of depth 6m1 ≤ f5.2.16(k, r), or a crooked transaction of cardinality m1.
In the former case, (iii) holds. Note we are using the fact that m1 ≥ 4. Hence, we can assume
that there exists a crooked transaction Q1 of cardinality m1. By Proposition 5.2.3, given that
s ≥ 6m1 ≥ 2m1 + 7 and t ≥ 6m1 ≥ 4m1 + 6, we may assume that Q1 is coterminal with P up to
level C2m1+7, and hence Cf5.2.16(k,r).

Step 2: Finding an unexposed planar transaction. Given that m1 ≥ (m2 − 1)(r − 1) + 1,
by Proposition 5.2.1, there is Q2 ⊆ Q1 that is either a crosscap transaction of cardinality r, or a
planar transaction of cardinality m2. In the first case, (i) holds, so we conclude that Q2 is a planar
transaction.

Step 3: Creating rails. Let X1 and X2 be two disjoint segments of Ω such that Q2 is a transaction
from X1 to X2. Let the elements of Q2 be enumerated Q1, . . . , Qm2 by the order in which their
endpoints occur in X1. Let Q′

2 = {Qi | i ∈ [t′ + 1, t′ + m′
2]}. Let P1 be the rail truncation of

{Qi | i ∈ [1, t′]} and P2 be the rail truncation of {Qi | i ∈ [t′ +m′
2 + 1,m′

2 + 2t′]}. Hence, P1 and P2
both have 2t′ elements.

Step 4: Finding a rural and isolated strip society. Apply Lemma 5.2.6 to the transaction Q′
2

in (G,Ω) with the rendition ρ, l′ = m1, l = m′
2, and the nest (C2m1+7, C2m1+8, . . . , Cs). We can do

so because s− 2m1− 6 ≥ 9 and m′
2 ≥ k(m3 +3k). If we find a long-jump transaction of order k that

is coterminal with P up to level C2m1+15, then we satisfy (ii) given that f5.2.16(k, r) ≥ 2m1 + 15.
Thus, we may assume that we find a transaction Q3 ⊆ Q′

2 of size m3 such that the Q3-planar strip
society in (G,Ω) is rural and isolated.

Step 5: Splitting the vortex in two. We apply Lemma 5.2.13 to (G,Ω) with m = m3, l = 2t′,
railed nest ((C2m1+7, . . . , Cs),P1 ∪ P2 ∪ P3) where P3 is the rail truncation of Q3. We can do so
because t′ ≥ 1, m3 ≥ 2s′ + 5 ≥ k + 2, and s − 2m1 − 6 ≥ 4m1 − 6 ≥ 8ks′ − 6 ≥ s′ + 8. If there
is a long-jump transaction of order k that is coterminal with P1 ∪ P2 ∪ P3 up to level C2m1+15,
then this transaction is coterminal with P up to level Cf5.2.16(k,r) since f5.2.16(k, r) ≥ 2m1 + 15. We
conclude that there is a rendition ρ′ of (G,Ω) of breadth two, with vortices c1 and c2, two disjoint
ρ′-aligned disks ∆1 and ∆2 such that, for i ∈ [2], ρ′[∆i] is a cylindrical rendition ρi = (Γi,Di, ci) of
(Gi,Ωi) = (inner′ρ(∆i),Ω∆i) with a railed nest (Ci = (Ci

1, . . . , C
i
s′),P ′

i) of order (s′, t′) such that, for
each P ∈ P ′

i, P is a subpath of an element of Pi and, for each j ∈ [s′], P ∩ Ci
j = P ∩ Cj+α, where

α = 2m1 + 21. Additionally, (C2m1+14, . . . , Cs) is a nest around both c1 and c2, and there is a path
Q ∈ Q3 such that ∆1 and ∆2 are contained in different connected components of ∆ \ T , where T is
the track of Q in ρ′.

Step 6: Finding a contradiction. For i ∈ [2], let ki be the largest value such that there exists a
ki-long-jump transaction Ri in (Gi,Ωi) that is coterminal with P ′

i up to level Ci
s′ .

Claim 5.2.17. For i ∈ [2], ki > 0.

Proof of claim. Let X ′
1 and X ′

2 be minimal segments of Ω such that Q3 is a linkage from X ′
1 to

X ′
2. Let Y1 and Y2 be the two maximal segments of Ω \ (X ′

1 ∪X ′
2). Let i ∈ [2]. Since the planar

transaction Q3 is a subset of the crooked transaction Q1, there exists a path Pi ∈ Q1 with an

5.2. The upper bound 86

endpoint in Yi that is crossed by another path P ′
i ∈ Q1. If Pi crosses some Q ∈ Q3, then, given that

the Q3-strip society in (G,Ω) is isolated, it follows that the other endpoint of Pi is in Y2. But then,
given that m3 ≥ k, we conclude that there is a long-jump transaction Q ⊆ Q1 of order k in (G,Ω).
Given that Q1 is coterminal with P up to level Cf5.2.16(k,r), (ii) holds, a contradiction. Hence, Pi

crosses no Q ∈ Q3, and neither does P ′
i . Hence, Pi and P ′

i have both endpoints in Yi. The pairs of
paths (P1, P

′
1) and (P2, P

′
2) form a cross, one in (G1,Ω1) and the other in (G2,Ω2) since there is a

path Q ∈ Q3 such that the interiors of ∆1 and ∆2 are contained in different connected components
of ∆ \ T , where T is the track of Q in ρ′. Therefore, since s′ ≥ 11 and t′ ≥ 14, by Proposition 5.2.3,
for i ∈ [2], there is a cross, and hence a 1-long-jump transaction, in (Gi,Ωi) that is coterminal with
P ′
i up to level Ci

11, and hence Ci
s′ . We conclude that ki > 0. ⋄

Claim 5.2.18. k1 + k2 < k.

Proof of claim. Given that P ′
1 and P ′

2 are disjoint linkages, whose paths are subpaths of P1 and P2
respectively, that (C2m1+14, . . . , Cs) is a nest around both c1 and c2, and that for each P ∈ P ′

i and
j ∈ [s′], P ∩ Ci

j = P ∩ Ci+α by Lemma 5.2.13, we conclude that, for i ∈ [2], Ri can be extended
using Pi ⊆ Q1 to a long-jump transaction R′

i of (G,Ω), and that R′
1 and R′

2 form either a (k1, k2)-
double-jump transaction or, along with Q, an alternative (k1, k2)-double-jump transaction that is
coterminal with P up to level Cs′+α. Therefore, by Lemma 5.2.5, there is a (k1 + k2)-long-jump
transaction in (G,Ω) that is coterminal with P up to level Cs′+α+1, and thus Cf5.2.16(k,r), since
f5.2.16(k, r) ≥ 6m1 ≥ s′ + 2m1 + 22. Given that there is no k-long-jump transaction in (G,Ω) that is
coterminal with P up to level Cf5.2.16(k,r), we conclude that k1 + k2 < k. ⋄

By Claim 5.2.17 and Claim 5.2.18, we conclude that, for i ∈ [2], 1 ≤ ki ≤ k − 2. By the choice
of our counterexample to minimize k, it follows that one of (i)-(iii) must hold for (Gi,Ωi) with
parameters ki + 1 and r. We can do so because s′, 2t′ ≥ f5.2.16(k − 1, r, a). By the maximality of ki,
outcome (ii) does not hold.

If (i) holds, then there is a r-crosscap transaction in (Gi,Ωi) that is coterminal with P ′
i up to

level Ci
f5.2.16(ki+1,r). Then, given that for each P ∈ P ′

i and j ∈ [s′], P ∩ Ci
j = P ∩ Ci+α, we can

extend Qi to a crosscap transaction of (G,Ω) that is coterminal with P up to level Cf5.2.16(ki+1,r)+α.
Given that f5.2.16(ki + 1, r) + α ≤ f5.2.16(ki + 2, r) ≤ f5.2.16(k, r), (i) thus holds for (G,Ω).

Hence, outcome (iii) holds for both (G1,Ω1) and (G2,Ω2). Thus, for i ∈ [2], there is a rendition
ρ′i of (Gi,Ωi) of breadth at most ki and depth at most f5.2.16(ki + 1, r). Given that k1 + k2 < k by
Claim 5.2.18, we conclude that (G,Ω) has a rendition of breadth at most k1 + k2 ≤ k − 1 and depth
at most f5.2.16(k − 1, r), by restricting ρ′ to ∆ \ (int(∆1) ∪ int(∆2)) and using ρ′1 and ρ′2 in the disks
∆1 and ∆2, respectively. In particular, given that ∆1 and ∆2 are disjoint, the closures of the vortex
cells of this rendition are pairwise disjoint. This contradiction completes the proof.

Finding a projective rendition of small depth and breadth

In the previous section, we proved that if a society has neither a long-jump nor a crosscap transaction,
then it has a rendition in the plane of small breadth and depth. Our goal is now to only exclude a
long-jump transaction to get a rendition in the projective plane of small breadth and depth.

We first borrow the following result from [195]. It essentially says that, if our cylindrical rendition
with vortex c0 contains a crosscap transaction Q, then we can use Q to add a crosscap to the surface
(that is, we are now in the projective plane), and find a new cylindrical rendition with vortex c1
avoiding the crosscap.

5.2. The upper bound 87

Proposition 5.2.19 (Lemma 10.2, [195]). Let m,m′, s, s′, t ∈ N with s ≥ s′+8 and m ≥ m′+2s′+7.
Let (G,Ω) be a society and ρ = (Γ,D, c0) be a cylindrical rendition of (G,Ω) in the disk ∆. Let X1, X2

be disjoint segments of V (Ω). Let C = (C1, . . . , Cs) be a nest in ρ of size s and P = {P1, P2, . . . , Pt}
a linkage from X1 to c̃0 orthogonal to C. Let Σ⋆ be a surface homeomorphic to the projective plane
minus an open disk obtained from ∆ by adding a crosscap to the interior of c0. If there exists an
m-crosscap transaction Q in (G,Ω) orthogonal to C and disjoint from P such that every member of
Q has both endpoints in X2 and the Q-strip society in (G,Ω) is isolated and rural, then there exists
a subset Q′ of Q of size m′ and a rendition ρ′ of (G,Ω) in Σ⋆ such that there exists a unique vortex
c′ ∈ C(ρ′) and the following hold:

(i) Q′ is disjoint from σ(c′),

(ii) the vortex society of c′ in ρ′ has a cylindrical rendition ρ1 = (Γ1,D1, c1),

(iii) every element of P has an endpoint in V (σρ1(c1)),

(iv) ρ1 has a nest C′ = (C ′
1, . . . , C

′
s′) of size s′ such that P is orthogonal to C′ and for every i,

1 ≤ i ≤ s′, and for all P ∈ P, C ′
i ∩ P = Ci+7 ∩ P ,

(v) for i = 1, 2, . . . , t, let xi be the endpoint of Pi in X1, and let yi be the last entry of Pi into c′

(which exists), then if x1, x2, . . . , xm appear in Ω in the order listed, then y1, y2, . . . , ym appear
on c̃′ in the order listed,

(vi) let ∆′ be the open disk bounded by the track of Cs; then ρ restricted to ∆ \∆′ is equal to ρ′

restricted to ∆ \∆′.

We can finally prove our local structure theorem.

Theorem 5.2.20. Let k, r, s, t ∈ N such that s ≥ f5.2.16(k,m1) + f5.2.16(k, k + 1) + 7 and t ≥
f5.2.16(k,m1) where m1 = (6k + 1)f5.2.16(k, k + 1) + 3k(4k + 9). Let (G,Ω) be a society and
ρ = (Γ,D, c0) be a cylindrical rendition of (G,Ω) in the disk ∆. Let (C = (C1, C2, . . . , Cs),P) be a
railed nest in ρ around c0 of order (s, t). Then one of the following holds.

(i) There is a k-long-jump transaction in (G,Ω) that is coterminal with P up to level f5.2.16(k,m1),
or

(ii) (G,Ω) has a rendition in the plane of depth at most f5.2.16(k,m1) or in the projective plane of
depth at most f5.2.16(k, k + 1), and of breadth at most k − 1 in both cases

Additionally, in case (ii), the closures of the vortex cells of the rendition are pairwise disjoint.

Proof. Assume that the theorem is false. We fix the following values. Let

s′, t′ =f5.2.16(k, k + 1),

m3 =k + 2s′ + 9,

m2 =3k(m3 + 3k), and
m1 =m2 + t′.

Step 1: Finding a crosscap transaction. We apply Theorem 5.2.16 with r = m1. We can do so
because s, t ≥ f5.2.16(k,m1). Outcome (ii) and (iii) of Theorem 5.2.16 immediately imply outcome
(i) and (ii) of the theorem respectively. Hence, there is a m1-crosscap transaction Q1 in (G,Ω) that
is coterminal with P up to level f5.2.16(k,m1).

5.2. The upper bound 88

Step 2: Separating Q1 into a crosscap transaction Q2 and rails P ′. Let X be a minimal
segment of Ω containing both endpoints of every path in Q1. Let X1 and X2 be two disjoint segments
contained in X such that X2 contains both endpoints of m2 paths of Q1; we call this set of paths
Q2; and X1 contains one endpoint of the t′ paths in Q1 \ Q2. We can do so because m1 ≥ m2 + t′.
Let P ′ be the rail truncation of Q1 \ Q2. P ′ has size at least t′.

Step 3: Finding a rural and isolated strip society in Q2. Let X ′
1 and X ′

2 be the minimal
segments contained in X2 so that each path of Q2 has one endpoint in X ′

1 and the other in
X ′

2. We apply Lemma 5.2.6 with input the society (G,Ω), the nest (Cf5.2.16(k,m1), . . . , Cs), the
crosscap transaction Q2, segments X ′

1 and X ′
2, l = m3, and l′ = m2. We can do so because

s−f5.2.16(k,m1)+1 ≥ 9 andm2 ≥ 3k(m3+3k). If there is a long-jump transaction of order k in (G,Ω)
that is coterminal with P up to level Cf5.2.16(k,m1)+9, then (i) holds given that s ≥ f5.2.16(k,m1) + 9.
Hence, there exists a transaction Q3 ⊆ Q2 of size m3 such that the Q3-strip of (G,Ω) with respect
to (X ′

1, X
′
2) is isolated and rural.

Step 4: Embedding the society in the projective plane. Let Σ⋆ be a surface homeomorphic
to the projective plane minus an open disk obtained from ∆ by adding a crosscap to the interior of
c0. We apply Proposition 5.2.19 to the society (G,Ω), segments X1, X2, nest (Cf5.2.16(k,m1), . . . , Cs),
P ′, Q3, and m′ = k. We can do so because s − f5.2.16(k,m1) + 1 ≥ s′ + 8 and m3 ≥ k + 2s′ + 7.
Thus, there exists a transaction Q4 ⊆ Q3 of size k, a rendition ρ′ of (G,Ω) in Σ⋆, and a unique
vortex c′0 ∈ C(ρ′) satisfying items (i)-(vi) of Proposition 5.2.19. In particular, Q4 is disjoint from
σ(c′0), and the vortex society (G1,Ω1) of c′0 in ρ′ has a cylindrical rendition ρ1 = (Γ1,D1, c1) with
nest C′ = (C ′

1, ..., C
′
s′).

Step 5: Finding a contradiction. We apply Theorem 5.2.16 to (G1,Ω1) with the cylindrical
rendition ρ1, nest C′ = (C ′

1, ..., C
′
s′), the truncation P ′′ of P ′ in (G1,Ω1) for ρ1, and r = k + 1. We

can do so because s′, t′ ≥ f5.2.16(k, k + 1). There are three cases.
Case 1: There is a long-jump transaction Q5 of order k in (G1,Ω1) that is coterminal
with P ′′ up to level C ′

f5.2.16(k,k+1). By items (i)-(vi) of Proposition 5.2.19 and given that P ′′

is the truncation of P ′, Q5 can extended to a long-jump transaction of order k in (G,Ω) that
is coterminal with P ′ up to level Cf5.2.16(k,k+1)+7, and hence with P up to level Cg(k) given that
s ≥ f5.2.16(k,m1) ≥ f5.2.16(k, k + 1) + 7.
Case 2: there is a crosscap transaction Q5 in (G1,Ω1) of size k+1 that is coterminal with
P ′′ up to level C ′

f5.2.16(k,k+1). Similarly to Case 1, Q5 can be extended to a crosscap transaction
Q6 of size k + 1 in (G,Ω) that is coterminal with P ′ up to level Cf5.2.16(k,k+1)+7. In particular, Q4

and Q6 are disjoint, are coterminal to P up to level Cf5.2.16(k,k+1)+7, Q4 has size k and Q6 has size
k+1. Therefore, there is a (k, k+1)-klein transaction Q4 ∪Q6 that is coterminal with P up to level
Cf5.2.16(k,k+1)+7. But then, by Lemma 5.2.5, there is a k-long-jump transaction that is coterminal
with P up to level Cf5.2.16(k,k+1)+7+k. (i) thus holds given that f5.2.16(k,m1) ≥ f5.2.16(k, k+1)+7+k.
Case 3: (G1,Ω1) has a rendition ρ′1 in the disk of breadth at most k − 1 and depth at
most f5.2.16(k, k + 1), such that the closure of the vortex cells in ρ′1 are pairwise disjoint. Hence,
(G,Ω) has a rendition in Σ⋆ of breadth at most k−1 and depth at most f5.2.16(k, k+1) by restricting
ρ1 to ∆ \ (int(c′0)) and using ρ′1 in c′0. Trivially, the closure of the vortex cells in this rendition are
pairwise disjoint. This contradiction completes the proof.

5.2.2 From societies to a local structure theorem

In this section, we will prove our local structure theorem using the main result of previous section
(Theorem 5.2.20). To apply Theorem 5.2.20, we need to find a cylindrical rendition in the input
graph G. We do so using the Flat Wall theorem (which originates from [271]) which find a grid-like

5.2. The upper bound 89

structure (a wall) with a vortex-free rendition, called a flat wall, in a graph G that excludes a big
clique as a minor, after the removal of a small (apex) set A ⊆ V (G). More specifically, we prove a
new version of the flat wall theorem (see Section 5.2.2, Lemma 5.2.22), where we exclude a long-jump
grid instead of a clique as a minor, which allows us to find a flat wall without needing to remove an
apex set. It is then enough to make a vortex out of everything that is not part of the flat wall to
obtain a cylindrical rendition. We can thus put everything together and prove that if G contains no
big long-jump grid as a minor, then G has a Σ-decomposition δ of small breadth and depth, where
Σ is the projective plane (see Section 5.2.2, Theorem 5.2.26). Additionally, we add another property
on δ concerning tangles, that we define there.

Finding a flat wall

In the part, we adapt the Flat Wall theorem [194,271] to long-jump grids (Theorem 5.2.25). The
Flat Wall theorem essentially states that, given k, r ∈ N and a big enough wall W in a graph G,
either G contains a Kk minor or there is a set A such that an r-subwall of W is a flat wall of G−A.
We essentially prove here that given given k, r ∈ N and a big enough wall W in a graph G, either G
contains a Jk minor or there is a r-subwall of W that is a flat wall of G.

The following is a statement of the Grid Theorem. While we will not explicitly use the Grid
Theorem, we will, later on, make use of the existence of a function that forces the existence of a
large wall in a graph with large enough treewidth.

Proposition 5.2.21 (Grid Theorem [65,261]). There exists a universal constant c ≥ 1 such that for
every k ∈ N and every graph G, if tw(G) ≥ ck10, then G contains the (k × k)-grid as a minor.

Notice that any graph that contains a (2k × 2k)-grid as a minor contains a k-wall as a subgraph.
Let us prove our flat wall theorem when we exclude a long-jump grid as a minor.

Lemma 5.2.22. Let k, r ≥ 1 be integers, with r odd, let G be a graph, and let W be a ((r + 3k)k +
6k − 4, r + 8k − 4)-wall in G. Then one of the following holds.

• Either G contains Jk minor grasped by W , or

• there is a flat wall W ′ in G, where W ′ is the tilt of an r-subwall of W .

r + 2kk

W1 Wkx y . . .

W 1

W 2

W

2k − 2

k

W ′

r

Figure 5.6: The walls W1, ...,Wk in W . In darkgreen is depicted the Jk minor of Claim 5.2.23.

Proof. Let W 1 be the ((r + 3k)k + 4k − 4, r + 6k − 4)-wall obtained by removing the first k layers
of W . Let W 2 be the ((r + 3k)k, r + 2k)-wall obtained by removing the first 2k − 2 layers of W 1.
Let a = (r + 3k)k,and b = r + 2k. Let P1, ..., Pb (resp. Q1, ..., Qa) be the horizontal (resp. vertical)
paths of W 2. Let I ′1, ..., I ′k be intervals of length r+3k with union [a]. For i ∈ [k], let Ii be obtained

5.2. The upper bound 90

from I ′i by deleting the last k elements. Thus, |Ii| = r + 2k. For i ∈ [k], we define Wi as the
(r + 2k)-subwall of W 2 obtained by removing all paths Qj for j ∈ [a] \ Ii. Refer to Figure 5.6 for an
illustration. Observe that the k first layers of W do not contain vertices from the Wi, i ∈ [k], and,
hence, form, along with horizontal and vertical subpaths, a railed nest (C,P) of order (k, 2a+ 2b)
(in light green in Figure 5.6).

Let B be a W -bridge in G with at least one attachment in V (Wi). Let B′ be obtained from B
by deleting all its attachments that do not belong to V (Wi). Let Hi be the graph obtained from the
union of Wi and all graphs B′ defined as above.

Claim 5.2.23. If there are indices i and j with i < j such that Hi and Hj share a vertex, then G
contains a Jk minor grasped by W .

Proof of claim. Assume that there are indices i and j with i < j such that Hi and Hj share a vertex.
Then there exists a W -bridge with an attachment x ∈ V (Wi) and y ∈ V (Wj). Therefore there
exists a W -path P in G with endpoints x and y. Then, the union of P , the k vertical paths Ql for
l ∈ I ′i \ Ii, the railed nest (C,P), and an appropriate horizontal subpath from x (resp. y) to C in W ,
contains Jk (grasped by W) as a minor. ⋄

In this case, we directly conclude, so we may assume that the subgraphs Hi are pairwise disjoint.
Let Ci be the perimeter of Wi for i ∈ [k]. Let Ni = V (Ci)∩NG(V (G) \V (Hi)). Let Ωi be the cyclic
ordering of the vertices of Ni as they appear in Ci. If, for each i ∈ [k], (Hi,Ωi) contains a cross,
then the nested-crosses grid N C k+1

k is a minor of G. By Lemma 5.2.4, Jk is hence a minor of G
(grasped by W). In this case, we can directly conclude, so we may assume that there exists an i ∈ [k]
such that (Hi,Ωi) do not have a cross. Then, by Proposition 4.5.1, the society (Hi,Ωi) is rural. It
implies that Wi is a flat wall of Hi.

We now want to obtain a flat wall of G. Let W ′′ be the r-wall obtained from Wi by deleting the
k first layers of Wi. By Proposition 4.6.6, there is a flat wall W ′ of Hi such that W ′ is a tilt of W ′′.
Let (X ′, Y) be a separation of Hi and (P,C) be a choice of pegs and corners certifying that W ′ is
flat wall of Hi, with V (W) ⊆ Y . Let X = X ′ ∪ (V (G) \ V (Hi)). Let us show that (X,Y) along with
(P,C) certifies that W ′ is a flat wall of G. For this, it is enough to prove the following.

Claim 5.2.24. (X,Y) is a separation of G or G contains Jk grasped by W has a minor.

Proof of claim. Suppose that (X,Y) is not a separation of G, and thus that there are x ∈ X \ Y
and y ∈ Y \X that are adjacent. Given that (X ′, Y) is a separation of Hi, it implies that x /∈ V (Hi)
and y ∈ V (Hi).

Assume that y ∈ V (Wi) \ V (W ′). Let D be the perimeter of W ′. Then there is a path from y
to V (Ci) disjoint from V (D), contradicting the fact that V (Ci) ⊆ X ′, y ∈ Y , and X ′ ∩ Y ⊆ V (D).
Hence, y /∈ V (Wi) \ V (W ′).

The edge joining x and y belongs to a W -bridge B of G, and hence, x is an attachment of B
outside Wi. Thus, there is a W -path with one endpoint x and the other y′ ∈ V (W ′). If x ∈ V (W 1),
then, by a similar argument to Claim 5.2.23, G contains Jk (grasped by W) as a minor. Otherwise,
x ∈ V (W) \ V (W 1). But then, there are k paths from Wi \ V (W ′) plus 2k − 2 paths from W 1 \W 2

separating x from y′. Hence, G contains the alternative jump grid Ĵ 3k−2
2k , and thus Jk (grasped

by W) by Lemma 5.2.4 as a minor. ⋄

Thus, the separation (X,Y) witnesses that W ′ is a flat wall in G.

Given that a (a, b)-wall is a subset of an O(
√
ab)-wall, Lemma 5.2.22 immediately implies the

following.

5.2. The upper bound 91

Theorem 5.2.25. Let k, r ≥ 1 be integers, with r odd, let G be a graph, and let W be a f5.2.25(k, r)-
wall in G, where f5.2.25(k, r) = O(

√
k(r + k)). Then one of the following holds.

• Either G contains Jk minor grasped by W , or

• there is a flat wall W ′ in G, where W ′ is the tilt of an r-subwall of W .

Tangles

To create the tree decomposition of the global structure theorem, we require tangles, first introduced
by Robertson and Seymour in [268].

Tangles. Let G be a graph and k be a positive integer. We denote by Sk the collection of all
separations (A,B) of order less than k in G. An orientation of Sk is a set O such that for all
(A,B) ∈ Sk exactly one of (A,B) and (B,A) belongs to O. A tangle of order k in G is an orientation
T of Sk such that for all (A1, B1), (A2, B2), (A3, B3) ∈ T , we have A1 ∪A2 ∪A3 ̸= V (G).

Tangles induced by walls. Let W be a k-wall in a graph G and (A,B) be a separation of order
strictly less than k. Then exactly one of A \B or B \A contains a row and a column of W. Let TW
be the orientation of Sk where (A,B) ∈ TW if and only if B \A contains a row and a column of W.
Then it is easy to observe that TW is a tangle, which we call the tangle induced by W .

Truncation. Let T ′ ⊊ T be a tangle which is properly contained in the tangle T . We say that T ′

is a truncation of T . This implies in particular that the order of T ′ is smaller that the order of T .

Flat walls in a Σ-decomposition. Let W be a wall in a graph G. We say that W in flat is a
Σ-decomposition δ of G if there exists a δ-aligned disk ∆ such that

• π(N(δ) ∩ bd(∆)) ⊆ V (D(W)),

• if S is the collection of corners and 3-branch vertices of W that are not in ground(δ), then, for
any c ∈ C(δ), there exists at most one v ∈ S such that v ∈ V (σ(c)),

• no cell c ∈ C(δ) with c ⊆ ∆ is a vortex, and

• W − V (D(W)) is a subgraph of
⋃

c⊆∆ σ(c).

In the next result, we reformulate the local structure theorem in the form we need to prove the
global structure theorem in the next section.

Theorem 5.2.26. There exist functions f5.2.26 : N2 → N, d5.2.26 : N→ N such that, for every choice
of non-negative integers k, r with odd r ≥ 3 and every graph G with an f5.2.26(k, r)-wall W , one of
the following holds

(i) G contains the long-jump grid of order k as a minor, or

(ii) G has a Σ-decomposition δ of breadth at most k − 1 and depth at most d5.2.26(k) such that the
closures of the vortex cells in δ are pairwise disjoint. Moreover, Σ is either the sphere or the
projective plane and there exists a wall of height at least r which is flat in δ and whose tangle
is a truncation of the tangle induced by W .

Moreover, f5.2.26(k, r) = max{2O(k log k),O(
√
k(r + k))} and d5.2.26(k) = 2O(k log k).

5.2. The upper bound 92

Proof. We set m1 = (6k + 1)f5.2.16(k, k + 1) + 3k(4k + 9), ℓ = f5.2.16(k,m1) + f5.2.16(k, k + 1) +
7, and d5.2.26(k) = f5.2.16(k,m1). We also set r2 to be the smallest odd integer bigger than
max{r, f5.2.16(k,m1)/4}, r1 = 2(ℓ + 1) + r2, and f5.2.26(k, r) = f5.2.25(k, r1). By Theorem 5.2.25,
given that f5.2.26(k, r) = f5.2.25(k, r1), either G contains Jk as a minor, in which case we conclude,
or there is a flat wall W1 in G, where W1 is the tilt of an r1-subwall of W . In the latter case,
let W2 be the central r2-subwall of W1. Given that W1 is a flat wall in G, there is a separation
(X,Y) of G and a cyclic ordering Ω of the vertices of X ∩ Y witnessing the flatness of W1. In
particular, (G[Y],Ω) has a vortex-free rendition ρ = (Γ,D) in a disk ∆. Let T be the track of the
perimeter of W2. S0 \ T is the union of two disks whose closure is ∆1 and ∆2 respectively. We
assume without loss of generality that W2 − V (D(W2)) is a subgraph of

⋃
c⊆∆2

σ(c). Notice that
π(N(ρ)∩ bd(∆2)) ⊆ V (D(W2)), given that T is the track of D(W2) and the boundary of ∆2. Let G′

be the graph obtained from G after removing, for each c ∈ C(ρ) with c ⊆ ∆2, the edges of σρ(c) and
the vertices of σρ(c)−πρ(T ∩N(ρ)). Let Ω′ be the cyclic ordering of the vertices of πρ(T ∩N(ρ)) with
the cyclic order induced by the perimeter of W2. We construct a cylindrical rendition ρ′ = (Γ′,D′, c0)
of (G′,Ω′) in the disk ∆1 as follows. We set D′ = {c0} ∪ {c ∈ D | c ⊆ ∆1}, where c0 = S0 \∆ with
σ(c0) = G[X] and πρ′(c̃0) = X ∩ Y . We define Γ′ to be obtained from the restriction of Γ to ∆1 by
drawing G[X]− Y arbitrarily in c0 and adding the appropriate edges with πρ′(c̃0). Given that, for
i ∈ [2, ℓ+ 1], the i-th layer of W1 is drawn in ∆1 \ c0, ρ′ is a cylindrical rendition of (G′,Ω′) with a
railed nest (C,P) in ρ around c0 of order (ℓ, 4r2). See Figure 5.7 for an illustration.

W1

W2

r2

l + 1

l + 1

∆ c0

∆2

∆1
T

X ∩ Y

c0

∆

∆1

∆2

T

X ∩ Y

Figure 5.7: Illustration for the proof of Theorem 5.2.26. ρ is the vortex-free rendition in the disk ∆
witnessing that W1 is a flat wall. ρ′ is the cylindrical rendition composed of all but the orange disk
∆2, where the vortex c0 is composed of all but the disk ∆.

Given that ℓ = f5.2.16(k,m1) + f5.2.16(k, k + 1) + 7 and that 4r2 ≥ f5.2.16(k,m1), by Theo-
rem 5.2.20, either (a) (G′,Ω′) contains a k-long-jump transaction that is coterminal with P up to
level f5.2.16(k,m1), or (b) (G′,Ω′) has a rendition in the plane of depth at most f5.2.16(k,m1) or in
the projective plane of depth at most f5.2.16(k, k + 1), and of breadth at most k − 1 in both cases,
such that the closures of the vortex cells are pairwise disjoint. Given that ℓ− f5.2.16(k,m1) + 1 ≥ k,
it implies in case (a) that Jk is a minor of G, so we can conclude. In case (b), by combining the
restriction of ρ to ∆2 and ρ′, we get a Σ-decomposition δ of breadth at most k − 1, where either Σ
is the sphere and δ has depth at most f5.2.16(k,m1) = d5.2.26(k), or Σ is the projective plane and δ
has depth at most f5.2.16(k, k + 1) ≤ d5.2.26(k), such that the closure of the vortex cells are pairwise
disjoint.

Given that W2 is a subwall of W , its tangle is obviously a truncation of the tangle induced by
W . Moreover, from the flatness of W1, we easily derive that W2 is flat in δ. Hence the result.

5.2. The upper bound 93

If we want to exclude both a long-jump grid and a crosscap grid, then we get a similar result.

Theorem 5.2.27. There exist functions f5.2.27 : N3 → N, d5.2.27 : N2 → N such that, for every choice
of non-negative integers k, c, r with odd r ≥ 3 and every graph G with an f5.2.27(k, r)-wall W , one of
the following holds

(i) G contains the long jump grid of order k as a minor, or

(ii) G contains the crosscap grid of order c as a minor, or

(iii) G has a S0-decomposition δ of breadth at most k − 1 and depth at most d5.2.27(k, c) such that
the closures of the vortex cells in δ are pairwise disjoint. Moreover, there exists a wall of height
at least r which is flat in δ and whose tangle is a truncation of the tangle induced by W .

Moreover, f5.2.27(k, r) = max{2O(k log(k·c)),O(
√
k(r + k))} and d5.2.27(k) = 2O(k log(k·c)).

Proof. The proof is exactly the same as for Theorem 5.2.26, but using Theorem 5.2.16 instead of
Theorem 5.2.20, and setting ℓ = d5.2.27(k) = f5.2.16(k, c), r2 to be the smallest integer bigger than
max{r, f5.2.16(k, c)/4}, r1 = 2(ℓ+ 1) + r2, and f5.2.27(k, c, r) = f5.2.25(k, r1).

5.2.3 The global structure theorem

In this section, we will prove our global structure theorem (Theorem 2.1.2, and more precisely
Theorem 5.2.39) using the local structure theorem (Theorem 5.2.26) proved in the previous section.
For now, we know that if G contains no big long-jump grid as a minor, then G has a Σ-decomposition
δ of small breadth and depth, where Σ is the projective plane.

Instead of the depth, the parameter we actually care about on vortices is their width. A graph
with a Σ-decomposition of breadth and width at most k (with some additional properties) is said
to be k-almost embeddable in Σ. We prove in Theorem 5.2.36 that, if G excludes a long-jump grid
as minor, then it has a tree decomposition T = (T, β) such that the torso at each node has an
almost embedding on the projective plane of small breadth and width. Imagine that all of V (G),
and thus the Σ-decomposition δ of small breadth and depth, is originally in the root r of T . Then,
essentially, most of what is inside each vortex cv is pushed out to a child tv of r. Then, in the
root, we obtain that each vortex has now small width instead of small depth, and it remains to
recurse on the children of r. This is the very standard “local to global” approach, used for instance
in [87,88,101,195,303]. However, there is a catch here. To our knowledge, the structure theorem
proved in this chapter is the first structure theorem with vortices but no apices (note that the
structure theorem of [268] for singly-crossing graphs has no apices, but also no vortices). Indeed,
usually, one proves that, the torso of T at each node is almost embeddable in some surface after the
removal of a bounded set of vertices (the apices), with sometimes some additional properties. These
apices are very useful, in particular to hide among them the set X of vertices in the intersection of r
and tv. By definition of the torso, we need to make a clique out of X, which we can do here safely
without destroying the almost embeddability of the rest of the bag. In our case however, we have no
apices. Hence, we develop in Theorem 5.2.32 a new technique to go from the local to the global
structure theorem in the absence of apices. This technique will be explained more in detail later
and, as we already mentioned, it works because the surface we consider is either the plane or the
projective plane, but that it would not work on other surfaces given that we do not know how to
handle cycles that do not bound a disk.

Finally, we easily derive from Theorem 5.2.36 our global structure theorem (Theorem 2.1.2, and
more precisely Theorem 5.2.39) in terms of identifications: the set of vertices in vortex cells has
bounded bidimensionality, so we can identify each vortex separately to obtain an embedding in the
projective plane.

5.2. The upper bound 94

From local to global

The proof of the global structure theorems, providing the upper bounds for our main results, follows
a well-established strategy, that was formalized in [88]. This strategy allows us to prove a slightly
stronger “rooted” version of the global structure theorem (Theorem 5.2.32). The main advantage of
this stronger version is that it allows for a straightforward proof by induction.

Let us first give some definition before sketching how this well-established strategy usually works.

Linear decompositions. A linear decomposition of a society (G,Ω) is a labeling v1, . . . , vℓ of
V (Ω), such that v1, . . . , vn occur in that order on Ω, and subsets (X1, . . . , Xℓ) such that

• for each i ∈ [ℓ], vi ∈ Xi ⊆ V (G),

•
⋃

i∈[ℓ]Xi = V (G) and, for each uv ∈ E(G), there exists i ∈ [ℓ] such that {u, v} ∈ Xi, and

• for each x ∈ V (G), the set {i | x ∈ Xi} is an interval in [ℓ].

The width of a linear decomposition is maxi∈[ℓ] |Xi|.
It is not hard to see that every society with a linear decomposition of adhesion at most d has

depth at most 2d. For the converse, we have the following result.

Proposition 5.2.28 ([195, 265]). Let d ∈ N. Every society of depth at most d has a linear
decomposition of adhesion at most d.

Almost embeddings. Let G be a graph and Σ be a surface. An almost embedding of G in Σ of
breadth b and width d is a Σ-decomposition δ of G such that there is a set C0 ⊆ C(δ) of size at most
b containing all vortex cells of δ such that:

• no vertex of G is drawn in the interior of a cell of C(δ) \ C0 and,

• for each vortex cell, there exists a linear decomposition of its vortex society of width at most d
(and for each non-vortex cell c ∈ C0, |V (σ(c))| ≤ d).

C0 is called the vortex set of δ.

Well-linked sets. Let α ∈ [2/3, 1). Moreover, let G be a graph and X ⊆ V (G) be a vertex set. A
set S ⊆ V (G) is said to be an α-balanced separator for X if for every component C of G−S it holds
that |V (C) ∩X| ≤ α|X|. Let k be a non-negative integer. We say that X is a (k, α)-well-linked set
of G if there is no α-balanced separator of size at most k for X in G.

Given a (k, α)-well-linked set X of G we define

TX := {(A,B) ∈ Sk+1(G) | |X ∩B| > α|X|}.

It is not hard to see that TS is a tangle of order k + 1 in G.
We need an algorithmic way to find, given a well-linked set, a large wall whose tangle is a

truncation of the tangle induced by the well-linked set. This is done in [302] by algorithmatising a
proof Kawarabayashi, Wollan, and Thomas from [195].

Proposition 5.2.29 (Thilikos and Wiederrecht [302] (see Theorem 3.4.)). Let k ≥ 3 be an integer
and α ∈ [2/3, 1). There exist universal constants c1, c2 ∈ N\{0}, and an algorithm that, given a graph
G and a (c1k

20, α)-well-linked set X ⊆ V (G) computes in time 2O(kc2)|V (G)|2|E(G)| log(|V (G)|) a
k-wall W ⊆ G such that TW is a truncation of TX .

5.2. The upper bound 95

The rooted version of a structure theorem is usually stated along the lines of: Let G,H be graphs
and X ⊆ V (G) be a set of small size. Then either G contains H as a minor, or there is a rooted tree
decomposition (T, β, r) of G such that the torso at each node has an almost embedding in Σ after
removing a small apex set A, and such that X ⊆ β(r).

Obviously, if X = ∅, then this is the global structure theorem. X essentially corresponds to
vertices inherited from a parent bag in the induction, from which we will make a clique to obtain the
torso. The proof of such a result goes as follows. If there is a balanced separator S in G for X, then
we inductively find a rooted tree decomposition TC = (TC , βC , tC) for each connected component C
of G−S with XC = X ∩C ∪S. Then T = (T, β, r) is the tree decomposition where the children of r
are the nodes tC , β(r) = S∪X, and the restriction of T to the subtree rooted at tC is TC . Otherwise,
X is a well-linked set from which we can derive a wall (Proposition 5.2.29) whose tangle agrees with
the tangle of X. Then, we can apply the local structure theorem (for us Theorem 5.2.26) to find an
apex set A (for us A = ∅) such that G−A has a Σ-decomposition δ of small breadth and depth at
most d. For each non-vortex cell c, we recurse on G1

c = σ(c) with X1
c that is the union of X ∩ σ(c)

and the boundary A1
c of the cell, to find a tree decomposition T 1

c . For each vortex cell c, we fix a
linear decomposition (Y1, . . . , Yℓ) of adhesion at most its depth. Then, for each i ∈ [ℓ], we recurse
on Gi

c = G[Yi] with Xi
c being the union of X ∩ Yi and the set Ai

c composed of its adhesion with its
neighbors as well as the ith vertex of the cyclic ordering Ωc, and we obtain a tree decomposition T i

c .
Then, we put all those tree decompositions together, that we attach to the root r with β(r) that is
the union of A, X, and the sets Ai

c, to obtain a tree decomposition T = (T, β, r) of G. It remains
to prove that the torso of T at each node t has an almost embedding in Σ after removing a small
apex set A of small depth and small width. This is immediate for t ∈ V (T) that is not a child of r.
For r, torsifying corresponds to making a clique out of each X1

c . For each c, i, let us add Xi
c \Ai

c to
the apex set. The size of the apex set increases by at most |X|. Now, it is enough to prove that
making a clique out of each Ai

c does not destroy the almost embedding. For non-vortex cells, we
have |A1

c | ≤ 3, so making a clique trivially does not destroy the almost embedding. For vortex cells,
Ai

c is now a bag of the linear decomposition, so the width does not increase after the torsification.
Additionally, Ai

c has size at most 2d+ 1, so the width of a vortex is at most 2d+ 1. Hence, we have
an almost embedding of β(r) of small breadth and width at most 2d+ 1 after removing the apex set
A+X. Finally, for each child tic of r, after removing an apex set Bi

c, we already have an almost
embedding of the torso of T i

c at tic, where T i
c is a tree decomposition of Gi

c. To make it an almost
embedding of the torso of T at tic, we need to add all edges between the vertices of Xi

c (which is the
adhesion of β(r) and β(tic)), which might destroy the almost embedding. To handle this problem, it
is enough to remove Xi

c from the almost embedding, that is to add Xi
c to the apex set. Hence, we

have an almost embedding of the torso of T at tic of small breadth and width at most 2d+ 1 after
removing the apex set Bi

c ∪Xi
c, which concludes the proof.

In our case, we cannot add Xi
c to the apex set. That is, we need to argue that, even if we add

edges between the vertices of Xi
c, it does not destroy the almost embedding too much, in such a way

that, by creating new vortices, there is still an almost embedding of bounded breadth and bounded
depth. Before going further, let us define a stellation in a graph and the torso of a set in a graph (to
distinguish with that torso of a tree decomposition at a node).

Stellation and torso. Let G be a graph and S be a collection of subsets of V (G). We denote by
G⋆

S the graph obtained from G by adding, for each S ∈ S, a vertex vS adjacent to the vertices in
S. The vertices vS are called stellation vertices. Let X ⊆ V (G). Recall that the torso of X in G,
denoted by torso(G,X) is the graph derived from the induced subgraph G[X] by turning NG(V (C))
into a clique for each connected component C of G − X. We denote by G◦

S the graph obtained

5.2. The upper bound 96

from G by turning each S ∈ S into a clique. In other words, G◦
S is the torso of V (G) in G⋆

S . See
Figure 5.8 for an illustration.

G∗
S G◦

S

Figure 5.8: Illustration of G⋆
S and G◦

S , where the sets in S are depicted in orange, and the new
vertices and edges are depicted in red.

Note that we have two definitions of torso. One is torso of a set X ⊆ V (G) in a graph G defined
just above. The other one (see Section 4.3) is, given a tree decomposition T = (T, β) of G, the torso
of T at node t. This second notion is stronger, in the sense that the torso of T at node t is the
graph obtained from G[β(t)] by making a clique out of each set β(t) ∩ β(t′) with t′ adjacent to t,
while the torso of β(t) in G makes a clique out of subsets of the sets β(t) ∩ β(t′). However, we can
prove the following.

Lemma 5.2.30. If a graph G has treewidth k, then there is always a tree decomposition T = (T, β)
of G of width k such that the torso of T at node t is exactly the torso of β(t) in G.

Moreover generally, let H be a hereditary graph class and suppose that G admits a tree decom-
position T ′ = (T ′, β′) of width k such that the torso T ′ at each node is in H. Then, there is a tree
decomposition T = (T, β) of G of width k such that the torso Gt of T at node t is exactly the torso
of β(t) in G and that Gt ∈ H.

Proof. While there is t ∈ V (T ′) such that the torso of T ′ at node t is different from the torso of
β′(t) in G, we modify the tree decomposition T ′ as follows. If the two notion of torso differ for t,
then this means that there is a neighbor t′ of t such that several connected components C1, . . . , Cℓ

of G− β′(t), with ℓ ≥ 2, contain vertices of β′(t′), meaning that we add more edges in the torso of
T at t (where we make a clique out of all of β′(t) ∩ β′(t′)) than in the torso of β′(t) in G (where we
only make a clique out of each NG(V (Ci)) ⊆ β′(t) ∩ β′(t′)). We may modify the tree decomposition
by removing the subtree T ′

t′ rooted at t′ (where we assume that the root is t), and adding instead ℓ
copies T 1

t′ , . . . , T
ℓ
t′ with β′(ui) = β′(u) ∩ V (Ci) for u ∈ V (Tt′) and ui its copy in T i

t′ , and joining t
to each copy of t′. In this new tree decomposition, for both notions of the torso, we make a clique
out of the entirety of β′(t) ∩ β′(ti) for i ∈ ℓ. For each u ∈ V (T ′

t), if the torso Gu at u is in H, then
the torso at ui is equal to Gu ∩ V (Ci), which is also in H given that H is hereditary. Hence, by
proceeding as such by induction, we obtain the desired tree decomposition.

Theorem 5.2.32 is the rooted version of our global theorem and it essentially goes as follows:

Let G,H be graphs (H is a long-jump grid), X ⊆ V (G) be a set of small size, and S be
a collection of subsets of X. Then either G⋆

S contains H as a minor, or there is a rooted
tree decomposition T = (T, β, r) of G◦

S such that, for each node t of T , the torso of β(t)
in G◦

S has an almost embedding in Σ and such that X ⊆ β(r).

If X = ∅, the above gives our global structure theorem by Lemma 5.2.30. Let us give intuition on X
and S. As previously, X corresponds to vertices that are present in the parent bag inherited from
the induction. Given that we now work with the torso of β(t) and not the torso of T at t, we will

5.2. The upper bound 97

not make a clique out of all of X. Instead, we make a clique out of a subset of X if it neighbors
some connected component with respect to the parent. This is what S represents.

Let us sketch the proof of our result. As previously, if X has a balanced separator, we easily
conclude, so we may assume that there is a wall in G, and thus in G⋆

S . We now apply the local
structure theorem on G⋆

S and conclude that, if G⋆
S is H-minor-free, then there is a Σ-decomposition of

G⋆
S of small breadth and depth at most d. For each cell c, we define Gi

c, Ai
c, and Xi

c as previously. We
additionally define Sic to be the collection of all sets NG⋆

S
(C) such that C is a connected component

of G⋆
S − Gi

c. Hence, we can recurse on Gi
c, Xi

c, and Si
c. (Gi

c)
⋆
Si
c

is a minor of Gi
S (obtained by

contracting each connected component C of G⋆
S −Gi

c to a point, so if H is a minor of (Gi
c)

⋆
Si
c
, it is

also a minor of G⋆
S . So we can assume that we found a tree decomposition T i

c respecting the criteria.
Then we define the tree decomposition T = (T, β, r) just as before. It remains to prove that there is
an almost embedding of the torso of β(t) in G◦

S of small breadth and depth for each t ∈ V (T). This
is immediate for t ̸= r by induction. The difficult part is to prove so for r. We currently have an
almost embedding in G⋆

S of small breadth and width at most 2d+ 1 (each cell containing vertices of
X is added to the vortex set). To obtain the torso of β(r) in G◦

S , we need to make a clique out of
each Xi

c, as well as each S ∈ S. Making a clique out of each Xi
c does not destroy the embedding.

Moreover, for each S, if the corresponding stellation vertex vS is in the interior of a cell c, then
its neighborhood S is in σ(c), so making a clique out of S does not destroy the embedding. The
problem is when vS is on the boundary of at least two cells. Then, it has neighbors in different cells
between which we need to add an edge, hence destroying the almost embedding. The idea is to
create a new vortex containing all cells with vS on its boundary (whose number can be assumed
to be bounded by |X|). The problem is that another stellation vertex vS′ could possibly be on the
boundary of this new vertex. So, we need to add all cells with vS′ on its boundary to the new vortex,
and so on. Two sets S, S′ ∈ S whose stellation vertices are on the boundary of the same cell are said
to be adjacent, which allows us to talk about connected components of S. What we will show (using
topological arguments) is that we can create a vortex cY for each connected component Y of S such
that, if S ∈ Y , then vS is in the interior of cY , and thus S is in σ(cY), allowing us to make a clique
out of S safely. These new vortices can be chosen to be distinct and to have width bounded by a
function of |X| and d. Hence, we find the desired almost embedding: instead of increasing the size
of the apex set, what we grow is the width and the breadth of the embedding.

Before proving the rooted version of the global structure theorem, let us prove the following
results, that essentially says that the number of stellation vertices (here |S|) is bounded by |X|.

Given a graph G embedded in a surface Σ such that the faces of G are disks, the degree of a face
of G is the number of edges bounding the face (counted with multiplicity).

Lemma 5.2.31. Let G be a graph embeddable in the projective plane, and (X,S) be a partition of
V (G) such that S is an independent set and |X| ≥ 1. Then |{NG(s) ∩X | s ∈ S}| ≤ 6|X| − 4.

Proof. Without loss of generality, we can assume that the vertices in S have pairwise distinct
neighborhood. Then it is enough to prove that |S| ≤ 6|X| − 5. Note that, if |X| = 1, then
|S| ≤ 1 = 6|X| − 5, and, if |X| = 2, then |S| ≤ 3 ≤ 6|X| − 5. Hence, we can assume that |X| ≥ 3. If
G is not planar (resp. planar), then there is an embedding of G in the projective plane (resp. the
sphere), such that each face of G is a disk.

Let di be the number of vertices in S of degree i, for i ∈ [0, 2], and d≥3 be the number of vertices
of S of degree at least three. Given that S is an independent set and that the vertices of S have
distinct neighborhoods, we have d0 ≤ 1 and d1 ≤ |X|. Let G′ be the simple graph obtained from G
by removing each vertex of S and

• for each vertex of S of degree two, adding an edge between its neighbors, and

5.2. The upper bound 98

• for each vertex of S of degree three or more with neighbors x1, . . . , xℓ appearing in this order
in the embedding, adding an edge between x1 and xi+1 for i ∈ [ℓ] (modulo ℓ).

G′ is a graph with vertex set X that is embeddable in the projective plane. In particular, d2 is
bounded by the number of edges of G′, and d≥3 is bounded by the number of faces of G′.

Let v be the number of vertices, e be the number of edges, and f be the number of faces
of G′. Let us compute the sum s of the degree of the faces of G′. Given that each face has
degree at most three when |V (G′)| ≥ 3, we have s ≥ 3f . Additionally, given that each edge
bounds two faces (or maybe once, but then it counts twice), we have s = 2e. Therefore, 3f ≤ 2e.
By Euler’s formula for the projective plane (resp. the sphere) [87], we also have v + f − e = 1
(resp. v + f − e = 2). Therefore, we deduce that e ≤ 3v − 3 and f ≤ 2v − 2. Therefore,
|S| = d0 + d1 + d2 + d≥3 ≤ 1 + |X|+ (3|X| − 3) + (2|X| − 2) ≤ 6|X| − 4.

We finally prove the rooted version of our global structure theorem.

Theorem 5.2.32. There exists functions f5.2.32, b5.2.32, w5.2.32 : N→ N such that for every positive
integer k, every graph G, every set X ⊆ V (G) of size at most 3f5.2.32(k) + 1, and every collection S
of subsets of X, either

1. G⋆
S contains the long jump grid of order k as a minor, or

2. there exists a rooted tree decomposition (T, r, β) of G◦
S where

(a) X ⊆ β(r),
(b) (T, β) has adhesion at most 3f5.2.32(k) + 1, and

(c) for every t ∈ V (T), torso(G◦
S , β(t)) has an almost embedding in the projective plane of

breadth at most b5.2.32(k) and width at most w5.2.32(k).

Moreover, f5.2.32(k), w5.2.32(k), b5.2.32(k) = 2O(k log k).

Proof. Let c1 be the constant from Proposition 5.2.29. We set

f5.2.32(k) := c1 ·
(
f5.2.26(k, 3)

)20
,

w5.2.32(k) := (24f5.2.32(k) + 4) · (2d5.2.26(k) + 1), and
b5.2.32(k) := 3f5.2.32(k) + k.

We prove the claim by induction on |V (G) \X|.

If G is small. In case |V (G)| ≤ 3f5.2.32(k)+ 1, we may select T to be the tree on one vertex, say t,
and set β(t) := V (G). The resulting tree decomposition (T, β) of G, which is also a tree decomposition
of G◦

S , trivially meets the requirements of our assertion given that 3f5.2.32(k)+1 ≤ w5.2.32(k). Hence,
we may assume that |V (G)| > 3f5.2.32(k) + 1.

If X is small. Moreover, if |X| ≤ 3f5.2.32(k), we may now select an arbitrary vertex v ∈ V (G) \X
and set X ′ := X ∪ {v}. It follows that |X ′| ≤ 3f5.2.32(k) + 1 and |V (G) \X| > |V (G) \X ′|. Hence,
by applying the induction hypothesis to G, X ′, and S, we obtain either the long jump grid of order
k as a minor of G⋆

S , and are therefore done, or we obtain a rooted tree decomposition (T, r, β) of
G◦

S meeting requirements (a), (b), and (c). In particular, we have X ⊊ X ′ ⊆ β(r) and are therefore
done. Thus, we may also assume that |X| = 3f5.2.32(k) + 1.

5.2. The upper bound 99

If there is X ′ ⊆ X such that G−X ′ is disconnected. Let X ′ ⊆ X and let H1, . . . ,Hℓ be the
components of G−X ′. If ℓ ≥ 2, then we may define a rooted tree decomposition (T, r, β) as follows.
For each i ∈ [ℓ], let Gi be the graph induced by X ′ ∪ V (Hi). Let Si be the collection of all the sets
NG⋆

S
(V (C)) such that C is a connected component of G⋆

S−V (Gi). Note that (Gi)
⋆
Si

is a minor of G⋆
S ,

given that it is obtained from G⋆
S by contracting each component of G⋆

S − V (Gi) to a single vertex.
Moreover, for each S ∈ Si, S ⊆ X ∩ V (Gi). Given that |V (Gi) \ X| < |V (G) \ X|, by applying
the induction hypothesis to Gi, X ∩ V (Gi), and Si, we obtain either that Jk is a minor of (Gi)

⋆
Si

,
and thus of G⋆

S , and therefore we are done, or we obtain a rooted tree decomposition (Ti, ri, βi) of
(Gi)

◦
Si

meeting requirements (a), (b), and (c). Let T be the tree with root r obtained from the
disjoint union of the trees Ti and the vertex r by joining ri to r for every i ∈ [ℓ]. We set β(r) := X,
and, for each i ∈ [ℓ] and t ∈ V (Ti), we set β(t) := βi(t). Requirements (a) and (b) are trivially
satisfied. Moreover, given that 3f5.2.32(k) + 1 ≤ w5.2.32(k), torso(G◦

S , β(r)) has an almost embedding
in the plane composed of a single vortex of width at most w5.2.32(k), hence meeting requirement (c).
Finally, notice that, for t ∈ V (Ti), the torso of β(t) in G◦

S is equal to the torso of βi(t) in (Gi)
◦
Si
,

hence meeting requirement (c). Therefore (T, r, β) is indeed a rooted tree decomposition of G◦
S as

required by the assertion. So we may assume that G−X ′ is connected for any X ′ ⊆ X. In particular,
G is connected.

If there exists a balanced separator for X. Suppose there exists a 2/3-balanced separator S
of size at most f5.2.32(k) for X.

In this case let H1, . . . ,Hℓ be the components of G − S and, for each i ∈ [ℓ], let X ′
i :=

(X ∩ V (Hi)) ∪ S. It follows that

|X ′
i| ≤

2

3
(3f5.2.32(k) + 1) + |S|

≤ 2f5.2.32(k) + f5.2.32(k)

≤ 3f5.2.32(k).

Now, for each i ∈ [ℓ], if |X ′
i ∪ V (Hi)| ≤ d5.2.32(k), we set Xi := X ′

i ∪ V (Hi) and we say that Hi is a
leaf.

Otherwise, we select an arbitrary vertex vi ∈ V (Hi) \X ′
i and set Xi := X ′

i ∪ {vi}. Observe that
|Xi| ≤ 3f5.2.32(k)+1 in this case. For every i ∈ [ℓ] for which Hi is not a leaf, let Gi = G[Xi∪V (Hi)].
Let also Si be the collection of all the sets NG⋆

S
(V (C)) such that C is a connected component of

G⋆
S − V (Gi). This implies that (Gi)

⋆
Si

can be obtained from G⋆
S by contracting each component of

G⋆
S − V (Gi) to a single vertex, and thus, (Gi)

⋆
Si

is a minor of G⋆
S . Notice that the elements in Si

are subsets of Xi. We have that |V (Hi) \Xi| < |V (G) \X| and thus, by applying the induction
hypothesis to Gi, Xi, and Si, we obtain either that Jk is a minor of (Gi)

⋆
Si

, and thus of G⋆
S ,

and therefore we are done, or we obtain a rooted tree decomposition (Ti, ri, βi) of (Gi)
◦
Si

meeting
requirements (a), (b), and (c). For every i ∈ [ℓ] where Hi is a leaf we define such a rooted tree
decomposition (Ti, ri, βi) by setting Ti to be the tree with a single vertex ri and βi(ri) := Xi.

Now let us define a rooted tree decomposition (T, r, β) for G as follows. Let T be the tree with
root r obtained by taking the disjoint union of the vertex r and the trees Ti, and joining ri to r for
all i ∈ [ℓ]. For every i ∈ [ℓ] and t ∈ V (Ti), we set β(t) := βi(t), and we set β(r) := X ∪ S. Note that
|β(r)| ≤ 4f5.2.32(k) + 1 ≤ w5.2.32(k), and that, for each i ∈ [ℓ] such that Hi is not a leaf, for each
t ∈ V (Ti), torso(G◦

S , β(t)) = torso((Gi)
◦
Si
, βi(t)). Then it is straightforward to check that (T, r, β) is

indeed a rooted tree decomposition of G◦
S as required by the assertion. Hence, we may assume that

there is no 2/3-balanced separator of size at most f5.2.32(k) for X.

5.2. The upper bound 100

Local structure theorem. If there is no 2/3-balanced separator of size at most f5.2.32(k) for X,
then X is (f5.2.32(k), 2/3)-well-linked in G, and thus also in G⋆

S . By Proposition 5.2.29, given that
f5.2.32(k) := c1 ·

(
f5.2.26(k, 3)

)20, it implies that G⋆
S contains a f5.2.26(k, 3)-wall W such that TW is a

truncation of TX . Then, by Theorem 5.2.26, this implies that, either Jk is a minor of G⋆
S , in which

case we conclude, or G⋆
S has a Σ-decomposition δ = (Γ,D) of breadth at most k − 1 and depth at

most d5.2.26(k), where Σ is the projective plane, and there exists a wall W ′ of height at least three
which is flat in δ and whose tangle is a truncation of the tangle induced by W . Additionally, the
closure of the vortex cells of δ are pairwise disjoint. Let Cv be the set of vortex cells of δ.

Without loss of generality, we may assume that, for each cell c ∈ C(δ) \ Cv, and each distinct
u, v ∈ πδ(c̃), there is a path from u to v whose internal vertices are in σδ(c)− πδ(c̃). If not, then,
if |c̃| = 2, then σδ(c) is disconnected and c can be divided into two cells cu and cv such that
πδ(c̃u) = {u} and πδ(c̃v) = {v}. And if πδ(c̃) = {u, v, w}, then w is a cut vertex of σδ(c) and c can
be divided into two cells cu and cv such that πδ(c̃u) = {u,w} and πδ(c̃v) = {v, w}.

Without loss of generality, we may also assume that, for each ground vertex v ∈ ground(δ), there
is c ∈ C(δ) \ Cv such that v ∈ πδ(c̃) and Nσδ(c)(v) ̸= ∅. Indeed, suppose that is not the case. Then,
given that G is connected, for any c ∈ C(δ) such that v ∈ πδ(c̃), c is a vortex cell. Given that the
closure of the vortex cells are pairwise disjoint, v is thus drawn on the boundary of a unique cell
c ∈ Cv. Then, we can draw v in the interior of c instead of its boundary: It does not increase the
depth of the vortex.

For each R ⊆ S, let VR be the set of all stellation vertices vS such that S ∈ R. Let Sg be the set
of S ∈ S such that vS ∈ ground(δ). Let X1 := X ∩ ground(δ), X2 be the set of vertices in X drawn
in the interior of non-vortex cells, and X3 be the set of vertices in X drawn in the interior of vortex
cells. Notice that (X1, X2, X3) is a partition of X. We have the following bound of the number of
stellation vertices on the ground.

Claim 5.2.33. If Sg ̸= ∅, then |Sg| ≤ 6|X1 ∪X2| − 5.

Proof of claim. Let CX be the set of cells c ∈ C(δ)\Cv such that X2∩σδ(c) ̸= ∅. Let F be the graph
with vertex set the union of X1, VSg and a vertex vc for each c ∈ CX , and edge set the edges of G⋆

S
with both endpoints in X1 ∪VSg and, for each c ∈ CX and each vS ∈ πδ(c̃)∩VSg , an edge between vc
and vS . By construction, F is embeddable in the projective plane. Let X ′ := X1∪{vc | c ∈ CX}. VSg

is an independent set of G⋆
S and thus of F . Additionally, by the assumptions on δ, for each vS ∈ VSg ,

there is c ∈ C(δ)\Cv such that vS ∈ πδ(c̃) with Nσδ(c)(vS) ̸= ∅. Therefore, there is x ∈ (X1∪X2)∩S
such that x ∈ V (σδ(c)). Thus, NF (vS) ∩X ′ ̸= ∅. We thus conclude, by Lemma 5.2.31 applied to
VSg and X ′, that |Sg| = |VSg | ≤ 6|X ′| − 5 ≤ 6|X1 ∪X2| − 5. ⋄

Construction of the tree decomposition. For every non-vortex cell c ∈ C(δ) \ Cv, we set
G1

c = σδ(c), A1
c = πδ(c̃), and X1

c = (X∩V (σδ(c)))∪A1
c . (A,B) = (V (σδ(c)), V (G⋆

S)\(V (σδ(c))\A1
c))

is a separation of G⋆
S of order |A1

c | ≤ 3 ≤ f5.2.32(k). Given that W ′ is flat in δ, and in particular
that at most one 3-branch vertex of W ′ is in σδ(c)− πδ(c̃), it follows that A \B does not contain
a row and a column of W ′, and thus (A,B) ∈ TW ′ ⊆ TX . Therefore, |X1

c | ≤ |X ∩ V (σδ(c))|+ 3 ≤
1
3 |X|+ 3 ≤ 3f5.2.32(k).

For every vortex cell c ∈ Cv, let (Y1, . . . , Yℓ) be a linear decomposition of the vortex society
(σδ(c),Ωc) of c of adhesion at most d5.2.26(k) (it exists by Proposition 5.2.28), with the vertices of V (Ωc)
labeled v1, . . . , vℓ. For i ∈ [ℓ], let Ai

c = (Yi ∩Yi−1)∪ (Yi ∩Yi+1)∪{vi} where Y0 = Yℓ+1 = ∅. For each
i ∈ [ℓ], we set Gi

c to be the graph induced by Yi andXi
c = (X∩Yi)∪Ai

c. (A,B) = (Yi, V (G⋆
S)\(Yi\Ai

c))
is a separation of G⋆

S of order |Ai
c| ≤ 2d5.2.26(k) + 1 ≤ f5.2.32(k). Given that W ′ is flat in δ, and

in particular that there is no vortex in the disk where the interior of W ′ is drawn, it follows that

5.2. The upper bound 101

A \ B does not contain a row and a column of W ′, and thus (A,B) ∈ TW ′ ⊆ TX . Therefore,
|X ∩ V (σδ(c))| ≤ 1

3 |X|, and thus that |Xi
c| ≤ 1

3 |X|+ 2d5.2.26(k) + 1 ≤ 3f5.2.32(k).
For every cell c ∈ C(δ) and each i, we set H i

c := Gi
c − VS and Zi

c := Xi
c − VS . We also set Si

c to
be the collection of all the sets NG⋆

S
(V (C)) such that C is a connected component of G⋆

S − V (H i
c).

This implies that (H i
c)

⋆
Si
c

can be obtained from G⋆
S by contracting each component of G⋆

S − V (H i
c)

to a single point, and thus, (H i
c)

⋆
Si
c

is a minor of G⋆
S . Notice that, for each R ∈ Sic, R ⊆ Zi

c.
We define a rooted tree decomposition (T, r, β) of G as follows. We define β(r) to be the

union of the sets Zi
c, for all cells c ∈ C(δ) and all i. For every cell c ∈ C(δ) and each i such that

V (H i
c) \ Zi

c ̸= ∅, there exits vic ∈ V (H i
c) \ Zi

c. Let Z ′i
c = Zi

c ∪ {vic}. |Z ′i
c | ≤ 3f5.2.32(k) + 1 and

|V (H i
c) \Z ′i

c | < |V (G) \X|, so we can apply the induction hypothesis to H i
c, Z ′i

c , and Sic. We obtain
either that Jk is a minor of (H i

c)
⋆
Si
c
, and thus of G⋆

S , and therefore we are done, or we obtain a
rooted tree decomposition (T i

c , r
i
c, β

i
c) of (H i

c)
⋆
Si
c

meeting requirements (a), (b), and (c). T is obtain
from the union of r and the trees T i

c by joining r to each ric. For each t ∈ V (T i
c), we set β(t) = βic(t).

It is straightforward to check that (T, r, β) meet requirements (a) and (b), and that each
t ∈ V (T) \ {r} meet requirement (c) (given that, for t ∈ T i

c , torso(G◦
S , β(t)) = torso((Gi

c)
◦
Si
c
, βic(t))).

It remains to prove that torso(G◦
S , β(r)) has an almost embedding in the projective plane of breadth

at most b5.2.32(k) and width at most w5.2.32(k). The difficulty is that we need to make a clique out
of S for each S ∈ S. If all vertices of S are drawn in the same cell, that is, if vS is drawn in the
interior of a cell, then it does not change much. However, if vS is a ground vertex, then making a
clique out of S destroys the Σ-decomposition. Therefore, we need to find a Σ-decomposition δ⋆ such
that each stellation vertex is drawn in the interior of a cell.

If there is no stellation vertex on the ground. If Sg = ∅, then ground(δ) ⊆ β(r) and, for each
S ∈ S, there is a cell c ∈ C(δ) such that S ⊆ V (σδ(c)). Then, we can construct a Σ-decomposition δ⋆

of torso(G◦
S , β(r)) from the Σ-decomposition δ of G⋆

S by keeping only the vertices of β(r) and making
a clique out of each Zi

c for c ∈ C(δ) = C(δ⋆) and out of each S for each S ∈ S. Let C0 be the union of
Cv and the cells of C(δ⋆)\Cv that have a vertex drawn on their interior. Notice that, by the definition
of the sets X1

c , the only vertices that can be drawn in the interior of non-vortex cells are vertices of
X2. Therefore, |C0| ≤ k − 1 + |X2| ≤ b5.2.32(k). For each c ∈ C0 \ Cv, |V (σδ⋆(c))| ≤ 3 + |X2|. Let
c ∈ Cv. Remember that the vortex society (σδ(c),Ωc) of c in δ has a linear decomposition (Y1, . . . , Yℓ)
of adhesion at most d5.2.26(k). For i ∈ [ℓ], let Y ′

i := (Yi ∪X) ∩ V (σδ⋆(c)) = Ai
c ∪ (X3 ∩ V (σδ⋆(c))).

Then (Y ′
1 , . . . , Y

′
ℓ) is a linear decomposition of the vortex society (σδ⋆(c),Ωc) in δ⋆ of width at most

2d5.2.26(k) + 1 + |X3| ≤ w5.2.32(k). Therefore, δ⋆ is a Σ-embedding with vortex set C0 of breadth at
most b5.2.32(k) and width at most w5.2.32(k). Hence, we now assume that Sg ̸= ∅.

If ground vertices are all stellation vertices. If VSg = ground(δ), then we can define δ⋆ to
be the Σ-decomposition of torso(G◦

S , β(r)) composed of a unique vortex cell c with V (σδ⋆(c)) =
β(r) and one arbitrary vertex on the boundary. Let us compute the width of the vortex society
of c. Given that all vertices in ground(δ) are stellation vertices, (X2, X3) is a partition of X.
Note that

∑
c∈Cv |V (Ωc)| ≤ |ground(δ)| = |Sg|. Remember that the boundary of vortex cells of

δ are pairwise disjoint. This implies that there is an injection between the bags in the linear
decomposition (Y1, . . . , Yℓ) of vortex cells in δ and the vertices in Sg. Also, for each bag Yi,

5.2. The upper bound 102

|Yi ∩ β(r)| = |(Yi ∩ Yi−1) ∪ (Yi ∩ Yi+1)| ≤ 2d5.2.26(k). Therefore,

|β(r)| ≤ |X2|+ |X3|+
∑
c∈Cv

|V (Ωc)| · 2d5.2.26(k)

≤ |X|+ |Sg| · 2d5.2.26(k)
≤ 3f5.2.32(k) + 1 + (6(3f5.2.32(k) + 1)− 5) · 2d5.2.26(k)
≤ (36f5.2.32(k) + 2) · d5.2.26(k) + 3f5.2.32(k) + 1

≤ w5.2.32(k).

Therefore, δ⋆ is a Σ-embedding with vortex set C0 of breadth at most 1 ≤ b5.2.32(k) and width at
most w5.2.32(k). We now assume that ground(δ) \ VSg ̸= ∅.

Connected component of stellation vertices and its boundary. For S, S′ ∈ Sg, we say that
S and S′ are adjacent if vS and vS′ are drawn on the boundary of the same cell of δ. We say that S
and S′ are connected if there is a sequence S0 = S, S1, . . . , Sℓ−1, Sℓ = S′ such that, for each i ∈ [ℓ],
Si−1 and Si are adjacent. Hence, a connected component Y of Sg is a maximal size set of elements
of Sg that are pairwise connected. Let us show that, for each connected component Y of Sg, we can
replace the cells containing a stellation vertex vS for S ∈ Y in their boundary by a vortex, such that
each stellation vertex vS , for S ∈ Y , is drawn in the interior of the vortex.

Let Y be a connected component of Sg. It exists given that Sg ̸= ∅. We call interior of Y the
set of points x ∈ N(δ) such that πδ(x) ∈ VSg . Points in the interior of Y are said to be red. We
call boundary of Y the set of points x ∈ N(δ) that are not red but are on the boundary of a cell
c ∈ C(δ) containing a red point. We call exterior of Y the set of points x ∈ N(δ) that are neither in
the boundary nor in the interior of Y . Points in the boundary (resp. exterior) of Y are said to be
blue (resp. green). Notice that, for each cell c ∈ C(δ), c̃ cannot contain both red and green points.
Also, given that Y ̸= ∅, there is at least one red point, and given that G is connected and that
ground(δ) \ VSg ̸= ∅, there is at least one blue point.

For each face F of Σ−
⋃

D∈DD, let VF be the set of blue points in the closure of F . Let ΓH be
a drawing without crossings in Σ whose vertices are the blue points and whose edges are, for each
face F of Σ−

⋃
D∈DD such that |VF | ≥ 2, edges between the blue points in VF inducing a spanning

tree. Notice that, given that Y is connected, ΓH has at most one face containing red points, that we
call the red face of ΓH . The faces of ΓH containing green points are called green faces.

Claim 5.2.34. There is at most one connected component of ΓH that bounds green faces of ΓH .

Proof of claim. Suppose not and let x and y be two blue points, gx, gy be two green points, and
∆x,∆y ∈ D be disks such that x and y are not in the same connected component of ΓH and
that x, gx ∈ bd(∆x) and y, gy ∈ bd(∆y). Given that ΓH is drawn in the projective plane Σ, at
most one connected component of ΓH may contain non-contractible cycles, and the other contains
only contractible cycles. Hence, without loss of generality, we may assume that the connected
component of x contains only (if any) contractible cycles. Then it is implied that there is a cycle T in⋃

∆∈D bd(∆) avoiding blue points such that x and y are contained in different connected components
of Σ− T and such that the connected component of Σ− T containing x is a disk. Given that the
closure of a cell cannot contain both red and green points, it is implied that T ∩N(δ) contains either
only red points, or only green points.

If T ∩ N(δ) contains only red points, then gx and gy are in different components of Σ −
T . This implies that

⋃
S∈Y {vS} separates πδ(gx) from πδ(gy) in torso(G⋆

S , β(r)), and thus that

5.2. The upper bound 103

NG⋆
S
(
⋃

S∈Y {vS}) ⊆ X separates πδ(gx) from πδ(gy) in G. This contradicts the fact that, for all
X ′ ⊆ X, G−X ′ is connected.

If T ∩N(δ) contains only green points, then by the definition of blue points, there is ∆′
x,∆

′
y ∈ D

containing red points rx and ry respectively, such that x ∈ bd(∆′
x) and y ∈ bd(∆′

y), and ∆′
x and ∆′

y

belong to different components of Σ− T . However, given that πδ(rx), πδ(ry) ∈ Y , this contradicts
that fact that Y is connected. Hence the result. ⋄

Vortex containing VY . Let ΓR be the connected component of ΓH that bounds the green faces of
ΓH . If it does not exists, let ΓR be any connected component of ΓH . By definition of blue points, any
edge of ΓR must bound the red face. We now redefine the red face to be the face of ΓR containing
red points, that is, it contains the other components of ΓH , if any. Let x1, . . . , xℓ be the blue points

1

12

2
A

A

B

D
C

E

E

C

D

A

B

1

12

2
A

A

B

D
C

E

Figure 5.9: Illustration of ΓR embedded on the projective plane: on the left, any point on the
dashed cycle is identified to the point opposite to it with respect to the center of the cycle. From
the yellow point, we add to the cyclic ordering the blue points that were not yet added following the
order induced by the red face. The figure on the top right and bottom are the same up to some
homeomorphism. The red face (figure on the left) becomes a vortex with boundary the blue points
of ΓR (figures on the right and bottom).

of ΓR, in the order induced by their appearance on the boundary of the red face. Notice that, given
that an edge may bound this face twice, some points may appear twice in the ordering. Hence, we
only keep the first appearance of each point in the ordering, and this gives us a cyclic ordering ΩY

of the blue points of ΓR. See Figure 5.9 for an illustration.
Let CY be the set of all cells in the closure of the red face, and DY be the closure of the cells in

5.2. The upper bound 104

CY . Let GY be the graph obtained from
⋃

c∈CY
σδ(c) by removing the vertices that do not belong

to β(r). Let T be any simple closed curve drawn within the red face which contains all blue points
of ΓR, in the order prescribed by ΩY . If Σ is the sphere, then both components of Σ− T are disks
and if Σ is the projective plane, then exactly one component of Σ− T is a disk (this would not be
true if Σ was the torus or any other surface of higher Euler genus). Let cY be the (possibly unique)
component of Σ− T that is contained in the red face and DY be its closure. If cY is a disk, then let
δY = (Γ,DY) be the Σ-decomposition of G⋆

S obtained from δ = (Γ,D) by setting DY = D\DY ∪DY .
Hence, C(δY) = C(δ) \ CY ∪ cY , with σδY (cY) = GY , and πδY (c̃Y) = πδ(V (ΓR)). If cY is not a
disk, then we remove cY from Σ and replace it by a disk c′Y , hence obtaining a sphere S0. Then, we
let δY = (Γ,DY) be the S0-decomposition of G⋆

S obtained from δ by setting DY = D \ DY ∪D′
Y ,

where D′
Y is the closure of c′Y . Since any planar graph can be embedded in the projective plane,

let us assume without loss of generality that δY be the Σ-decomposition of G⋆
S with new vortex cY .

Observe that every red point is now drawn in the interior of cY , and that no green point is drawn in
cY . This implies that VY is drawn in the interior cY and that VSg\Y ⊆ ground(δY) \ πδY (c̃Y).

We can apply this procedure iteratively to each connected component of Sg (we do this procedure
at most 18f5.2.32(k) + 1 times by Claim 5.2.33). We thus obtain a Σ-decomposition δ′ of G⋆

S such
that, for each component Y of Sg, there is a cell cY ∈ C(δ′) such that VY is drawn in the interior of
cY . Hence, every stellation vertex is drawn in the interior of a cell of C(δ′). It allows us to define
a Σ-decomposition δ⋆ of torso(G◦

S , β(r)) from the Σ-decomposition δ′ of G⋆
S by keeping only the

vertices of β(r) and making a clique out of each Zi
c for c ∈ C(δ) and out of each set S ∈ S. Let C0

be the union of the vortex cells of δ⋆ and the cells of δ⋆ whose interior is non empty. A vortex cell of
δ⋆ is either a vortex cell of δ or a cell cY for some component Y of Sg. Additionally, any cell of δ⋆

whose interior is non empty is necessarily either a cell cY for some component Y of Sg with |c̃Y | ≤ 3,
or a cell containing a vertex of X2. Therefore, |C0| ≤ k − 1 + |Sg|+ |X2| ≤ b5.2.32(k).

For each component Y of Sg, let us construct a linear decomposition of width at most w5.2.32(k)
of the vortex society (GY ,ΩY) of cY . Remember that CY is the set of cells of δ that were replaced
by cY . Let A ⊆ (V (GY)∩ ground(δ)) \ VY be the set of non-stellation vertices of GY that are on the
boundary of some non-vortex cell of CY in δ.

Claim 5.2.35. |A| ≤ |X1|+ 2|X2|.

Proof of claim. By definition, A ∩X ⊆ X1. Let v ∈ A \X1. Then there is a non-vortex cell c ∈ CY

and vS ∈ VY such that v, vS ∈ πδ(c̃). By the connectivity assumptions on δ, there is a path P from
vS to v whose internal vertices are in σδ(c)− πδ(c̃). In particular, the neighbour of vS in P is in X2.
The cell c contributes for at most two vertices of A \X1 (v and the third vertex of πδ(c̃), if it exists).
Therefore, |A \X1| ≤ 2|X2|. ⋄

Let B := (V (GY) ∩ ground(δ)) \ A. By definition of A and given that we assume any ground
vertex of δ to be on the boundary of a non-vortex cell, it is implied that B ⊆ V (ΩY). Moreover,
by our connectivity assumptions, each vertex of B is on the boundary of a (unique) vortex cell of
CY . Let us fix a linear decomposition of each vortex cell of CY of adhesion at most d5.2.26(k). For
each vertex v on the boundary of a (unique) vortex cell of CY , let Yv be the bag corresponding to v,
and let Y ′

v := Yv ∩ β(r). We have |Y ′
v | ≤ 2d5.2.26(k) + 1. Let A′ = V (GY) \ (

⋃
b∈B Y

′
b \X). Let us

bound the size of A′. Each vertex in A′ is either a vertex of A, or a vertex of X2 ∪X3, or a vertex
in Ya \ {a} for a vertex a ∈ ground(δ) on the boundary of some non-vortex cell of CY , that is, for

5.2. The upper bound 105

a ∈ A ∪ VY . Therefore,

|A′| ≤ |A|+ |X2|+ |X3|+ (|A|+ |Sg|) · 2d5.2.26(k)
≤ |X1|+ 3|X2|+ |X3|+ (6|X1|+ 8|X2| − 5) · 2d5.2.26(k)
≤ (8|X| − 5) · (2d5.2.26(k) + 1).

Then, we define a linear decomposition (Zv)v∈V (ΩY) of (GY ,ΩY) as follows. For each b ∈ B, we set
Zb := Y ′

b ∪A′, and for each a ∈ V (ΩY) \B, we set Za = A′. (Zv)v∈V (ΩY) has width at most

|A′|+ 2d5.2.26(k) + 1 ≤ (8|X| − 4) · (2d5.2.26(k) + 1)

≤ (24f5.2.32(k) + 4)(2d5.2.26(k) + 1)

≤ w5.2.32(k).

Therefore, δ⋆ is an almost embedding of torso(G◦
S , β(r)) in Σ with vortex set C0 of breadth at most

b5.2.32(k) and width at most w5.2.32(k). Hence, the result.

As corollary of Theorem 5.2.32, we immediately get the following.

Theorem 5.2.36. Let k ∈ N. Let G be a graph that excludes a long jump grid of order k as a minor.
Then there exists a tree decomposition T of G of adhesion at most 3f5.2.32(k) + 1 such that the torso
of T at each node has an almost embedding in the projective plane of breadth at most b5.2.32(k) and
width at most w5.2.32(k).

Also, with the same proof as Theorem 5.2.32, but replacing Theorem 5.2.26 with Theorem 5.2.27,
we conclude the following.

Theorem 5.2.37. There exist functions f5.2.37, b5.2.37, w5.2.37 : N2 → N such that the following holds.
Let k, c ∈ N. Let G be a graph that excludes a long jump grid of order k and a crosscap grid of order
c as a minor. Then there exists a tree decomposition T of G of adhesion at most 3f5.2.37(k, c) + 1
such that the torso of T at each node has an almost embedding in the plane of breadth at most
b5.2.37(k, c) and width at most w5.2.37(k, c).

Moreover f5.2.37(k, c), b5.2.37(k, c), w5.2.37(k, c) = 2O(k log(k·c)).

Identifying vortices

We now deduce our global structure theorem as it was stated in the introduction.

In [302], it was proved that vortices of bounded width have bounded bidimensionality.

Proposition 5.2.38 (Lemma 3.9, [302]). For every graph G, every k ∈ N, and every surface Σ with
Euler genus at most g, if δ is a Σ-decomposition of G with width at most w and breadth at most b
and X =

⋃
{σ(c) | c is a vortex of δ}, then bg(G,X) = O((b4 · (b · g · w)4).

Therefore, we immediately get our upper bound.

Theorem 5.2.39. Let k ∈ N. Let G be a graph that excludes a long jump grid of order k as a minor.
Then idpr⋆(G) = 2O(k log k).

Proof. By Theorem 5.2.36, there exists a tree decomposition T = (T, β) of G such that the torso Gt

of T at each node t ∈ V (T) has an almost embedding δt in the projective plane of breadth at most
b5.2.32(k) and width at most w5.2.32(k). For t ∈ V (T), let Ct be the set of all vortex cells of δt, Pt =
(σδt(c))c∈Ct , and Xt =

⋃
Pt. Given that Gt//Pt ∈ Gprojective, it implies that I(Gt, Xt) ∩ Gprojective ̸= ∅.

The projective plane has Euler genus one. Hence, by Proposition 5.2.38, bg(G,Xt) = O((b45.2.32 ·
(b5.2.32 · w5.2.32)

4) = 2O(k log k). We conclude that idpr⋆(G) ≤ maxt∈V (T) bg(G,Xt) = 2O(k log k).

5.3. The lower bound 106

Similarly, we also conclude the following from Theorem 5.2.37 and Proposition 5.2.38.

Theorem 5.2.40. Let k, c ∈ N. Let G be a graph that excludes a long jump grid of order k and a
crosscap grid of order c as a minor. Then idpl⋆(G) = 2O(k log(k·c)).

Combined with Proposition 5.1.1, Theorem 5.2.39 immediately implies Theorem 2.1.2. Addition-
ally, we know from [136] that Gprojective is the set of all minors of crosscap grids C. This, combined
with Proposition 5.1.1 and Theorem 5.2.40, implies Theorem 2.1.4.

5.3 The lower bound

In this section, we prove Theorem 2.1.3. In fact we prove that pJ ⪯ idpr⋆ and Theorem 2.1.3 follows
as all graphs in J are graphs in Gedge-apex.

Given a parameter p and a graph class G, we define p ▷id G : Gall → N as the graph parameter
where

p ▷id G(G) := min{k | ∃X ⊆ V (G), p(G,X) ≤ k and I(G,X) ∩ G ̸= ∅}.

Therefore, idpr = bg ▷id Gprojective. We prove the p ▷id G is a minor-monotone parameter.

Lemma 5.3.1. Let p be a minor-monotone parameter and G be a minor-closed graph class. Then
the parameter p ▷id G is minor-monotone.

Proof. Let k = p ▷id G(G). Then there is X ⊆ V (G) and P = (X1, . . . , Xr) ∈ P(X) be such that
p(G,X) = k and G//P ∈ G. Let H be a minor of G and {Sx | x ∈ V (H)} be a model of H in G.
For i ∈ [r], let Yi = {x ∈ V (H) | Sx ∩Xi ̸= ∅} and Y =

⋃
i∈[r] Yi. Given that p is minor-monotone,

we have p(H,Y) ≤ p(G,X) = k. Note that the sets Yi may intersect, so (Y1, . . . , Yr) is not a
partition. Let P ′ = (Y ′

1 , . . . , Y
′
s) ∈ P(Y) be such that for each i ∈ [r], there is j ∈ [s′] such that

Yi ⊆ Y ′
j and, if Y ′

j \ Yi ≠ ∅, then there is i′ ∈ [r] such that Yi′ ⊆ Y ′
j and Yi ∩ Yi′ ≠ ∅. Then,

{Sx | x ∈ V (H) \ Y } ∪ {
⋃

x∈Y ′
j
Sx \X ∪ {xi | Yi ⊆ Y ′

j } | j ∈ [s]} is a model of H//P ′ in G//P , where
xi is the vertex of G//P obtained from the identification of Xi. Given that G is minor-closed and
that G//P ∈ G, it implies that I(H,Y) ̸= ∅. Therefore, p ▷id G(H) ≤ k.

For the proof of Theorem 2.1.3, we first prove in Subsection 5.3.1 that idpr(Jk) = Ω(k1/4)
(Lemma 5.3.3). Then, in Subsection 5.3.2, using the result of the previous subsection, we prove that
idpr⋆(Jk) = Ω(k1/384) (Theorem 5.3.8). To do so, we need a result from [302] (Proposition 5.3.5)
that essentially states that if the biggest grid parameter of each bag of a tree decomposition of G is
small, then so is the biggest grid parameter of G.

By Lemma 5.3.1, idpr = bg ▷id Gprojective is minor-monotone, and thus so is idpr⋆. Therefore, for
any graph G containing Jk as a minor, idpr⋆(G) = Ω(k1/384), and therefore, pJ ⪯ idpr⋆.

5.3.1 Identifications in a long-jump grid

We first prove that pJ ⪯ idpr.
We define J ′ = {J ′

k | k ∈ N} where J ′
k is the graph obtained from a (4k + 1)× (4k + 1)-grid

Γ4k+1 after adding the edge {x, y} = {(k+1, 2k+1), (3k+1, 2k+1)} (see Figure 5.10 for an example
where k = 8). It is easy to see that pJ and pJ ′ are linearly equivalent.

Let F be the graph depicted in Figure 5.10 (on the right). F is known to be a minor-obstruction
of the projective plane (see D17 in [19, 233]).

We need the following result.

5.3. The lower bound 107

2k 2k

k

2k

k

x

y

b

Figure 5.10: The graph J ′
8 and a non-projective graph F .

Proposition 5.3.2 ([82]). Let Γm be the (m ×m)-grid and S be a subset of the vertices in the
central (m− 2ℓ)× (m− 2ℓ)-subgrid of Γm, where ℓ = ⌊ 4

√
|S|⌋. Then G contains the (ℓ× ℓ)-grid as

an S-minor.

We now have all ingredients for the main result of this part. We essentially prove that if a set
X ⊆ V (J ′

k) has too small biggest grid parameter, then every graph in I(J ′
k, X) contains F as a

minor. And since F is not projective, it thus implies that I(J ′
k, X) ∩ Gprojective = ∅.

Lemma 5.3.3. Let k ∈ N. Then idpr(Jk) = Ω(k1/4).

Proof. Given that pJ and pJ ′ are linearly equivalent, it is enough to prove the result for pJ ′ .
Let X ⊆ V (J ′

k) and P ∈ P(X) be such that G′ := J ′
k//P ∈ Gprojective. Let us prove that

bg(J ′
k, X) = Ω(k1/4).

For each margin b ∈ [0, ⌊k/2⌋], let Xb be the set of vertices of X that belong in the (k−b)×(k−b)-
subgrid Γk−b of Γ4k+1 and Pb = P∩Xb. We claim that |Xb| ≥ k−b. Suppose towards a contradiction
that |Xb| ≤ k− b− 1. Then, in Γk−b, there are at least two vertical paths on the left of x and y, one
vertical path on the right of x and y, one horizontal path above x, two horizontal paths between
x and y, and one horizontal path below y, whose vertices do not intersect X (drawn in blue in
Figure 5.10). Let Vx, Vy ⊆ V (Γk−b) be the sets of all the vertices in the two squares containing x and
y surrounded by the aforementioned paths (drawn in grey in Figure 5.10), respectively. Let P ′ be
obtained from P by adding two new parts: Vx and Vy. Given that G[Vx] (resp. G[Vy]) is connected,
the identification of all vertices in Vx (resp. Vy) is equivalent to the contraction of all edges in G[Vx]
(resp. G[Vy]). Given that J ′

k//P ∈ Gprojective and that Gprojective is closed under contractions, we thus
have G′//Vx//Vy = G//P ′ ∈ Gprojective. However, as depicted in Figure 5.10, F is a minor of G//P ′, a
contradiction. We conclude that |Xb| ≥ k − b.

We choose the margin bk as the maximum integer b such that ⌊ 4
√
k − b⌋ ≥ 2b. This implies that

⌊ 4
√
|Xbk |⌋ ≥ 2bk, therefore, from Proposition 5.3.2, bg(J ′

k, X) ≥ ⌊ 4
√
|Xbk |⌋ = 2bk. As bk = Ω(k1/4),

we are done.

5.3.2 Lower bound under the presence of clique-sums

In this section we extend the polynomial bound in Lemma 5.3.3 from idpr to idpr⋆. For this we need
a series of definitions and preliminary results from [302].

5.3. The lower bound 108

We say that a graph G is (f, k)-tightly connected for some f : N → N and k ∈ N, if for every
separation (B1, B2) of G of order q < k such that both G[B1 \B2] and G[B2 \B1] are connected, it
holds that one of B1, B2 has at most f(q) vertices. We say that a parametric graph H = ⟨Hk⟩k∈N
is f -tightly connected if for each k ∈ N, Hk is (f, k)-tightly connected.

Proposition 5.3.4 (Lemma 4.9, [302]). Let r ∈ N and let g, h : N → N be two non-decreasing
functions. Let p be a minor-monotone graph parameter such that for every graph H, hw(H) ≤
h(p(H)). Let G be a (g, h(r) + 1)-tightly connected graph with |V (G)| > 2g(h(r)) and p⋆(G) ≤ r.
Then G admits a tree decomposition (T, β) where T is a star with center t, where for the torso Gt of
(T, β) at t, p(Gt) ≤ r, and where, for every e = tt′ ∈ E(T), G[β(t′) \ β(t)] is a connected graph and
|β(t′)| ≤ g(h(r)).

Proposition 5.3.5 (Lemma 4.11, [302]). Let G be a 4-connected graph of maximum degree ∆. Let
r ∈ N and let (T, β) be a tree decomposition of G where T is a star with center t and such that for
every e = tt′ ∈ E(T), G[β(t′) \ β(t)] is a connected graph on at most l vertices. Let Gt be the torso
of (T, β) at t and we denote Gc = (V (G), E(G) ∪E(Gt)), m = hw(Gc), and B =

⋃
t′∈V (T)\{t} β(t

′).
There is a function f5.3.5 : N4 → N such that if X is a subset of V (Gt) where bg(Gt, X) ≤ r, then
bg(Gc, X ∪B) ≤ f5.3.5(r,m, l,∆). Moreover, f5.3.5(r,m, l,∆) ∈ O(m48 + r1/2 · (m8l4 +∆m24l2)) ⊆
poly(m+ l + r +∆).

Lemma 5.3.6. Let G be a minor-closed graph class of Hadwiger number at most η and G be a graph.
Then hw(G) ≤ bg ▷id G(G)2 + η.

Proof. Let t = hw(G) and k = bg ▷id G(G). Given that bg is minor-monotone and that G is
minor-closed, by Lemma 5.3.1, bg ▷id G is minor-monotone. Therefore, given that Kt is a minor of
G, there exists Y ⊆ V (Kt) such that bg(Kt, Y) ≤ k and I(Kt, Y) ∩ G ≠ ∅. Let G′ ∈ I(Kt, Y) ∩ G.
Given that hw(G′) ≤ η, the identification of a partition of Y reduced the size by at least t−η. Hence,
given that identifying p+ 1 vertices reduce that size by at most p, we conclude that |Y | ≥ t− η + 1.
Notice that k ≥ bg(Kt, Y) ≥ bg(Kt[Y]) ≥ ⌊|Y |1/2⌋ ≥ (t− η)1/2. This implies that t ≤ k2 + η.

Figure 5.11: The graph I4.

A new variant of the long-jump grid. For the purposes of the proofs in this section, we consider
an “enhanced version” of Jk, namely I = ⟨Ik⟩k∈N which is obtained from J2k+1 as follows. We
partition the 4k + 4 vertices in the outermost cycle of J2k+1 into k + 1 sets of four consecutive
vertices. For each such set, we add a new vertex adjacent to the four vertices of the set, as illustrated

5.3. The lower bound 109

in Figure 5.11. These k + 1 new vertices are called satellite vertices. Note that Ik is 4-connected
and 4-regular. Moreover, we easily have that pJ and pI are linearly equivalent.

Lemma 5.3.7. J is f5.3.7-tightly connected for f5.3.7(q) = (2q + 1)2.

Proof. Let G := Ik. Let (B1, B2) be a separation of G of order q < k. Let A = B1∩B2, D1 = B1 \A,
and D2 = B2 \A. We assume that both G[D1] and G[D2] are connected. Let us show that one of
B1 and B2 has at most (2q + 1)2 vertices.

Let k′ = 2k + 1. Let Q be the spanning ((2k′ + 2)× k′)-annulus grid of G. Clearly Q contains
k′ cycles. Also it contains 2k′ + 2 paths, each on k′ vertices, which we call tracks. We also use R
for the set of the satellite vertices of Ik. We enhance the tracks by extending each of them to the
unique satellite vertex that is adjacent to one of its endpoints. Let Y be the union of all the ≥ k′− q
cycles that are not met by A and of all ≥ 2k′ + 2− 4q tracks that are not met by A (observe that if
a vertex of A belongs to R, then it meets four tracks).

As every track in Y has a common endpoint to every cycle in Y, we obtain that Y is connected,
therefore V (Y) is either a subset of D1 or a subset of D2. W.l.o.g., we assume that V (Y) ⊆ D1. We
next prove that |B2| ≤ (2q + 1)2.

Let x be a vertex of D2 and let Px be some path of G[B2] starting from x and finishing to some
vertex of A and with all internal vertices in D2. This path cannot meet more than q = |A| cycles of
Q because each such cycle contains some vertex of Y ⊆ D1. Similarly, Px cannot meet more than
q = |A| tracks as each such track contains some vertex of Y ⊆ D1. This implies that every vertex of
G[B2] should be within distance at most q from x. It is now easy to verify that, in G, the vertices
within distance at most q from some x ∈ A is upper bounded by (2q + 1)2. As all vertices of B2 are
accessible from x within this distance in G[B2], we conclude that |B2| ≤ (2q + 1)2.

Theorem 5.3.8. Let k ∈ N. Then idpr⋆(Jk) = Ω(k1/384).

Proof. We prefer to work with Ik (cf. Figure 5.11) because it is 4-connected and 4-regular. By
Lemma 5.3.3, we obtain that idpr(Jk) = Ω(k1/4). Thus, given that Jk and Ik are linearly
equivalent, it is enough to prove that

idpr(Ik) ∈ O
(
idpr⋆(Ik)

96
)
.

For simplicity, we set G = Ik. Let r be such that idpr⋆(G) ≤ r. Our objective is to prove that
idpr(G) ∈ O(r96).

Let η = max{hw(G) | G is projective} = 6. Let h, g : N→ N be such that

h(x) = x2 + η, and (5.1)
g(x) = (2x+ 1)2. (5.2)

Thus, by applying Lemma 5.3.6 with G = Gprojective, for any graph H, we have

hw(H) ≤ h(idpr(H)). (5.3)

Given that |V (G)| = 8k2 + 13k + 5, and that idpr(G) ≤ |V (G)|, we may assume that

|V (G)| > 2g(h(r)), and (5.4)
h(r) + 1 ≤ k (5.5)

Indeed, otherwise, in the first case, idpr(G) ≤ 2g(h(r)) ∈ O(r4) ⊆ O(r96), and in the second case,
idpr(G) ≤ 8k2 + 13k + 5 ≤ 8h(r)2 + 13h(r) + 5 ∈ O(r4) ⊆ O(r96). In both cases, we are done. By

5.3. The lower bound 110

Lemma 5.3.7, G is (g, k)-tightly connected, and thus, by (5.5), G is (g, h(r) + 1)-tightly connected.
Thus, we have all ingredients to apply Proposition 5.3.4. We obtain a tree decomposition (T, β) of G
where T is a star with center t, where idpr(Gt) ≤ r and where for every tt′ ∈ E(T ′), G[β(t′) \ β(t)]
is a connected graph and |β(t′)| ≤ g(h(r)).

Since idpr(Gt) ≤ r, there is a set Xt ⊆ β(t) and Pt = (X1, . . . , Xp) ∈ P(Xt) such that
Gt//Pt ∈ Gprojective and bg(Gt, Xt) ≤ r. Let Gc denote the graph (V (G), E(G) ∪ E(Gt)) and
B =

⋃
t′∈V (T)\{t} β(t

′). By (5.3), hw(Gc) ≤ h(r). Given that G is 4-connected and has maximum
degree four, we can hence apply Proposition 5.3.5 with ∆ = 4, l = g(h(r)) and m = h(r) on the tree
decomposition (T, β). We conclude that

bg(Gc, Xt ∪B) ≤ f5.3.5(r, η, g(h(r)), 4) ∈ O(r96). (5.6)

Clearly G is a (spanning) subgraph of Gc. For each t′ ∈ N ′
T (t), let At′ be the adhesion of t′

and t, let Ct′ = β(t′) \ At′ , and let Yt′ be a set composed of Ct′ and an arbitrary vertex at′ of
At′ . Remember that Gc[At′] is a clique. Hence, the identification of Ct′ with at′ does not create
additional edges, and thus has the same effect as removing Ct′ . Therefore, Gt = Gc//(Yt′)t′∈NT (t),
and thus Gc//(Yt′)t′∈NT (t)//Pt ∈ Gprojective. Thus idpr(Gc) ≤ bg(Gc, Xt ∪ Bt) ∈(5.6) O(r96). Given
that idpr(G) ≤ idpr(Gc), the statement follows.

If we want to go to the plane instead of the projective plane, the following lemma is an easy
corollary of Theorem 5.3.8 and [302, Lemma 7.13]. Remember that Ck is the crosscap grid.

Theorem 5.3.9. Let k ∈ N. Then (bg ▷id Gplanar)⋆(Jk) = Ω(k1/384) and (bg ▷id Gplanar)⋆(Ck) =
Ω(k1/480).

Proof. By Theorem 5.3.8, (bg ▷id Gprojective)⋆(Jk) = Ω(k1/384). Given that Gplanar ⊆ Gprojective, we
thus have bg ▷id Gplanar ≥ bg ▷id Gprojective, and therefore (bg ▷id Gplanar)⋆(Jk) = Ω(k1/384).

By [302, Lemma 7.13], (bg ▷rem Gplanar)⋆(Ck) = Ω(k1/480), where bg ▷rem Gplanar : Gall → N is the
graph parameter where

bg ▷rem Gplanar(G) := min{k | ∃X ⊆ V (G), bg(G,X) ≤ k and G−X ∈ Gplanar}.

Given that I(G,X) ∈ Gplanar implies G−X ∈ Gplanar, we thus have bg ▷id Gplanar ≥ bg ▷rem Gplanar,
and therefore (bg ▷id Gplanar)⋆(Ck) = Ω(k1/480).

Part III

Towards efficiency

111

CHAPTER 6

Identification to forests

Contents
6.1 Hardness and parameterized results . 113

6.1.1 Dealing with bridges . 113
6.1.2 NP-completeness . 114
6.1.3 Parameterized results for Identification to Forest 114

6.2 Obstructions . 115
6.2.1 Bridges in the obstructions of Vk . 115
6.2.2 Constructing the obstructions of F (k) from the obstructions of Vk 117

6.3 Universal obstruction . 119
6.4 Relation with Contraction to H . 121
6.5 Identification minors . 122

In this chapter, we prove the results presented in Section 2.2, which are restated here for
convenience.

Theorem 2.2.1. Identification to Forest is NP-complete.

Theorem 2.2.2. There is an algorithm that, given an instance (G, k) of Identification to Forest,
outputs in time O(k

√
log k · n + k3) an equivalent instance (G′, k′) where |V (G′)| ≤ 2k + 1 and

k′ ≤ k+1. Alternatively, one can solve Identification to Forest in time O(1.2738k+k
√
log k ·n).

Theorem 2.2.3. Let k ∈ N. The obstructions of F (k) have at most 2k + 4 vertices.

In particular, Theorem 2.2.1 and Theorem 2.2.2 are proved in Section 6.1 and Section 6.2 is
dedicated to Theorem 2.2.3. Additionally, “universal obstructions” for Identification to Forest
are given in Section 6.3, the relationship between identification and contraction is detailed in
Section 6.4, and we introduce “identification minors” in Section 6.5 and discuss the link between
WQO and the identification operation.

112

6.1. Hardness and parameterized results 113

Some notations and reminders. Let us first give a few additional notations for this chapter.
The class of forests is denoted by F . Let H be a graph class and G be a graph. We say that a
partition X ∈ P(G) is an id-H partition of G if G//X ∈ H. The order of a partition X ∈ P(G)
is | ∪ X |. A minimum id-H partition of G is an id-H partition of G of minimum order and this
minimum order is denoted by idf(G) when H = F . Similarly, the minimum size of a vertex cover of
G is denoted by vc(G). As explained in the introduction, the problem of Identification to H
asks, given a graph G and a non-negative integer k, whether G admits an id-H partition of order at
most k. Finally, we denote by H(k) the set of graphs that admit an id-H partition of order k.

6.1 Hardness and parameterized results

In this section we exploit the relation between Identification to Forest and Vertex Cover
(cf. Subsection 6.1.1) to present a hardness result (cf. Subsection 6.1.2), a linear kernel, and an
FPT-algorithm (cf. Subsection 6.1.3) for Identification to Forest, building on the corresponding
results for Vertex Cover.

6.1.1 Dealing with bridges

In this part, we prove that Identification to Forest can be reduced to Vertex Cover
(Lemma 6.1.5).

We first present two observations concerning identifications that imply that we can consider each
connected component of a graph separately.

Observation 6.1.1. Let H be a hereditary graph class and G be a graph. Then, for every X ∈ P(G),
if G//X ∈ H, then for each H ∈ cc(G), H//(X ∩ V (H)) ∈ H.

Proof. Let H ∈ cc(G). Given that H//(X ∩V (H)) = G//X −(V (G)\V (H)) and that H is hereditary,
we conclude that H//(X ∩ V (H)) ∈ H.

Observation 6.1.2. Let H be a graph class that is closed under disjoint union and G be a graph.
Then, for each H ∈ cc(G) and for each XH ∈ P(H), if H//XH ∈ H, then G//

⋃
H∈cc(G)XH∈ H.

Proof. Given thatH is closed under disjoint union and G//
⋃

H∈cc(G) =
⋃

H∈cc(G)H//XH , we conclude
that G//

⋃
H∈cc(G)XH∈ H.

We now prove that we can safely delete bridges.

Lemma 6.1.3. Let G be a graph and Gb be the graph obtained from G after removing all bridges.
Then idf(G) = idf(Gb).

Proof. Let k := idf(G). By definition, G ∈ F (k). By Lemma 5.3.1 (with p = size), F (k) is
minor-closed, so G− e ∈ F (k) for any edge e of G. Therefore, idf(G− e) ≤ idf(G).

By Observation 6.1.1 and Observation 6.1.2, we may assume without loss of generality that G is
connected. Let e be a bridge of G. Let G1 and G2 be the two connected components of G− e. For
i ∈ [2], let Xi ∈ P(Xi) be a minimum id-F partition of Gi. By Observation 6.1.2, (G− e)//X ∈ F
where X = X1 ∪ X2. Suppose towards a contradiction that G//X contains a cycle C. Then, given
that (G− e)//X is acyclic, it implies that e is an edge of C. Given that no part of X contains vertices
of both G1 and G2, it implies that e is already an edge of a cycle. This contradicts the fact that e is
a bridge. The lemma follows by repeatedly applying this argument as long as there is a bridge.

We can then prove that idf = vc on bridgeless graphs.

6.1. Hardness and parameterized results 114

Lemma 6.1.4. Let G be a bridgeless graph. Then idf(G) = vc(G).

Proof. Let X be a vertex cover of G. Then G//X is a star (if G is edgeless, a vertex is considered as
a star). Hence, (X) ∈ P(G) is an id-F partition of G. So idf(G) ≤ vc(G).

Let X be an id-F partition of G. Let F := G//X ∈ F . Let us color red the vertices of F that
are heirs of a part of X , and blue the other vertices of F . Given that G is bridgeless, F contains no
edge whose endpoints are both blue. Hence, the red vertices form a vertex cover of F . Therefore, X
is a vertex cover of G. So vc(G) ≤ idf(G).

Finally, we get the main result of this part as a direct corollary of Lemma 6.1.3 and Lemma 6.1.4.

Lemma 6.1.5. Let G be a graph and Gb be the graph obtained from G after removing all bridges.
Then idf(G) = vc(Gb).

6.1.2 NP-completeness

In this part, we prove Theorem 2.2.1 (more precisely Theorem 6.1.7).
Before proving the NP-completeness of Identification to Forest, we first need the following

lemma.

Lemma 6.1.6. Let k ∈ N. Let G be a graph. Then there is a bridgeless graph G′ with |V (G)|+ 1
vertices such that G ∈ Vk if and only if G′ ∈ Vk+1. Moreover, G′ can be constructed in linear time.

Proof. Let us construct a bridgeless graph G′ from G. Let I be the set of isolated vertices of G. We
add a new vertex v to G and add an edge between v and every vertex of G− I. The constructed
graph G′ is clearly bridgeless.

Let us check that G ∈ Vk if and only if G′ ∈ Vk+1. We assume that G has at least one edge,
otherwise the claim is trivially true. Suppose the G ∈ Vk and let X be a vertex cover of G of size at
most k. Then X ∪ {v} is a vertex cover of G so G′ ∈ Vk+1. Suppose now that G′ ∈ Vk+1. Let Y
be a vertex cover of G′ of size at most k + 1. If v ∈ Y , then Y \ {v} is a vertex cover of G of size
at most k. Otherwise v /∈ Y . It implies that V (G) \ I ⊆ Y . But then, for any vertex x of G − I,
NG−I(x) ⊆ Y . Therefore, Y \ {x} is a vertex cover of G of size at most k. Hence, G ∈ Vk.

Given that G′ can be constructed in linear time, the result follows.

Theorem 6.1.7. Identification to Forest is NP-complete.

Proof. Given a graph G and a partition X ∈ P(G), checking that G//X ∈ F can obviously be done
in linear time. We reduce from Vertex Cover that is NP-hard [181]. Let G be a graph. Let b be
the number of bridges in G. If b ≥ 1, by Lemma 6.1.6, there is a graph G′ with |V (G)|+ 1 vertices
such that G ∈ Vk if and only if G′ ∈ Vk′ where k′ := k + 1. If b = 0, we set G′ := G and k′ := k.
Since G′ ∈ Vk′ is bridgeless, by Lemma 6.1.4, G′ ∈ F (k′). Since G′ can be constructed in linear time
and that G ∈ Vk if and only if G′ ∈ F (k′), the result follows.

6.1.3 Parameterized results for Identification to Forest

In this part we prove Theorem 2.2.2 (alternatively Theorem 6.1.10).
The following kernelization result is known for Vertex Cover.

Proposition 6.1.8 ([58]). Given an instance (G, k) of Vertex Cover, one can compute in time
O(kn+ k3) an equivalent instance (G′, k′) such that k′ ≤ k and |V (G′)| ≤ 2k′ ≤ 2k.

Additionally, the current best FPT-algorithm for Vertex Cover is the following.

6.2. Obstructions 115

Proposition 6.1.9 ([59]). There is an algorithm solving Vertex Cover in time O(1.2738k + kn).

Hence, we can derive the following kernalization and FPT results for Identification to Forest.

Theorem 6.1.10. Given an instance (G, k) of Identification to Forest, one can compute in
time O(k

√
log k · n+ k3) an equivalent instance (G′, k′) such that |V (G′)| ≤ 2k + 1 and k′ ≤ k + 1.

Alternatively, one can solve Identification to Forest in time O(1.2738k + k
√
log k · n).

Proof. By Lemma 5.3.1 (with p = size) and Proposition 4.2.1, we may assume that m := |E(G)| =
O(k
√
log k · n), given that (K3+k, k) is a no-instance of Identification to Forest.

Let G1 be obtained from G after removing bridges (which can be done in time O(n+m)). By
Lemma 6.1.5, (G, k) is a yes-instance of Identification to Forest if and only if (G1, k) is a
yes-instance of Vertex Cover. Hence, for the FPT result, it remains to solve Vertex Cover in
time O(1.2738k + kn) using Proposition 6.1.9.

For the kernelization result, it goes as follows. By Proposition 6.1.8 and the above discussion, we
can construct in time O(kn+ k3) an instance (G2, k2) with |V (G2)| ≤ 2k2 ≤ 2k such that (G1, k) is
a yes-instance of Vertex Cover if and only if (G2, k2) is a yes-instance of Vertex Cover. By
Lemma 6.1.6, we can construct in linear time an instance (G3, k3) such that G3 is a bridgeless graph
with |V (G3)| ≤ |V (G2)|+ 1 and k3 ≤ k2 + 1 such that (G2, k2) is a yes-instance of Vertex Cover
if and only if (G3, k3) is a yes-instance of Vertex Cover. Finally, by Lemma 6.1.5, given that G3

is bridgeless, by Lemma 6.1.4, (G3, k3) is a yes-instance of Vertex Cover if and only if it is a
yes-instance of Identification to Forest. Hence the result.

6.2 Obstructions

Given that Vertex Cover and Identification to Forest are strongly related, it is reasonable
to suspect that this holds for their obstructions as well. Already, as a direct corollary of Lemma 6.1.5,
we have the two following results.

Observation 6.2.1. Let k ∈ N and F ∈ obs(F (k)). Then F is bridgeless.

Lemma 6.2.2. Let k ∈ N. The bridgeless obstructions of Vk are obstructions of F (k).

Proof. Let H ∈ obs(Vk) be bridgeless. By Lemma 6.1.4, H /∈ F (k). Thus, there is a minor H ′ of
H such that H ′ ∈ obs(F (k)). By Observation 6.2.1, H ′ is bridgeless. Therefore, by Lemma 6.1.4,
H ′ /∈ Vk. Given that H ′ is a minor of H and that H ∈ obs(Vk), we conclude that H = H ′. Therefore,
H ∈ obs(F (k)).

We are actually going to prove in Subsection 6.2.1 that the only bridges that may occur in an
obstruction of Vk are isolated edges. Then, in Subsection 6.2.2, we will prove that any obstruction of
F (k) can be obtained from an obstruction of Vk by adding edges. See Figure 6.1 for a comparison of
the obstructions of Vk and F (k) for k ≤ 3, where the obstructions of Vk are taken from [52].

6.2.1 Bridges in the obstructions of Vk
In this subsection, we prove the following.

Lemma 6.2.3. Let k ∈ N and G ∈ obs(Vk) be a graph. Then the connected components of G are
2-connected. Therefore, the bridges of G are isolated edges.

6.2. Obstructions 116

obs(Vk) ∩ obs(F (k))obs(Vk) \ obs(F (k)) obs(F (k)) \ obs(Vk)

k = 0

k = 1

k = 2

k = 3

K2 K3 ≃ C3

K3 ≃ C3

K4 C5

K5

C7

Figure 6.1: The obstructions of Vk (first and second columns) and F (k) (second and third columns)
for k ≤ 3. Each graph in obs(F (k)) is either 1) also a graph in obs(V(k)) (second column), or 2) can
be obtained from a graph in obs(V(k)) with bridges (first column) by adding edges (in blue in the
third column), or 3) is also a graph in obs(V(k+1)) (in purple in the third column). We use yellow
shadows for disconnected obstructions, to make clear that each of them is a single graph.

Actually, we prove a more general version of Lemma 6.2.3 applying on any graph class H⟨k⟩

defined as follows. Let H be a hereditary graph class that is also closed under 1-clique-sums. Let
H⟨k⟩ be the set of graphs G such that there exists a set X ⊆ V (G) with |X| ≤ k and G−X ∈ H.
In this setting Vk = E⟨k⟩, where E is class of edgeless graphs.

We need the following easy lemma.

Lemma 6.2.4. Let H be a hereditary class, k ∈ N and H ∈ obs(H⟨k⟩). Then, for any v ∈ V (H),
there is a set S ⊆ V (H) of size k + 1 such that v ∈ S and H − S ∈ H. In particular, obs(H⟨k⟩) ⊆
H⟨k+1⟩ \ H⟨k⟩.

Proof. Let H ∈ obs(H⟨k⟩) and v ∈ V (H). By definition of an obstruction, H /∈ H⟨k⟩ and H − {v} ∈
H⟨k⟩. So there is a vertex set S′ of size at most k in H − {v} such that H − {v} − S′ ∈ H. Let
S := S′ ∪ {v}. Then H − S ∈ H so H ∈ H⟨k+1⟩. Given that H /∈ H⟨k⟩, we have |S| > k, and
therefore, |S| = k + 1.

Here is the main result of the subsection.

6.2. Obstructions 117

Lemma 6.2.5. Let k ∈ N. Every connected component of a graph in obs(H⟨k⟩) is 2-connected.

Proof. Suppose towards a contradiction that G ∈ obs(H⟨k⟩) has a connected component that is not
2-connected. Then there is a cut vertex v in G. Let G1 be a connected component of G− v such
that v ∈ NG(V (G1)) and let G2 = G− V (G1)− {v}. For i ∈ [2], let ki be the minimum k such that
Gi ∈ H⟨k⟩. Hence, Gi ∈ H⟨ki⟩ \ H⟨ki−1⟩.

Claim 6.2.6. k = k1 + k2.

Proof. By Lemma 6.2.4, G ∈ H⟨k+1⟩ \ H⟨k⟩. For i ∈ [2], let Si ⊆ V (Gi) of size at most ki be such
that Gi − Si ∈ H. Then S := S1 ∪ S2 ∪ {v} is such that G− S ∈ H, so k + 1 ≤ k1 + k2 + 1.

By Lemma 6.2.4, there is a set S ⊆ V (G) of size k + 1 such that v ∈ S and G− S ∈ H. Given
that H is hereditary, Gi − (S ∩ V (Gi)) ∈ H. Moreover, Gi /∈ H⟨ki−1⟩ for i ∈ [2], so we conclude that
|S ∩ V (Gi)| ≥ ki. Hence, k + 1 = |S| = |{v} ∪ (S ∩ V (G1)) ∪ (S ∩ V (G2))| ≥ k1 + k2 + 1.

For i ∈ [2], let Ḡi := G[V (Gi) ∪ {v}]. Since Gi ∈ H⟨ki⟩ \ H⟨ki−1⟩ and we only add the vertex v,
Ḡi ∈ H⟨ki+1⟩ \ H⟨ki−1⟩.

Claim 6.2.7. There is i ∈ [2] such that Ḡi ∈ H⟨ki+1⟩ \ H⟨ki⟩.

Proof. Suppose that Ḡi ∈ H⟨ki⟩ for i ∈ [2]. Let Si ⊆ V (Ḡi) of size ki be such that Ḡi−Si ∈ H. Then
S := S1 ∪ S2 has size at most k1 + k2 < k+ 1. Moreover, given that H is closed under 1-clique-sums,
we have G− S ∈ H. By Claim 6.2.6, it follows that G ∈ H⟨k⟩, a contradiction.

By Claim 6.2.7, without loss of generality, we assume that Ḡ1 ∈ H⟨k1+1⟩ \ H⟨k1⟩. Let G′ be
the graph obtained from the disjoint union of Ḡ1 and G2. Given that H is closed under disjoint
union and by Claim 6.2.6, G′ ∈ H⟨k1+1+k2⟩ \H⟨k1+k2⟩ = H⟨k+1⟩ \H⟨k⟩. G′ is a subgraph of G so this
contradicts the minimality of G as an obstruction of H⟨k⟩.

6.2.2 Constructing the obstructions of F (k) from the obstructions of Vk
What Lemma 6.2.2 and Lemma 6.2.5 tell us is that the difference (as sets) between obs(Vk) and
obs(F (k)) is caused by isolated edges. Essentially, to go from an obstruction H of Vk with isolated
edges to an obstruction H ′ of F (k), we will have to add vertices and edges minimally to get a
bridgeless graph. In this section, we prove that we actually just need to add edges.

Let Obs =
⋃

k∈N obs(F (k)). We have the following easy observation.

Observation 6.2.8. Let G ∈ Obs and k := idf(G)− 1. Then G ∈ obs(F (k)).

Note that, while we observed in Lemma 6.2.4, in particular, that obs(Vk) ⊆ Vk+1 \ Vk, the same
does not hold for Fk. For instance, k ·K3 (see Figure 6.4) belongs to both obs(F2k−2) and obs(F2k−1).
However, we can prove the following.

Lemma 6.2.9. Let k ∈ N. Then obs(Fk) ⊆ Fk+2 \ Fk.

Proof. LetG ∈ obs(Fk) and uv ∈ E(G). Let X be an id-F partition ofG/uv. ThenG//(u, v)//X ∈ F ,
so G//X ′ ∈ F , where X ′ is obtained from X by further identifying u and v. Thus, |

⋃
X ′| ≤

|
⋃
X|+ 2 ≤ k + 2, hence the result.

The main result of this subsection is the following.

Lemma 6.2.10. Let G be a graph and k := idf(G)− 1. If G ∈ obs(F (k)), then there is H ∈ obs(Vk)
that is a minor of G, and for any such H, there is E′ ⊆ E(G) such that G− E′ = H.

6.2. Obstructions 118

Proof. By Observation 6.2.1, G is bridgeless. Therefore, by Lemma 6.1.4, idf(G) = vc(G), and thus
G ∈ Vk+1 \ Vk. We first prove that, for any edge e ∈ E(G), G/e ∈ Vk.

Claim 6.2.11. For any edge uv ∈ E(G), G/uv ∈ Vk.

Proof of claim. Suppose towards a contradiction that there is an edge uv ∈ E(G) such that G/uv ∈
Vk+1 \ Vk. Let w be the heir of uv in G/uv. Since G ∈ obs(F (k)), it implies that G/uv ∈ F (k). By
Observation 6.2.1, G is bridgeless. Thus, by Lemma 6.1.4 and since G/uv ∈ F (k) \ Vk, it implies
that the contraction of u and v created a bridge e. Given that only the edges incident to u and v are
involved in the contraction, the bridges of G/uv are exactly the edges xw where x ∈ NG(u) ∩NG(v)
is a cut vertex of G (the edges xu and xv in G are contracted to xw in G/uv). See Figure 6.2 for an
illustration. Let C be the set of all such x. Let E1 be the set of all edges xu, xv of G for x ∈ C and
let E2 be the set of all edges xw of G/uv for x ∈ C.

u

v

x

Gw

Gx

G

xGx

G/uv

w G′
w

Figure 6.2: Graphs G and G/uv.

Given that G/uv ∈ Vk+1 \ Vk, there is H ∈ obs(Vk) that is a minor of G/uv. For x ∈ C, let Gx

be the connected component of G−E1 containing x and Gw be the disjoint union of the remaining
components of G− E1. Note that Gx is also the connected component of G/uv − E2 containing x
for x ∈ C, and that G′

w := Gw/uv is the union of the other connected components of G/uv − E2.
Given that G/uv − E2 is bridgeless, so are Gx for x ∈ C and G′

w. By Lemma 6.2.5, each connected
component of H is 2-connected. Therefore, given a model M of H of minimal size in G/uv, a bridge
of G/uv belongs to M if and only if it is an isolated edge in M . Therefore, H is either a minor of F :=
G′

w ∪
⋃

x∈C Gx or, for some x ∈ C, a minor of Fx := G[{x,w}]∪ (G′
w−{w})∪ (Gx−x)∪

⋃
y∈C\{y}Gy.

See Figure 6.3 for an illustration.

xGx

F

w G′
w

x
Gx − x

Fx

w
G′

w − w

Gx − x x
u

v

Gw − u
−v

F ′
x

Figure 6.3: Graphs F , Fx, and F ′
x.

If H is a minor of F which is a minor of G, then F ∈ Vk+1 \ Vk. Given that F is bridgeless, by
Lemma 6.1.4, we thus have F ∈ F (k+1) \ F (k). This contradicts the fact that G ∈ obs(F (k)).

6.3. Universal obstruction 119

Hence, H is a minor of Fx for some x ∈ C. Then H is also a minor of F ′
x := G[{x, u, v}]∪ (Gw −

u − {v}) ∪ ∪(Gx − x)
⋃

y∈C\{x}Gy, which is a minor of G. Thus, Fx, F
′
x ∈ Vk+1 \ Vk. Let S be a

vertex cover of F ′
x of minimum size, i.e., |S| = k + 1. Let S′ := S ∩ {x, u, v}. Given that G[{x, u, v}]

is a triangle, |S′| = 2. But then, S \ S′ ∪ {x} is a vertex cover of Fx of size k, a contradiction. ⋄

We now prove that, for any vertex v ∈ V (G), G− v ∈ Vk.

Claim 6.2.12. For any vertex v ∈ V (G), G− v ∈ Vk.

Proof of claim. Suppose towards a contradiction that there is a vertex v ∈ Vk such that G − v ∈
Vk+1\Vk. If v is an isolated vertex, then G−v is bridgeless. So by Lemma 6.1.4, G−v ∈ F (k+1)\F (k),
contradicting that G ∈ obs(F (k)). So there is a vertex u ∈ NG(v). Let us prove that G/uv ∈ Vk+1\Vk.
This will contradict Claim 6.2.11 and prove the claim.

Suppose towards a contradiction that G/uv ∈ Vk. Let S be a vertex cover of G/uv of size k.
Let w be the heir of the edge uv in G/uv. If w belongs to S, then S \ {w} ∪ {u, v} is a vertex
cover of G of size k + 1 containing v. If w does not belong to S, then NG/uv(w) ⊆ S. Since
NG/uv(w) = NG({u, v}), we conclude that S ∪ {v} is a vertex cover of G of size k + 1 containing
v. In both cases, G has a vertex cover S′ of size k + 1 containing v. Therefore, G− v has a vertex
cover of size k, contradicting the fact that G− v /∈ Vk. ⋄

Given that G ∈ Vk+1 \ Vk, there is H ∈ obs(Vk) that is a minor of G. By Lemma 6.2.4,
H ∈ Vk+1 \ Vk. H is obtained from G by a sequence of vertex deletions, edge deletions, and edge
contractions such that at each step, the resulting graph belong to Vk+1 \ Vk. In particular, we can
first do all vertex deletions and edge contractions and then the remaining edge deletions. But then,
by Claim 6.2.11 and Claim 6.2.12, we cannot do any vertex deletion nor edge contraction and still
remain in Vk+1 \ Vk. Therefore, there is E′ ⊆ E(G) such that G−E′ ∈ obs(Vk). This concludes the
proof.

We thus have the following upper bound on the size of obstructions, which is a restatement of
Theorem 2.2.3.

Theorem 6.2.13. Let k ∈ N. For any obstruction G ∈ obs(F (k)), |V (G)| ≤ 2k + 4.

Proof. The obstruction of maximal size in obs(Vk) is (k + 1) ·K2, i.e., the graph obtained from the
disjoint union of k + 1 isolated edges, which has size 2k + 2.

Let G ∈ obs(F (k)). By Lemma 6.2.9, we have idf(G) ∈ {k+1, k+2}. Moreover, by Lemma 6.2.10,
there is E′ ⊆ E(G) such that G− E′ ∈ obs(Vidf(G)−1). Therefore, G− E′, and thus G, has size at
most 2k + 4.

6.3 Universal obstruction

Universal obstruction of idf. Recall that parametric graphs were defined in Section 5.1. We say
that two parametric graphs G 1 and G 2 are comparable if every graph in G 1 is a minor of a graph in
G 2 or every graph in G 1 is a minor of a graph in G 2. Given a minor-monotone graph parameter
p : Gall → N, and a finite set G = {G 1, . . . ,G r} of pairwise non-comparable parametric graphs, we
say that G is a universal obstruction of p if there is a function f : N→ N (we refer to f as the gap
function) such that

• for every k ∈ N, if G excludes all graphs in {G 1
k , . . . ,G

r
k } as a minor, then p(G) ≤ f(k).

• p(G j
k) ≥ f(k), for every j ∈ [r].

6.3. Universal obstruction 120

Universal obstructions serve as asymptotic characterizations of graph parameters, as they identify
the typical patterns of graphs that should appear whenever the value of a parameter becomes
sufficiently big. Several structural dualities on graph parameters can be described using universal
obstructions, and it has been conjectured that for every minor-monotone parameter there always
exists some finite universal obstruction [247]. (For a survey on universal obstructions see [248].)

Let us give two examples of universal obstructions. A universal obstruction for vc is the set
{⟨k ·K2⟩k∈N}1 with linear gap function f(k) = O(k). Another example is the universal obstruction
for the parameter fvs, where fvs(G) is the minimum size of a vertex set of G whose removal yields
an acyclic graph. An interpretation of the Erdős-Pósa’s theorem [108] is that {⟨k ·K3⟩k∈N} is a
universal obstruction for fvs with gap function f(k) = O(k · log k). Notice that idf can be seen as
the analogue of fvs where now, instead of removing vertices, we pick a set of vertices and apply
identifications to them.

Our result in this part is a universal obstruction for idf. We use Ck for the cycle on k vertices
and k ∗K3 for the k-marguerite graph, that is, the graph obtained from k ·K3 by selecting one
vertex from each connected component and identifying all selected vertices into a single one (see
Figure 6.4).

Ck k ·K3

k ∗K3

Figure 6.4: The universal obstruction for Identification to Forest.

Theorem 6.3.1. The set {⟨k ·K3⟩k∈N, ⟨Ck⟩k∈N, ⟨k ∗K3⟩k∈N} is a universal obstruction of idf, with
gap function f(G) = O(k4 · log2 k).

One side of the proof is the easy following observation.

Observation 6.3.2. C2k+1, ⌊k2 + 1⌋ ·K3, and (k + 1) ∗K3 are in obs(F (k)).

The other side is a bit more involved:

Lemma 6.3.3. If G excludes every graph in {Ck, k · K3, k ∗ K3} as a minor, then idf(G) =
O(k4 · log2 k).

Proof. Let G be a {Ck, k ·K3, k ∗K3}-minor-free graph. By Lemma 6.1.4, we can assume without
loss of generality that G is bridgeless. In particular, any vertex of G has degree at least two.

By the Erdős–Pósa’s theorem [108], either G has a packing of k cycles, or there is a set X of size
O(k · log k) such that G−X ∈ F . Given that G is k ·K3-minor-free, there exists such a set X and
G[X] has at most O(k · log k) connected components.

Let C be a connected component of G[X]. Let TC be the set of trees in F with a neighbor in C.
Given that G is bridgeless and that any path from a vertex of T ∈ TC to a vertex of G−V (C)−V (T)

1For a graph H, we denote by k ·H the union of k disjoint copies of H.

6.4. Relation with Contraction to H 121

intersects C, we have |EG(V (T), V (C))| ≥ 2. Hence, there is a cycle in the graph induced by T and
C. Hence, |TC | ∗K3 is a minor of G. Therefore, |TC | ≤ k − 1.

Let T ∈ TC . Let TC be the subtree of T obtained by iteratively removing every leaf of T that is
not in NG(V (C)). Hence, for every pair of leaves u, v of TC , there are two (u, v)-paths P1 and P2,
the first one in TC and the second one going through C, that are internally vertex-disjoint. So there
is a cycle of length at least ∆(TC) + 1, where ∆(TC) denotes the diameter of TC . Given that Ck is
not a minor of G, TC has diameter at most k − 2.

Let L(TC) denote the leaves of TC , and let PL(TC) denote the parents of vertices in L(TC).
We claim that |PL(TC)| ≤ k. Indeed, let u ∈ L(TC) be a leaf picked arbitrarily. Let V ′ =
V (C) ∪ V (TC) \ L(TC) \ PL(TC) ∪ {u, p(u)}, where p(u) is the parent of u in TC . Observe that,
since u is connected to C, G[V ′] is connected. Hence, we can contract V ′ to a single vertex c to
obtain a graph G′. For each t ∈ PL(TC) \ {p(u)}, there is a triangle ctvt where vt ∈ L(TC) is a
child of t. Hence, (|PL(TC)| − 1) ∗K3 is a subgraph of G′ and thus a minor of G. Since k ∗K3 is
not a minor of G, we proved our claim.

Therefore, |V (TC) \ L(TC)| ≤ ∆(TC) · |PL(TC)| ≤ k · (k − 2).
Let E′ be the set of all edges of F that do not belong to TC for any C ∈ cc(G[X]) and T ∈ TC .

Let e ∈ E′. Since e is not a bridge, e is part of a cycle Ce. Hence, there are C,C ′ ∈ cc(G[X]) and
T ∈ TC ∩ TC′ such that any path from TC to TC′ in T goes through e. Moreover, there are at
most k − 5 such edges between TC to TC′ , since otherwise Ce would have length at least k. Hence,
|E′| ≤ (k − 5) ·

(|cc(G[X])|
2

)
·maxC∈cc(G[X]) |TC | = O(k4 · log2 k).

Let V ′ ⊆ V (G) be the union of X, of the endpoints of edges in E′, and of the internal nodes of
TC for any C ∈ cc(G[x]) and any T ∈ TC . Then, V (G) \ V ′ ⊆ L(F), so G//V ′ is a star. Moreover,
|V | = O(k · log k + k4 · log2 k + k · log k · k · k2) = O(k4 · log2 k).

Proof of Theorem 6.3.1. The first condition of the universal obstruction property follows from
Lemma 6.3.3 an the second one follows from Observation 6.3.2.

6.4 Relation with Contraction to H
An important feature of Identification to H is that it behaves similarly to the problem Deletion
to H, in the sense that both problems are FPT when H is a minor-closed graph class. This follows
from Lemma 5.3.1 and the algorithmic consequence of the Robertson and Seymour’s theorem [188,
205, 271, 279, 281]. It is easy to observe that the problem Contraction to H (that is, asking
whether k edge contractions yield property H) does not have this property. To see this, let P be the
class of planar graphs and let K+

3,4 (resp. K+
2,3) be the graph obtained from K3,4 (resp. K2,3) by

adding an edge e between two vertices of degree three (resp. two). Contracting e yields a planar (resp.
acyclic) graph, so (K+

3,4, 1) (resp. (K+
2,3, 1)) is a yes-instance of Contraction to P (Contraction

to Forest). However, (K3,4, 1) (resp. (K2,3, 1)) is a no-instance of the corresponding problem.
Let us define the parameter ecH : Gall → N, corresponding to the problem Contraction to H,

i.e., ecH(G) is the minimum number of edge contractions that can transform G to a graph in H. As
we observed above, neither ecF nor ecP are minor-monotone, and similar counterexamples can be
found for other instantiations of H. We use ecf as a shortcut for ecF and we next observe that idf
and ecf are functionally equivalent.

Lemma 6.4.1. For every graph G it holds that idf(G) = O(ecf(G)) and that ecf(G) = O((idf(G))3).

Proof. Using the fact that edge contractions are also edge identifications, it easily follows that, for
every graph G, idf(G) ≤ 2 · ecf(G).

6.5. Identification minors 122

Assume now that idf(G) ≤ k and we claim that ecf(G) = O(k3). To prove this claim we first
observe that, because idf(k ·K3) = Ω(k) and idf(k ∗K3) = Ω(k) (see Observation 6.3.2), it follows
that the number of 2-connected components of G that are not bridges is bounded by some linear
function of k. Let B be a 2-connected component of G. As B is a minor of G, it has an id-F partition
X = (X1, . . . , Xp) of order ≤ k. For i ∈ [p], let xi1, . . . , xipi be an ordering of the vertices of Xi and
let Fi = {{xi1, xi2}, {xi2, xi3}, . . . , {xipi−1, x

i
pi}}. Let also F = F1 ∪ · · · ∪Fp. Clearly, the 2-element sets

in F are not necessarily edges of B. For each {x, y} ∈ F we define a set of edges Fx,y as follows.
As B is 2-connected, x and y belong to a cycle of B. As idf(Ck) = Ω(k) (see Observation 6.3.2),
this implies that x and y are joined in B by a path of length O(k). The edges of this path are the
edges in Fx,y. We now set F+ =

⋃
{x,y}∈F Fx,y and observe that |F+| = O(k2). Notice now that

contracting the edges of F+ in B yields an acyclic graph. Therefore, applying these contractions to
every non-bridge connected component of G, we obtain an acyclic graph. As there are O(k) such
components, the lemma follows.

In other words, ecf is not minor-monotone but, however, it is “functionally” monotone in the
sense that if G′ is a minor of G then ecf(G′) ≤ O((ecf(G))3).2

6.5 Identification minors

We say that a graph H is an identification minor of a graph G if H can be obtained from a minor of
G after identifying vertices. As the minor relation between two graphs also implies their identification
minor relation, Robertson and Seymour’s theorem [278] implies that graphs are well-quasi-ordered
by the identification minor relation. It is also easy to observe that, for every graph H, the graphs in
the setMH of minor-minimal graphs containing H as an identification have size is bounded by a
quadratic function of |H|. Therefore, checking whether H is an identification minor of G can be
done in time O|H|(|G|1+ε), according to the recent results in [205].

It is a natural question to ask whether graphs are well-quasi-ordered with respect to the vertex
identification operation alone. The answer turns out to be negative. Indeed, there is an infinite
antichain (Hk)k∈N, where Hk is the graph formed from a cycle on 3k vertices p1, . . . , p3k by adding
three vertices a1, a2, a3 and an edge between each pair (ai, pj) such that j is equal to i modulo three.
See Figure 6.5 for an illustration. It can be verified that this family of graphs is indeed an antichain,
even if we allow both vertex identifications and vertex removals.

Figure 6.5: The graph Hk for k = 5. We give credit to Hugo Jacob for finding it.

We now wish to give the following interpretation of Lemma 6.3.3 in terms of identification minors.
To prove it, one needs to observe that k ∗K3 is an identification-minor of both k ·K3 and C3k.

Theorem 6.5.1. For every graph G and positive integer k, either G contains the k-marguerite k ∗K3

as an identification minor, or G can become acyclic after applying O(k4 · log2 k) vertex identifications.
2The cubic bound in Lemma 6.4.1 is just indicative and has not been optimized.

6.5. Identification minors 123

The above theorem can be seen as an analogue of the Erdős-Pósa’s theorem [108] where instead of
the vertex removal operation we have vertex identification, and instead of k ·K3 minor containment
we have k ∗K3 identification minor containment.

CHAPTER 7

Bounded size modifications to minor-closedness

Contents
7.1 Definition of the problem, results, and applications 125

7.1.1 Definition of the problem and main results 125
7.1.2 Problems generated by different instantiations of L 128

7.2 Overview of the techniques . 131
7.3 The algorithms . 133

7.3.1 Main ingredients . 134
7.3.2 The general case: proof of Theorem 7.1.5 135
7.3.3 The special case of bounded genus: proof of Theorem 7.1.6 141

7.4 Irrelevant vertex . 145
7.4.1 An auxiliary lemma . 146
7.4.2 Finding an irrelevant vertex in a homogeneous flat wall 147
7.4.3 Irrelevant vertex in the bounded genus case 149

7.5 Obligatory sets . 150
7.6 The case of bounded treewidth . 151

7.6.1 Signature . 153
7.6.2 Dynamic programming . 153

In this chapter, we prove the results presented in Section 2.3, which are restated here for
convenience.

Theorem 2.3.1. Let H be a minor-closed graph class and L be a hereditary replacement action.
Then L-Replacement to H can be solved in time 2k

OsH (1)

· n2.

Theorem 2.3.2. Let GΣ be the class of graphs embeddable in a surface Σ of Euler genus at most g.
Then L-Replacement to GΣ can be solved in time 2Og(k9) · n2.

Theorem 2.3.3. Let H be a minor-closed graph class. Then L-Replacement to H can be solved
in time 2O(k2+(k+w) log(k+w)) · n on graphs of treewidth at most w.

124

7.1. Definition of the problem, results, and applications 125

More specifically, Section 7.1 is devoted to the formal definition of the L-Replacement to
H problem (L-R-H) and to examples of problems generated by different instantiations of L. In
Section 7.2, we give an overview of the techniques we use and the three main ingredients we need.
In Section 7.3, we prove Theorem 2.3.1 and Theorem 2.3.2. The three main ingredients used in
Section 7.3 are proved in the last sections. That is, how to find an irrelevant vertex (in Section 7.4),
how to find an obligatory set (in Section 7.5), and how to conclude on graphs of bounded treewidth
(Theorem 2.3.3, in Section 7.6).

Some conventions and notations. In this chapter and the next, instead of considering a minor-
closed graph class H, we consider its obstruction set F , and thus the minor-closed graph class
exc(F). We define three constants depending on F that are used throughout the chapter whenever
we consider such a collection F . We define aF as the minimum apex number of a graph in F , we set
sF := max{|V (F)| | F ∈ F}, and we define ℓF to be the maximum detail of a graph in F . Notice
that sF ≤ ℓF ≤ sF (sF − 1)/2, and thus OℓF (·) = OsF (·).

7.1 Definition of the problem, results, and applications

In this section, we formally define the L-R-H problem and its annotated version in Subsection 7.1.1.
Then, we give in Subsection 7.1.2 a non-exhaustive list of graph modification problems that correspond
to different instantiations of L.

7.1.1 Definition of the problem and main results

To handle several modification problems at once, we adapt the vocabulary of Fomin, Golovach, and
Thilikos [121], who introduced the notion of replacement action.

Ordered graphs. For the definitions of the next two paragraphs to be correct, we actually need
to consider ordered graphs instead of graphs (see the “Graph modifications” paragraph). An ordered
graph is a graph G equipped with a strict total order on V (G), denoted by <G. In other words,
there exists an indexation v1, . . . , vn of the vertices of V (G) such that v1 <G v2 <G · · · <G vn. A
subgraph H of an ordered graph G naturally comes equipped with the strict order <H such that,
for each distinct u, v ∈ V (H), u <H v if and only if u <G v.

Replacement actions. The any-replacement action is the functionM that maps each ordered
graph H1 to the collection M(H1) of all the pairs (H2, ϕ), where H2 is an ordered graph and
ϕ : V (H1)→ V (H2) ∪ {∅} is a function such that:

• |V (H2)| ≤ |V (H1)|,

• for each v ∈ V (H2), ϕ−1(v) ̸= ∅, and

• <H2 is the strict total order such that, for each distinct v1, v2 ∈ V (H2), we have v1 <H2 v2 if
and only if u1 <H1 u2 where, for i ∈ [2], ui is the smallest vertex (according to <G) in ϕ−1(vi).

A replacement action (abbreviated as R-action) is any function L that maps an ordered graph (called
a pattern) H1 to a non-empty collection L(H1) ⊆ M(H1) of its possible pattern transformations.
See Figure 7.1 for an illustration. The vertices of H1 mapped by ϕ to the empty set are said to be
deleted, and two vertices of H1 mapped by ϕ to the same vertex of H2 are said to be identified. Given
S ⊆ V (H1), we set ϕ+(S) = ϕ(S) \ {∅}. Note that, if ϕ(S) = {∅}, then ϕ+(S) = {∅} \ {∅} = ∅.

7.1. Definition of the problem, results, and applications 126

Graph modifications. Let L be an R-action, let G be an ordered graph, and S ⊆ V (G). Let
(H2, ϕ) ∈ L(G[S]). We denote by GS

(H2,ϕ)
the graph obtained from the disjoint union of G− S and

H2 by adding an edge uϕ(v) for each u ∈ V (G) \ S and each v ∈ ϕ−1(V (H2)) such that uv ∈ E(G).
We equip G′ := GS

(H2,ϕ)
with the strict total order <G′ such that v1 <G′ v2 if and only if u1 <G u2

where, for i ∈ [2], ui := vi if vi ∈ V (G) \ S, and ui is the smallest vertex in ϕ−1(vi) if vi ∈ V (H2).
We also set LS(G) = {GS

(H2,ϕ)
| (H2, ϕ) ∈ L(G[S])}. See Figure 7.1 for an illustration.

Note that we consider ordered graphs merely so that the correspondence between the vertices in
S and the vertices in V (H2) is well-defined. We actually omit the order from the statements, but it
will be implicitly assumed that vertices have a label that allows us to keep track of them during the
modification procedure.

u3

u2 u4

u1 u5

v2 v3

v1

H1 H2

G GS
(H2,ϕ)

g5

g3 g7

g2 g8

g4 g6

g1 g9 f1

f2

f3

f4 f5

f6

f7

ϕ

Figure 7.1: Example of an element (H2, ϕ) in the collection L(H1) and of the modified graph GS
(H,ϕ)

where S is the set of black vertices of G. ϕ is represented by the colors, that is, ϕ(u1) = ϕ(u5) = v1,
ϕ(u2) = ϕ(v2), ϕ(u3) = ∅, and ϕ(u4) = v3. The order on the vertex sets of the depicted graphs is
given by the corresponding labels.

Let L be an R-action and H be a graph class. We define the problem L-Replacement to H
as follows.

Input: A graph G and k ∈ N.
Question: Is there a set S ⊆ V (G) of size at most k such that LS(G) ∩H ≠ ∅?

L-Replacement to H (L-R-H)

Such a set S is called solution of L-R-H for the instance (G, k).

Let us observe the following, which implies that a no-instance for Vertex Deletion to H is
also a no-instance for L-R-H.

Observation 7.1.1. Let H be a hereditary graph class, let L be an R-action, let G be a graph, and
let S ⊆ V (G). If LS(G) ∩H ≠ ∅, then G− S ∈ H.

Proof. Indeed, suppose that there is (H2, ϕ) ∈ L(G[S]) such that GS
(H2,ϕ)

∈ H. Then, because H is
hereditary, GS

(H2,ϕ)
− ϕ+(S) = G− S ∈ H.

7.1. Definition of the problem, results, and applications 127

To find a wall quickly in a graph, we can hence use the following proposition.

Proposition 7.1.2 ([284]). Let F be a finite collection of graphs. There exist a function f7.1.2 : N→ N
and an algorithm with the following specifications:

Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and k ∈ N.
Output: One of the following:

• Case 1: Either a report that (G, k) is a no-instance of Vertex Deletion to exc(F), or

• Case 2: a report that G has treewidth at most f7.1.2(sF) · r + k, or

• Case 3: an r-wall W of G.

Moreover, f7.1.2(sF) = 2O(s2F ·log sF), and the algorithm runs in time 2OℓF (r2+(k+r)·log(k+r)) · n.

H1 (H2, ϕ)

L L

H1[X] (H2[ϕ(X)], ϕ|X)

X

Figure 7.2: If L is hereditary, then a restriction of an allowed modification is also allowed.

Hereditary R-actions. An R-action is said to be hereditary if, for each ordered graph H1, for
each non-empty X ⊆ V (H1), and for each (H2, ϕ) ∈ L(H1), we have (H2[ϕ

+(X)], ϕ|X) ∈ L(H1[X]).
We say that (H2[ϕ

+(X)], ϕ|X) is the restriction of (H2, ϕ) to X. See Figure 7.2 for an illustration.
Informally, an R-action is hereditary if, when a modification is allowed, then modifying “less” is

allowed as well. For instance, if L allows us to delete exactly k vertices, then L also allows us to
delete at most k vertices.

Our main result is the following, which is a restatement of Theorem 2.3.1.

Theorem 7.1.3. Let F be a finite collection of graphs and let L be a hereditary R-action. There is
an algorithm that, given a graph G and k ∈ N, runs in time 2polyF (k) ·n2 and either outputs a solution
of L-R-exc(F) for the instance (G, k) or reports a no-instance. Moreover, polyF is a polynomial
whose degree depends on the maximum detail of a graph in F .

As mentioned in the introduction, the main result in [287] already implies that L-R-H is solvable
in time f(k)·n2 whenH is minor-closed for some huge function f that is not even estimated. Our main
contribution is an explicit and single-exponential dependence on k (restatement of Theorem 2.3.2).

The degree of polyF (k) is quite big, but we can reduce it in some specific cases.

Theorem 7.1.4. Let L be a hereditary R-action and H be the class of graphs embeddable in a surface
Σ of Euler genus at most g. There is an algorithm that, given a graph G and k ∈ N, runs in time
2Og(k9) · n2 and either outputs a solution of L-R-H for the instance (G, k) or reports a no-instance.

More generally, we study the annotated version of L-R-H. Let L be a hereditary R-action and
H be a graph class. We define the problem L-Annotated Replacement to H as follows.

7.1. Definition of the problem, results, and applications 128

Input: A graph G, a set of annotated vertices S′ ⊆ V (G), (H ′
2, ϕ

′) ∈ L(G[S′]),
and k ∈ N.

Question: Is there a set S ⊆ V (G) of size at most k and (H2, ϕ) ∈ L(G[S]) such that
(H ′

2, ϕ
′) is the restriction of (H2, ϕ) to S′ and GS

(H2,ϕ)
∈ H?

L-Annotated Replacement to H (L-AR-H)

Obviously, we must have S′ ⊆ S. Such a triple (S,H2, ϕ) is called a solution of L-AR-H for
the instance (G,S′, H ′

2, ϕ
′, k). An instance of L-AR-H where S′ = ∅ is an instance of L-R-H, so

L-AR-H generalizes L-R-H. Two instances I1 and I2 are said to be equivalent instances of L-AR-H
if I1 is a yes-instance of L-AR-H if and only if I2 is a yes-instance of L-AR-H.

In fact, the results that we actually prove are the following.

Theorem 7.1.5. Let F be a finite collection of graphs and let L be a hereditary R-action. There
is an algorithm that, given a graph G, S′ ⊆ V (G), (H ′

2, ϕ
′) ∈ L(G[S′]), and k ∈ N, runs in time

2polyF (k) · n2 and either outputs a solution of L-AR-exc(F) for the instance (G,S′, H ′
2, ϕ

′, k) or
reports a no-instance. Moreover, polyF is a polynomial whose degree depends on the maximum detail
of a graph in F .

Theorem 7.1.6. Let L be a hereditary R-action and H be the class of graphs embeddable in a
surface Σ of Euler genus at most g. There is an algorithm that, given a graph G, S′ ⊆ V (G),
(H ′

2, ϕ
′) ∈ L(G[S′]), and k ∈ N, runs in time 2Og(k9) · n2 and either outputs a solution of L-AR-H

for the instance (G,S′, H ′
2, ϕ

′, k) or reports a no-instance.

7.1.2 Problems generated by different instantiations of L

Many graph modification problems correspond to L-R-H for a specific R-action L and a specific
target graph class H. We give a few examples below. Let H be a minor-closed graph class. For
instance, H could be the class of edgeless graphs, of forests, of graphs whose connected components
have size at most k, of planar graphs, or of graphs embeddable in a surface Σ. Note that we do not
mention Edge Addition to H (nor Edge Edition to H) here, because when H is a minor-closed
graph class, adding edges is “unnecessary”, in the sense that the edge deletion variant has the same
expressive power, and we can solve it. Note also that L-R-H, and thus in particular all problems of
this section, was already known to be solvable in FPT-time (when H is minor-closed) by the result
of [287]. However, as mentioned before, the parametric dependence is huge and not even explicit
in [287].

Input: A graph G and k ∈ N.
Question: Is there a set S ⊆ V (G) of size at most k such that G− S ∈ H?

Vertex Deletion to H

Vertex Deletion to H reduces to LvDel-R-H, where LvDel is the function that maps any graph
H1 to the singleton containing the empty graph and the constant function ϕ : V (H1)→ {∅}.

Vertex Deletion to H is already known [235] to be solvable within the same running time
as the one of Theorem 7.1.3. Hence, the result of Theorem 7.1.3 is not an improvement for this
specific problem, but it shows that our result is tight compared to the currently best known result
for Vertex Deletion to H.

7.1. Definition of the problem, results, and applications 129

Input: A graph G and k ∈ N.
Question: Is there a set F ⊆ E(G) of size at most k such that G− F ∈ H?

Edge Deletion to H

(G, k) is a yes-instance of Edge Deletion to H if and only if (G, 2k) is a yes-instance of LeDel,k-R-
H, where LeDel,k is the function that maps each graph H1 to the set of pairs (H1 − F, idV (H1)) over
all F ⊆ E(G) of size at most k.

Algorithms with a nice parametric dependence are only known for specific target classes H.
Namely, when H is the class of forests, Edge Deletion to H corresponds to Feedback Edge
Set, which can be solved in polynomial time as mentioned in Section 1.2. When H is the class of
graphs that are a union of paths, then there is a linear kernel for the problem [219], as well as a
FPT algorithm with parametric dependence on k at most 2k [307]. We refer the reader to the survey
of [69], as well as [99], for other results with explicit dependence on k when H is not a minor-closed
graph class.

Given a graph G and a set of edges F ⊆ E(G), we denote by G/F the graph obtained from G
after contracting the edges in F .

Input: A graph G and k ∈ N.
Question: Is there a set F ⊆ E(G) of size at most k such that G/F ∈ H?

Edge Contraction to H

(G, k) is a yes-instance of Edge Contraction to H if and only if (G, 2k) is a yes-instance of
LCon,k-R-H, where LCon,k is the function that maps each graph H1 to the set of pairs (H1/F, ϕ)
over all F ⊆ E(G) of size at most k, where ϕ maps v ∈ V (H1) to the corresponding vertex of H1/F .

An explicit parametric dependence was given in [165] when H is a class of paths (running time
2k+o(k) + nO(1)) or the class of trees (running time 4.98k · nO(1)). Though these classes are not
minor-closed, we can easily extend these results to the case when H is the class of unions of paths or
the class of forests (up to a 2k factor). FPT-algorithms with an explicit parametric dependence were
also studied when H is a collection of generalization and restriction of trees [8, 11], or when H is the
class of cactus graphs [210]. We refer the reader to survey in [147] for more results when the target
class is not minor-closed.

Input: A graph G and k ∈ N.
Question: Is there a set S ⊆ V (G) of size at most k and a partition (X1, . . . , Xp) of

S such that the graph obtained after identifying the vertices in Xi to a
single vertex xi, for i ∈ [p], belongs to H?

Identification to H

Identification to H reduces to LId-R-H, where LId is the function that maps each graph H1 to
the set of pairs (H2, ϕ), where H2 can be obtained from H1 after identifying each Xi of a partition
(X1, . . . , Xp) of some set S ⊆ V (H1) to a single vertex xi, and ϕ maps vertices of Xi to xi and is
the identity on V (H1) \ S.

We provide in Chapter 6 an FPT-algorithm and a kernel of size 2k + 1 for Identification to
H when H is the class of forests. To our knowledge, this is the only known result for this problem.

7.1. Definition of the problem, results, and applications 130

Input: A graph G and k ∈ N.
Question: Is there an independent set I ⊆ V (G) of size at most k such that G−I ∈ H?

Independent Set Deletion to H

Independent Set Deletion to H reduces to LISDel-R-H, where LISDel is the function that maps
any graph H1 to the set of pairs (H1 − I, ϕ) over all independent sets I ⊆ V (H1), where ϕ maps
vertices of I to the empty set and is the identity on V (H1) \ I.

When H is the class of forests, the problem is known to be solvable in time 3.62k · nO(1) [218].
Concerning other target classes that are not minor-closed, mainly bipartite graphs, let us mention [5,
39,134].

To illustrate the versatility of L-R-H, let us present some other problems that can be defined by
particular hereditary R-actions, though they do not seem to have been studied when parameterized
by the solution size.

Input: A graph G and k ∈ N.
Question: Is there an (induced) matching M ⊆ E(G) of size at most k such that

G−M ∈ H?

(Induced) Matching Deletion to H

(G, k) is a yes-instance of (Induced) Matching Deletion to H if and only if (G, 2k) is a
yes-instance of LmDel,k-R-H, where LmDel,k is defined similarly to LeDel,k above, but for (induced)
matchings.

There are some results on Matching Deletion to H when k = n and H is the class of
forests [222,251] or bipartite graphs (see [221] for a small survey on the subject).

Input: A graph G and k ∈ N.
Question: Is there an (induced) matching M ⊆ E(G) of size at most k such that

G/M ∈ H?

(Induced) Matching Contraction to H

(G, k) is a yes-instance of (Induced) Matching Contraction to H if and only if (G, 2k) is a
yes-instance of LmCon,k-R-H, where LmCon,k is defined similarly to LCon,k above, but for (induced)
matchings.

Input: A graph G and k ∈ N.
Question: Is there a set F ⊆ E(G) inducing a star K1,k′ with k′ ≤ k such that

G− F ∈ H?

Induced Star Deletion to H

(G, k) is a yes-instance of Star Deletion to H if and only if (G, k+1) is a yes-instance of LStarDel,k-
R-H, where LStarDel,k is the function that maps any graph H1 to the set of pairs (H1 − F, idV (H1))
over all sets F ⊆ E(G) inducing a subgraph of K1,k.

Given a graph G, the complement of G, denoted by G, is graph with vertex set V (G) and edge
set the edges that do not belong to E(G).

7.2. Overview of the techniques 131

Input: A graph G and k ∈ N.
Question: Is there a set S ⊆ V (G) of size at most k such that the graph obtained

after replacing G[S] with its complement G[S] belongs to H?

Subgraph Complementation to H

Subgraph Complementation to H reduces to LComp-R-H, where LComp is the function that
maps any graph H1 to the singleton containing the pair (H1, idV (H1)).

The problem got recently studied when k = n for various target classes. We refer the reader
to [14] for a survey on the subject.

Remark. Note that some of the R-actions L corresponding to a graph modification problem above
depend on the parameter k. This implies that the corresponding algorithm is non-uniform in k.
However, this is just an illusion due to the way we define L-R-H so that it generalizes all problems
at once: we quantify on the size of the set S of modified vertices, while some problems may use a
different quantification, such as the number of modified edges. Given a specific graph modification
problem Π to H, we can easily tune the algorithms of this chapter so that they work exactly for the
modification and the quantification we consider, and in this case, the algorithm would be uniform
in k.

7.2 Overview of the techniques

We now proceed to provide a high-level overview of the main tools used to prove our results, without
getting into technical details. This chapter generalizes the techniques recently introduced in [284]
in order to deal with Vertex Deletion to H, which are based on exploiting the Flat Wall
Theorem of Robertson and Seymour [271], namely the version proved by Kawarabayashi, Thomas,
and Wollan [194] and its recent restatement by Sau, Stamoulis, and Thilikos [286]. Recall from
Section 3.1 that the idea of Theorem 2.3.1 (cf. Theorem 7.1.5) and Theorem 2.3.2 (cf. Theorem 7.1.6)
is that, as far as the treewidth of the input graph is sufficiently large as an appropriate function of k,
it is possible to either “branch” into a number of subproblems that depends only on k and where the
value of the parameter is strictly smaller, or to find an irrelevant vertex (i.e., a vertex that does not
change the answer to the considered problem) and remove it from the graph. Once the treewidth is
bounded, what remains is to apply the most efficient possible algorithm to solve the problem via
dynamic programming on tree decompositions.

Let us focus more particularly on the techniques we use to prove Theorem 2.3.1. Contrary to
the algorithm of [284] that solves Vertex Deletion to H for any minor-closed class H, we avoid
using iterative compression. This explains the improvement from cubic to quadratic complexity in n.
The algorithm of Theorem 2.3.1 can be seen as an extension of the algorithm of [284] that solves
Vertex Deletion to H in the particular case where H is apex-minor-free.

In a nutshell, our algorithm employs a win/win strategy that proceeds as follows:

• If the treewidth of the input graph is small (as a function of the parameter k), then solve the
problem via a dynamic programming approach.

• If the treewidth of the input graph is big, then either

– (irrelevant vertex) find a vertex v such that (G, k) and (G− v, k) are equivalent instances,
or

7.2. Overview of the techniques 132

– (branching case) find a set A ⊆ V (G) of small size such that there exists v ∈ A such that
(G, k) and (G− v, k − 1) are equivalent instances,

and recurse.

Hence, we require three ingredients: one to solve the problem parameterized by treewidth, one to
find an irrelevant vertex, and one to find an “obligatory set” A, all with a “reasonable” parametric
dependence on k. Then, we need to construct an algorithm so that one of these three cases always
applies and such that the overall running time is still within the desired bound, which is one of the
most convoluted parts of the proof.

Let S′ be the set of vertices recursively guessed to be modified in the branching step. An advantage
when the modification consists in vertex deletion is that we can simply recurse on (G− S′, k − |S′|).
For the more general case of L-R-H, we cannot simply delete S′, as the considered modification
may be different from vertex deletion. We need 1) to guess how G[S′] is modified, that is, to guess
(H ′

2, ϕ
′) ∈ L(G[S′]) and 2) to remember S′ and (H ′

2, ϕ
′) in order to check that we eventually find a

set S ⊇ S′ and an allowed modification (H2, ϕ) ∈ L(G[S]) whose restriction to S′ is (H ′
2, ϕ

′) such
that the modified graph is in H. This is why we need to solve the annotated version of the problem,
denoted by L-AR-H, where we add to the input a subset S′ of vertices of G that are required to be
part of H1, as well as the modification (H ′

2, ϕ
′) made on S′.

As for solving the problem when the graph has bounded treewidth, we cannot just use Courcelle’s
theorem [67], since we require a nice parametric dependence on k. Hence, we need to design our
own dynamic programming algorithm to solve L-AR-H parameterized by the treewidth and k
(Theorem 7.3.4, proved in Section 7.6). Essentially, the idea is to guess, in each bag β(t) of the
decomposition, the set St of vertices that are modified as well as how they are modified, and to
reduce the size of the graph Gt induced by the bag t and its children using the representative-based
technique of [24]. Recall from Section 4.4 that this technique is based on the property that (cf.
Proposition 4.4.1 and Proposition 4.4.2), given a boundaried graph G whose underlying graph
belong to a minor-closed graph class H, there is a boundaried graph R of bounded size compatible
with G, called the representative of G, such that, for any boundaried graph H compatible with
G, we have G ⊕H ∈ H if and only if R ⊕H ∈ H. Gt does not belong to H, so we cannot find
a representative of Gt (with boundary β(t)), but we find instead a representative of the graph
G′

t ∈ H modified from Gt according to the guessed modification on St and the previously guessed
modification on the children of t. Given that we may need to identify together vertices that are far
apart in the tree decomposition, we need to remember throughout the algorithm the vertices that
are guessed to be part of the solution. The fact that we keep information about these at most k
vertices explains the dependence on k of the dynamic programming algorithm, which runs in time
2O(k2+(k+tw) log(k+tw)) · n.

As expected, finding an irrelevant vertex (Theorem 7.3.1, proved in Section 7.4) is done using
the irrelevant vertex technique of Robertson and Seymour [271]. More specifically, we generalize
the irrelevant vertex technique used in [285] (cf. Proposition 8.2.4). While our irrelevant vertex
technique for L-AR-H takes inspiration from [285], it is far more involved due to the annotation
and the fact that we allow a wide variety of modifications. The fact that we ask the replacement
action L to be hereditary comes from the irrelevant vertex technique. Indeed, in order to prove
that the central vertex v of a homogeneous flat wall W is irrelevant, we essentially prove that, for
any solution (S,H2, ϕ), we can delete a small part X of W containing v, and that the restriction of
(S,H2, ϕ) to G−X is still a solution.

The branching case (Lemma 7.3.3, proved in Section 7.5) is not much different from what is done
in [285] (cf. Proposition 8.2.5, see also [229,284]): essentially, if there is a big enough wall W (cf.
Figure 3.1) and a set A of vertices having many disjoint paths to W (cf. Figure 7.3), then some

7.3. The algorithms 133

modification (HA, ϕA) must happen in A and we can branch. Here, we however need to additionally
prove that we must have |ϕA(A) \ {∅}| < |A|. We stress that it is important here to guess some
modification in A that strictly decreases the size of A, so that, after applying this partial modification
to G at the next step in the recursion, we will not find the exact same obligatory set A. Hence,
in the algorithm with input (G,S′, H ′

2, ϕ
′, k), at each step, either we find an irrelevant vertex and

strictly decrease the size of G, or we branch and strictly increase the size of S′.
Finally, in Section 7.3 we combine these three ingredients to find an algorithm for L-AR-H. It

essentially proceeds as follows. Let (G,S′, H ′
2, ϕ

′, k) be the instance we want to solve, and G′ be
obtained by doing the modification (H ′

2, ϕ
′) of S′. In the first steps, we either find that G has small

treewidth, where we can use our dynamic programming algorithm to conclude, or that G′ contains a
wall W . Given W , we first try to find a flat wall W ′ inside, with all the necessary conditions to find
an irrelevant vertex. If we manage to do so, we remove the irrelevant vertex and recurse. Otherwise,
through a greedy procedure, we try to find an obligatory vertex set A with many disjoint paths to
W in G′. If we find such a set, we branch and recurse. If not, we manage to argue that we must
have a no-instance, and conclude.

The second algorithm (Theorem 2.3.2), when H is a class of graphs embeddable in a surface of
bounded Euler genus, uses two additional ideas to get an improved running time. The first one is that
here, the obligatory set A is a singleton. Indeed, the size of A is the size of the minimum number of
vertices one can remove from an obstruction of H to make it planar. It is well known that, when H is
such a class, there is some integer t depending on the Euler genus such that K3,t /∈ H [233, Theorem
4.4.7], and thus, |A| = 1. In particular, this implies that we do not need to branch on A, but that
we instead immediately find an obligatory vertex. The second idea is about homogeneous flat walls.
In the running time 2poly(k) · n2 of the first algorithm, the degree of poly essentially corresponds to
the size of the required flat wall to find a big enough homogeneous flat wall, and hence an irrelevant
vertex, inside of it. In the case where H is the class of graphs embeddable in a surface of Euler genus
at most g, we prove that we can find a homogeneous flat wall inside a flat wall of smaller size, hence
the improved running time (Theorem 7.3.2, proved in Subsection 7.4.3). To do so, we prove that,
after some preliminary processing, a flat wall that is furthermore embeddable in a disk with the
perimeter on its boundary is already homogeneous (Lemma 7.4.1). Hence, our second algorithm
(Subsection 7.3.3) proceeds similarly to the first one, but if we find a flat wall W ′ in G′, we divide
W ′ into k + 1 disjoint smaller flat walls and check whether they belong to H. By the pigeonhole
principle, one of them, Wi, does not contain a modified vertex and must thus be in H, otherwise
we return a no-instance. Then, we argue, using a result from [86] (Proposition 7.3.9) to guarantee
additional properties of the planar embedding that are needed for technical reasons, that we can
find a smaller flat wall W ′

i in Wi with a planar embedding (even if the genus of the target graph
class is strictly positive). Hence, we find an irrelevant vertex in W ′

i and conclude.

7.3 The algorithms

In this section, we provide our two algorithms (Theorem 2.3.1 and Theorem 2.3.2). In Subsection 7.3.1,
we state the three main ingredients necessary for the algorithms, that will be provided in later
sections. In Subsection 7.3.2, we give the algorithm for the general case. In Subsection 7.3.3, we
explain how to improve the algorithm in the special case where H is the class of graphs embeddable
in a surface of bounded genus.

7.3. The algorithms 134

7.3.1 Main ingredients

The first ingredient is a result stating that an irrelevant vertex can be found in a big enough flat
wall whose compass has bounded treewidth. The proof is deferred to Subsection 7.4.2.

Theorem 7.3.1. Let F be a finite collection of graphs and L be a hereditary R-action. There exist
a function f7.3.1 : N2 → N, whose images are odd integers, and an algorithm with the following
specifications:

Irrelevant-Vertex(G,S′, H ′
2, ϕ

′, k, A, a,W,R, t)
Input: Integers k, a, t ∈ N, a graph G, a set S′ ⊆ V (G) of size at most k, (H ′

2, ϕ
′) ∈ L(G[S′]), a set

A ⊆ V (G′) of size at most a, where G′ := GS′

(H2,ϕ)
, and a regular flatness pair (W,R) of G′ −A of

height at least f7.3.1(k, a) whose R-compass has treewidth at most t and does not intersect ϕ′(S′).
Output: A vertex v ∈ V (G) \ S′ such that (G,S′, H ′

2, ϕ
′, k) and (G− v, S′, H ′

2, ϕ
′, k) are equivalent

instances of L-AR-exc(F).
Moreover, f7.3.1(k, a) = Oa,ℓF (k

c), where c := g4.6.12(a, g4.6.11(a, ℓF)) = Oa,ℓF (1), and the
algorithm runs in time 2Oa,ℓF (k log k+t log t) · (n+m).

Here is a result with a better dependence on k, and a better running time that we will be able
to apply in the bounded genus case. In this case, we do not ask for our flat wall to have bounded
treewidth, but to have a planar embedding instead. The proof is deferred to Subsection 7.4.3. Note
that here, instead of a single vertex v, we might sometimes find an entire planar block of vertices V
that is irrelevant.

Theorem 7.3.2. Let L be a hereditary R-action and F be the collection of obstructions of the graphs
embeddable in a surface of genus at most g. There exist a function f7.3.2 : N→ N, whose images are
odd integers, and an algorithm with the following specifications:

Planar-Irrelevant-Vertex(G,S′, H ′
2, ϕ

′, k,W,R)
Input: An integer k ∈ N, a graph G, a set S′ ⊆ V (G) of size at most k, (H ′

2, ϕ
′) ∈ L(G[S′]), and a

flatness pair (W,R = (X,Y, P,C,Γ, σ, π)) of GS′

(H′
2,ϕ

′) of height at least f7.3.2(k) whose R-compass
does not intersect ϕ′(S′) and is embeddable in a disk with X ∩ Y on the boundary.
Output: A non-empty set Y ⊆ V (G) \ S′ such that (G,S′, H ′

2, ϕ
′, k) and (G− Y, S′, H ′

2, ϕ
′, k) are

equivalent instances of L-AR-exc(F).
Moreover, f7.3.2(k) = O(k) and the algorithm runs in time O(n+m).

The next result essentially states that a part of the solution S can be found in a set A of size aF
such that each vertex of A is adjacent to many vertices of a big enough wall. This is our “obligatory
vertex” method. See Figure 7.3 for an illustration. The proof is deferred to Section 7.5.

Lemma 7.3.3. Let F be a finite collection of graphs and L be a hereditary R-action. There exist
three functions f7.3.3, g7.3.3, h7.3.3 : N→ N such that the following holds.

Let k ∈ N. Let G be a graph, S′ ⊆ V (G) be a set of size at most k, and (H ′
2, ϕ

′) ∈ L(G[S′]).
Suppose that G′ := GS′

(H′
2,ϕ

′) contains a set A ⊆ V (G′) of size at least aF and that there is a wall W

in G′ −A of height f7.3.3(k). Suppose also that there is a W -canonical partition Q̃ of G′ −A such
that each vertex of A is adjacent to at least g7.3.3(k) many h7.3.3(k)-internal bags of Q̃.

Then, for every solution (S,H2, ϕ) of L-AR-exc(F) for (G,S′, H ′
2, ϕ

′), it holds that A′ ̸= ∅,
where A′ := (S \ S′) ∩A, and that |ϕ+(A′)| < |A′|.

Moreover f7.3.3(k) = OsF (k
2), g7.3.3(k) = OsF (k

3), and h7.3.3(k) = OsF (k
2).

Finally, the dynamic programming algorithm presented in Section 7.6 gives the following for
graphs of bounded treewidth.

7.3. The algorithms 135

A

Figure 7.3: Illustration of Lemma 7.3.3.

Theorem 7.3.4. Let F be a finite collection of graphs and L be an R-action. There is an algorithm
that, given k ∈ N, a graph G of treewidth at most w, a set S′ ⊆ V (G) of size at most k, and
(H ′

2, ϕ
′) ∈ L(G[S′]), in time 2OℓF (k2+(k+w) log(k+w)) · n either outputs a solution of L-AR-exc(F) for

the instance (G,S′, H ′
2, ϕ

′, k), or reports a no-instance.

7.3.2 The general case: proof of Theorem 7.1.5

We now prove our result in the general case. We restate Theorem 7.1.5 for the sake of readability.

Theorem 7.1.5. Let F be a finite collection of graphs and let L be a hereditary R-action. There
is an algorithm that, given a graph G, S′ ⊆ V (G), (H ′

2, ϕ
′) ∈ L(G[S′]), and k ∈ N, runs in time

2polyF (k) · n2 and either outputs a solution of L-AR-exc(F) for the instance (G,S′, H ′
2, ϕ

′, k) or
reports a no-instance. Moreover, polyF is a polynomial whose degree depends on the maximum detail
of a graph in F .

Let L be a hereditary R-action and F be a finite collection of graphs. Let G be a graph,
S′ ⊆ V (G), (H ′

2, ϕ
′) ∈ L(G[S′]), and k ∈ N. Let us describe here how to solve L-AR-exc(F) on

(G,S′, H ′
2, ϕ

′, k).
We set G′ := GS′

(H′
2,ϕ

′) and define the following constants, where c = g4.6.12(a+ b, g4.6.11(a, ℓF)) =

OℓF (1).

a = g4.6.2(sF + aF − 1) = OℓF (1), b = g4.6.2(sF) = OℓF (1),

q = g7.3.3(k) = OℓF (k
3), p = h7.3.3(k) = OℓF (k

2),

l = (q − 1) · (k + b) = OℓF (k
4), r5 = f7.3.1(k, a+ b) = OℓF (k

c),

t = f4.6.3(sF) · r5 = OℓF (k
c), r4 = odd(t+ 3) = OℓF (k

c),

r3 = f4.6.8(aF + k, r4, 1) = OℓF (k
c+ 1

2), r2 = 2 + f4.6.2(sF + aF − 1) · r3 = OℓF (k
c+ 1

2),

r′2 = odd(max{f7.3.3(k), f4.6.8(l + 1, r2, p)}) = OℓF (k
c+ 5

2), r1 = odd(f4.6.2(sF) · r′2 + k) = OℓF (k
c+ 5

2).

Observe that the yes-instances of L-R-exc(F) exclude KsF+k as a minor by Observation 7.1.1.
Thus, by Proposition 4.2.1, we can always assume that the input graph G has OsF (k

√
log k · n)

edges, since otherwise we can directly conclude that (G, k) is a no-instance for L-R-exc(F).

Given that the algorithm is rather convoluted, we split it into three parts. In the initial steps
(Steps 1 and 2), we either find a big enough wall or conclude. Then we analyze what happens when
(G,S′, H ′

2, ϕ
′, k) is a yes-instance of L-AR-exc(F) containing a big enough wall. That is, we prove

7.3. The algorithms 136

that after Step 3, in case of a yes-instance, we either find a flat wall whose compass has bounded
treewidth in which case we find an irrelevant vertex in Step 4, or we go to Step 5 and find an apex
set intersecting any solution, on which we can branch. Hence, we can apply the final steps (Step 3
to 5), where we either recurse or output a no-instance.

Initial steps

Step 1 (basic check). If |S′| > k, we can safely report a no-instance. Hence, we assume in what
follows that |S′| ≤ k.

Step 2 (finding a wall). We run the algorithm Find-Wall from Proposition 7.1.2 with input
(G, r1, k) and, in time 2OℓF (r21+(k+r1) log(k+r1)) · n = 2OℓF (k2(c+5/2)) · n, we either

• conclude that (G, k) is a no-instance of Vertex Deletion to exc(F), and thus, by Observa-
tion 7.1.1, that (G,S′, H ′

2, ϕ
′, k) is a no-instance of L-AR-exc(F), or

• conclude that tw(G) ≤ f7.1.2(sF) · r1 + k and solve L-AR-exc(F) on (G,S′, H ′
2, ϕ

′, k) in time
2OℓF (k2+(r1+k) log(r1+k)) · n = 2OℓF (kc+5/2·log k) · n using the algorithm of Theorem 7.3.4, or

• obtain an r1-wall W1 of G.

Since we conclude in the first two cases above, we assume henceforth that we have found a r1-wall
W1 of G.

Interlude: what happens when (G,S ′, H ′
2, ϕ

′, k) is a yes-instance

Given a solution (S,H2, ϕ) of L-AR-exc(F) of the instance (G,S′, H ′
2, ϕ

′, k), if it exists, let us set
Sr := S \ S′. Note that G′ − Sr is a subgraph of GS

(H2,ϕ)
and thus belongs to exc(F).

W1W ′
2

B ∪ Sr

Figure 7.4: (W ′
2,R

′
2) is a flatness pair of G′ − (Sr ∪B).

Claim 7.3.5. If (S,H2, ϕ) is a solution of L-AR-exc(F) for the instance (G,S′, H ′
2, ϕ

′, k), then
there exists a set B ⊆ V (G′), with |B| ≤ b, and a flatness pair (W ′

2,R
′
2) of G′ − (Sr ∪B) of height

r′2 such that W ′
2 is a W̃2-tilt of some subwall W̃2 of W1.

7.3. The algorithms 137

Proof of claim. Since r1 ≥ f4.6.2(sF) · r′2 + k, there is an (f4.6.2(sF) · r′2)-subwall of W1, say W ∗
1 , that

does not contain vertices of S (by removing the at most k rows and columns containing vertices of
S). Hence, W ∗

1 is a wall of G− S and thus of G′ − Sr ∈ exc(F).
SinceG′−Sr does not containKsF as a minor, by Proposition 4.6.2 with input (G′−Sr, r′2, sF ,W ∗

1),
we know that there is a set B ⊆ V (G′), with |B| ≤ b, and a flatness pair (W ′

2,R
′
2) of G′ − (Sr ∪B)

of height r′2 such that W ′
2 is a W̃2-tilt of some subwall W̃2 of W ∗

1 . ⋄

Let (W ′
2,R

′
2) be the flatness pair given by Claim 7.3.5. See Figure 7.4 for an illustration. Let Q

be the canonical partition of W ′
2. Let G′

Q be the graph obtained by contracting each bag Q of Q to
a single vertex vQ, and adding a new vertex vall and making it adjacent to each vQ such that Q is
an internal bag of Q. Let Ã be the set of vertices y of G′ − V (W ′

2) such that there are q internally
vertex-disjoint paths from vall to y in G′

Q.
Note, as we will use it in Step 5, that, if Q′ is the canonical partition of W̃2, then Ã is also the

set of vertices y of G′− V (W̃2) such that there are q internally vertex-disjoint paths from vall to y in
G′

Q′ .

Claim 7.3.6. Ã ⊆ Sr ∪B.

Proof of claim. To show this, we first prove that, for every y ∈ V (G′) \ (V (W ′
2) ∪ Sr ∪ B), the

maximum number of internally vertex-disjoint paths from vall to y in G′
Q is k + b+ 4.

Indeed, if y is a vertex in the R′
2-compass of W ′

2 (but not a vertex in V (W ′
2)), then there are at

most k + b such paths that intersect the set Sr ∪ B and at most four paths that do not intersect
Sr ∪B (in the graph G′

Q− (Sr ∪B)) due to the fact that (W ′
2,R

′
2) is a flatness pair of G′− (Sr ∪B).

If y is not a vertex in the R′
2-compass of W ′

2, then, since by the definition of flatness pairs the
perimeter of W ′

2 together with the set Sr ∪B separate y from the R′
2-compass of W ′

2, every collection
of internally vertex-disjoint paths from vall to y in G′

Q should intersect the set {vQext} ∪ Sr ∪ B,
where Qext is the external bag of Q.

Therefore, in both cases, the maximum number of internally vertex-disjoint paths from vall to y
in G′ is k + b+ 4. Since k + b+ 4 < q, we have that y /∈ Ã. Hence, given that Ã ⊆ V (G′) \ V (W ′

2),
we conclude that Ã ⊆ Sr ∪B. ⋄

Given a W ′
2-canonical partition Q̃ of G′ − (Sr ∪B), we set AQ̃ to be the set of vertices in Sr ∪B

that are adjacent to vertices of at least q p-internal bags of Q̃. Note that AQ̃ ⊆ Ã and therefore
|AQ̃| ≤ |Ã|. Remember that Q̃ is obtained by enhancing Q on G′ − (Sr ∪B) and is not unique.

Claim 7.3.7. If there is a W ′
2-canonical partition Q̃ of G′ − (Sr ∪B) such that |AQ̃| < aF , then

(a) there is an r2-subwall W2 of W1 such that the algorithm Grasped-or-Flat of Proposition 4.6.2
with input (DW2 , r3, sF + aF − 1,W ∗

2) outputs a set A ⊆ V (DW2) with |A| ≤ a and a flatness
pair (W3,R3) of DW2 −A of height r3, such that W3 is a tilt of some subwall W̃3 of W2, where

– W ∗
2 is the central (r2 − 2)-subwall of W2 and

– DW2 is the graph obtained from G′ after removing the perimeter of W2 and taking the
connected component containing W ∗

2 , and

(b) the algorithm Clique-or-twFlat of Proposition 4.6.3 with input (DW4 , r5, sF) outputs a set
A′ of size at most b and a regular flatness pair (W5,R5) of DW4 − A′ of height r5 whose
R5-compass has treewidth at most t and does not intersect ϕ′(S′), where

– W4 is a wall in the collection W = {W 1, . . . ,W aF+k},

7.3. The algorithms 138

– W ∗
4 is the central (r4 − 2)-subwall of W4, and

– DW4 is the graph obtained from DW2 after removing A and the perimeter of W4 and
taking the connected component containing W ∗

4 .

Proof of claim. Given that |AQ̃| < aF , at most aF − 1 vertices of Sr ∪ B are adjacent to vertices
of at least q p-internal bags of Q̃. This means that the p-internal bags of Q̃ that contain vertices
adjacent to some vertex of (Sr ∪B) \AQ̃ are at most (q − 1) · (k + b) = l.

Given that r′2 ≥ f4.6.8(l+ 1, r2, p), there is a collection W = {W 1, . . . ,W l+1} of l+ 1 r2-subwalls
of W ′

2 in G′ respecting the properties of the output of the algorithm Packing of Proposition 4.6.8
with input (l + 1, r2, p,G

′,W ′
2,R

′
2). The fact that the p-internal bags of Q̃ that contain vertices

adjacent to some vertex of (Sr ∪B) \AQ̃ are at most l implies that there exists an i ∈ [l + 1] such
that no vertex of V (

⋃
influenceR′

2
(W i)) is adjacent, in G′, to a vertex in (Sr ∪B) \AQ̃. Let W2 be

the subwall of W1 such that W i is a tilt of W2. It exists given that W i is a subwall of W ′
2, that is a

tilt of some subwall W ′ of W1. Remember that W ∗
2 is the central (r2 − 2)-subwall of W2, which is

also the central (r2 − 2)-subwall of W i, and that DW2 is the graph obtained from G′ by removing
the perimeter of W2 and taking the connected component that contains W ∗

2 .

W2 W ′
2

B ∪ Sr
AQ̃

DW2

clique grasped by W ∗
2

Figure 7.5: V (
⋃

influenceR′
2
(W2)) is not adjacent to any vertex in (Sr ∪B) \AQ̃.

Since no vertex of V (
⋃
influenceR′

2
(W i)) is adjacent, in G′, to a vertex in (Sr ∪ B) \ AQ̃, any

path in DW2 going from a vertex of W ∗
2 to a vertex in Sr must intersect a vertex of AQ̃. Thus,

there is no model of KsF+aF−1 grasped by W ∗
2 in DW2 , because otherwise, KsF would be a minor

of the connected component of DW2 −AQ̃ containing W ∗
2 , and thus of G′ − Sr. See Figure 7.5 for

an illustration. So, by applying the algorithm Grasped-or-Flat of Proposition 4.6.2 with input
(DW2 , r3, sF + aF − 1,W ∗

2), since r2 − 2 ≥ f4.6.2(sF + aF − 1) · r3, we should find a set A ⊆ V (DW2)
with |A| ≤ a and a flatness pair (W3,R3) of DW2 − A of height r3, such that W3 is a tilt of some
subwall W̃3 of W2.

Let Q̃′ be a W3-canonical partition of DW2 − A. Given that r3 ≥ f4.6.8(aF + k, r4, 1), there is
a collection W ′ = {W 1, . . . ,W aF+k} of r4-subwalls of W3 respecting the properties of the output
of the algorithm Packing of Proposition 4.6.8 with input (aF + k, r4, 1, DW2 − A,W3,R3). Since
|AQ̃| < aF and |(ϕ′)+(S′)| ≤ |S′| ≤ k, there is an i ∈ [aF + k] such that V (

⋃
influenceR3(W

i)) does
not intersect AQ̃ nor ϕ′(S′). See Figure 7.6 for an illustration.

7.3. The algorithms 139

W3

AQ̃

DW2

Sr

DW4

W4

Figure 7.6: V (
⋃
influenceR3(W4)) does not contain any vertex from ϕ′(S′) (red vertices), nor from

AQ̃ (and thus from Sr). The small walls in orange are the walls of W ′, and their influence is
represented in yellow.

Let W4 :=W i. Remember that W ∗
4 is the central (r4−2)-subwall of W4 and that DW4 is the graph

obtained from DW2 after removing A and the perimeter of W4 and taking the connected component
containing W ∗

4 . Observe that any path between a vertex of Sr and a vertex of V (
⋃
influenceR3(W4))

in DW2 intersects AQ̃. Since AQ̃ does not intersect V (
⋃
influenceR3(W4)), it implies that AQ̃ does

not intersect DW4 , and thus Sr∩DW4 = ∅. Therefore, DW4 is a subgraph of G′−Sr and KsF is not a
minor of DW4 . Moreover, W ∗

4 is a wall of DW4 of height r4−2 ≥ t+1, so tw(DW4) > t = f4.6.3(sF)·r5.
Therefore, by applying the algorithm Clique-or-twFlat of Proposition 4.6.3 with input (DW4 , r5, sF),
we should obtain a set A′ of size at most b and a regular flatness pair (W5,R5) of DW4 −A′ of height
r5 whose R5-compass has treewidth at most t. ⋄

Final steps

Step 3a (finding a flat wall). We consider all the
(
r1
r2

)2
= 2OℓF (kc+1/2 log k) r2-subwalls of W1

not containing a vertex of S′ (so that they are walls of both G and G′). For each one of them, say
W2, let W ∗

2 be the central (r2 − 2)-subwall of W2 and let DW2 be the graph obtained from G′ after
removing the perimeter of W2 and taking the connected component containing W ∗

2 . Given that
r2 − 2 = f4.6.2(sF + aF − 1) · r3, we can apply the algorithm Grasped-or-Flat of Proposition 4.6.2
with input (DW2 , r3, sF + aF − 1,W ∗

2). This can be done in time OsF (k
√
log k · n). If, for some of

these subwalls, the result is a set A ⊆ V (DW2) with |A| ≤ a and a flatness pair (W3,R3) of DW2 −A
of height r3 then we proceed to Step 3b for each such a subwall. Otherwise, we proceed to Step 5.
Step 3b (finding a flat wall whose compass has bounded treewidth). Given that r3 =
f4.6.8(aF + k, r4, 1), we can apply the algorithm Packing of Proposition 4.6.8 with input (aF +
k, r4, 1, DW2−A,W3,R3) to compute in time OsF (k

√
log k ·n) a collectionW = {W 1, . . . ,W aF+k−1}

of r4-subwalls of W3 that respects the properties of the output of Proposition 4.6.8.
For i ∈ [aF + k − 1], let W i∗ be the central (r4 − 2)-subwall of W i and let DW i be the graph

obtained from DW2 after removing A and the perimeter of W i and taking the connected component
containing W i∗. Run the algorithm Clique-or-twFlat of Proposition 4.6.3 with input (DW i , r5, sF).
This takes time 2OℓF (r25) · n = 2OℓF (k2c) · n. If for one of these subwalls the result is a set A′ of size

7.3. The algorithms 140

at most b and a regular flatness pair (W5,R5) of DW i − A′ of height r5 whose R5-compass has
treewidth at most t and does not intersect S′, then we set W4 :=W i and we proceed to Step 4.

If, for every subwall W2, we did not find such a pair (W5,R5), then we proceed to Step 5.

Step 4 (irrelevant vertex case). Let R′
5 be the 5-tuple obtained by adding all vertices of

G′ − V (DW4)−A to the set in the first coordinate of R5.

Claim 7.3.8. (W5,R
′
5) is a regular flatness pair of G′ − (A ∪A′) whose R′

5-compass has treewidth
at most t and does not intersect ϕ′(S′).

Proof of claim. Remember that, given a wall W , D(W) is the perimeter of W .
(W5,R5) is a flatness pair of DW4−A′. By the definition of DW4 , the vertices of DW2−V (DW4)−

A −D(W4) are only adjacent to D(W4) and A in DW2 . Therefore, (W5,R
′′
5) is a flatness pair of

DW2 − (A ∪A′), where R′′
5 is the 5-tuple obtained by adding all vertices of DW2 − V (DW4)−A to

the set in the first coordinate of R5.
Also, by the definition of DW2 , the vertices of G′−V (DW2)−D(W2) are only adjacent to D(W2)

in G′. Therefore, (W5,R
′
5) is a flatness pair of G′ − (A ∪A′), where R′

5 is the 5-tuple obtained by
adding all vertices of G′ −DW2 to the set in the first coordinate of R′′

5. Therefore, R′
5 is indeed the

5-tuple obtained by adding all vertices of G′ − V (DW4)−A to the set in the first coordinate of R5.
Given that CompassR5

(W5) = CompassR′
5
(W5) and that (W5,R5) is regular with a R5-compass

of treewidth at most t that does not intersect ϕ′(S′), this is also the case for (W5,R
′
5). Hence the

result. ⋄

Given that r5 = f7.3.1(k, a+b), we can apply the algorithm Irrelevant-Vertex of Theorem 7.3.1
with input (G,S′, H ′

2, ϕ
′, k, A∪A′, a+b,W5,R

′
5, t), which outputs, in time 2OℓF (t log t+k log k)·(n+m) =

2OℓF (kc log k) ·n, a vertex v such that (G,S′, H ′
2, ϕ

′, k) and (G−v, S′, H ′
2, ϕ

′, k) are equivalent instances
of L-R-exc(F). Then the algorithm runs recursively on the equivalent instance (G− v, S′, H ′

2, ϕ
′, k).

Step 5 (branching case). Consider all the r′2-subwalls of W1 that do not contain vertices of S′,
which are at most

(
r1
r′2

)2
= 2OℓF (kc+5/2 log k) many, and for each of them, say W̃2, compute its canonical

partition Q′. Note that W̃2 is a wall of G− S′, and thus of G′. Then, in G′, we contract each bag Q
of Q′ to a single vertex vQ, and add a new vertex vall and make it adjacent to each vQ such that
Q is an internal bag of Q′. In the resulting graph G′

Q′ , for every vertex y of G′ − V (W̃2), check,
using augmenting paths from usual maximum flow techniques [87], whether there are q internally
vertex-disjoint paths from vall to y in time O(q ·m) = OℓF (k

4
√
log k · n). Let Ã be the set of all

such y’s.
Note that, if (G,S′, H ′

2, ϕ
′, k) is a yes-instance, then, by Claim 7.3.5 and Claim 7.3.6, there is

a W̃2 such that |Ã| ≤ k + b, and by Claim 7.3.7, |Ã| ≥ aF , since otherwise we would have gone to
Step 4.

Hence, for each W̃2 such that aF ≤ |Ã| ≤ k + b, we do the following. We consider all the(
Ã
aF

)
= 2OℓF (log k) subsets of Ã of size aF . For each one of them, say A∗, construct a W̃2-canonical

partition Q̃′ of G′ − A∗ by enhancing Q′ on G′ − A∗, such that we first greedily increase the size
of the external bag Qext. Note that if W̃2 is the wall of Claim 7.3.5, then there is a W ′

2-canonical
partition Q̃ of G′ − (Sr ∪ B) and a set AQ̃ ⊆ Ã such that every bag of Q̃′ contains exactly one
bag of Q̃. Therefore, by Claim 7.3.7 and given that we did not go to Step 4, we conclude that, if
(G,S′, H ′

2, ϕ
′, k) is a yes-instance, then there is a set A∗ whose vertices are all adjacent to vertices of

7.3. The algorithms 141

q p-internal bags of Q̃′. Therefore, if, for every W̃2 such that aF ≤ |Ã| ≤ k+ b and for every A∗ ⊆ Ã,
the vertices of A∗ are not all adjacent to vertices of q p-internal bags of Q̃′, we report a no-instance.

Assume now that we found W̃2 and A∗ such that the vertices of A∗ are all adjacent to vertices
of q p-internal bags of Q̃′. Then, given that r′2 ≥ f7.3.3(k), q = g7.3.3(k), and p = h7.3.3(k), by
Lemma 7.3.3, for every solution (S,H2, ϕ) of L-AR-exc(F) for the instance (G,S′, H ′

2, ϕ
′, k), it holds

that (S \ S′) ∩ A∗ ̸= ∅. Let S′′ := S′ ∪ (S ∩ A∗) and (H ′′
2 , ϕ

′′) be the restriction of (H2, ϕ) to S′′.
Hence, we guess (S′′, H ′′

2 , ϕ
′′) and solve the instance (G,S′′, H ′′

2 , ϕ
′′, k). Since we add at most aF

vertices to extend (S′, H ′
2, ϕ

′) to (S′′, H ′′
2 , ϕ

′′) and given that H2 has at most k vertices, there are at
most 2aF choices for S′′, at most 2aF ·k choices for H ′′

2 , and at most (k + 1)aF choices for ϕ′′, which
means at most 2OℓF (k) possible guesses for (S′′, H ′′

2 , ϕ
′′). Therefore, the algorithm runs recursively on

(G,S′′, H ′′
2 , ϕ

′′, k) for each such (S′′, H ′′
2 , ϕ

′′). If one of them is a yes-instance with solution (S,H2, ϕ),
then (G,S′, H ′

2, ϕ
′, k) is a yes-instance with the same solution. Otherwise, we report a no-instance.

Running time. Notice that Step 5, when applied, takes time 2OℓF (kc+5/2 log k) ·n2, because we apply
the flow algorithm to each of the 2OℓF (kc+5/2 log k) r′2-subwalls and for each vertex of G. However, the
search tree created by the branching technique has at most 2OℓF (k) branches and depth at most k,
since the size of the partial solution strictly increase each time. So Step 5 cannot be applied more
than 2OℓF (k2) times during the course of the algorithm. Since Step 1 runs in time OℓF (1), Step 2
runs in time 2OℓF (k2(c+5/2)) · n, Step 3 in time 2OℓF (k2c) · n, and Step 4 in time 2OℓF (kc log c) · n, and
that they all may be applied at most n times, the claimed time complexity follows: the algorithm
runs in time 2OℓF (k2(c+5/2)) · n2.

7.3.3 The special case of bounded genus: proof of Theorem 7.1.6

When H = exc(F) is the class of graphs embeddable in a surface Σg of Euler genus at most g, we
can modify the general algorithm so that the degree of k in the running time does not depend on
H. This is due to two facts. First, we now have aF = 1, given that, for some t that depends on g,
K3,t, which has apex number one, does not embed in Σg. Hence, when applying Lemma 7.3.3, the
obligatory set A contains a unique vertex v. This implies that we do not need to branch on A, but
instead, v is an “obligatory vertex”. In particular, given that the size of A must strictly decrease
after the modification, this further implies that v must be deleted.

Second, by Theorem 7.3.2, we can find an irrelevant vertex inside a flat wall whose height is far
smaller than the one required in Theorem 7.3.1 for the general case. This changes the algorithm a
bit, because the flat wall we require now needs to have a compass embeddable in a disk instead of a
compass of bounded treewidth. Hence, as in the general case, we find a flat wall (Steps 1, 2, 3a).
But, while in the general case we used this flat wall to further find a flat wall W whose compass has
bounded treewidth (Step 3b), we now either find an obligatory vertex in Step 4, or proceed to Step 5
where we find a flat subwall W ′ of W whose compass is in H, in which we argue using the argument
of Section 7.3.3 that there is another flat subwall W ′′ of W ′ whose compass is embeddable in a disk,
where we finally find an irrelevant vertex. If we did not find a flat wall in Step 3a, then, similarly to
the branching case (Step 5) in the general setting, we find an obligatory vertex in Step 7.

Finding a disk-embeddable wall

In the algorithm, we will need to prove that, if the compass C of a flat wall is embedded in a surface
of bounded Euler genus, then C contains a smaller flat wall that is embeddable in a disk such that
its perimeter is on the boundary of the disk. Namely, we need this property to apply Lemma 7.4.1

7.3. The algorithms 142

when finding an irrelevant vertex. To do so, we use the following result from Demaine, Hajiaghayi,
and Thilikos [86].

Proposition 7.3.9 (Lemma 4.7 in [86]). Let G be a graph (∅, ∅)-embeddable in a surface Σ of Euler
genus g and assume that tw(G) ≥ 4(r − 12g)(g + 1). Then there exists some (r − 12g, g)-gridoid H,
(∅, F)-embeddable in S0 for some F ⊆ E(H) with |F | ≤ g, such that there exists some contraction
mapping from G to H with respect to their corresponding embeddings.

Let us briefly introduce the undefined terms used in the above statement. A graph G is (S, F)-
embeddable in a surface Σ, where S ⊆ V (G), F ⊆ E(G), and F is a superset of the edges with an
endvertex in S, if the graph G− := (V (G) \ S,E(G) \ F) admits a 2-cell embedding in Σ, that is,
an embedding in which every face is homeomorphic to an open disk. For two positive integers r, k,
a graph G is an (r, k)-gridoid if it is (S, F)-embeddable in S0 for some pair S, F , where |F | ≤ k,
F (G[S]) = ∅, and G− is a partially triangulated (r′× r′)-grid embedded in S0 for some r′ ≥ r, that is,
a graph obtained from an (r′ × r′)-grid by adding some chords to some of its faces. Finally, without
entering into unnecessary technical details, a contraction mapping is a strengthening of a graph
being a contraction of another graph that preserves some aspects of the embedding in a surface
during the contractions. In a nutshell, the statement of Proposition 7.3.9 should be interpreted as H
occurring as a contraction in G in such a way that H can be embedded “nicely inside the original
embedding of G”, in particular the preimages of the faces of H via the contraction mapping are faces
of G; see [86, Section 3.1] for more details.

In our setting, our goal by using Proposition 7.3.9 is to guarantee that, in Step 5 below, given a
large flat wall embedded in a surface of bounded genus, it is possible to find inside it a still large flat
plane subwall that is nicely embedded in the original one. To this end, it is enough to argue that,
once we have at hand the gridoid H given by Proposition 7.3.9, we can find a large piece of it that is
(∅, ∅)-embeddable in S0.

Note that, in order to apply Proposition 7.3.9 in our algorithm and obtain an overall quadratic
time, we need to obtain the embedded gridoid H in linear time, so that an irrelevant vertex can
indeed be found in linear time. Let us briefly sketch how this can be done. The proof of [86, Lemma
4.7] proceeds by induction on the Euler genus g, the base case following by the planar exclusion
theorem of Robertson and Seymour [282]. It then distinguishes two cases according to whether the
representativity of G (also called face-width in the literature) it at least ℓ := 4(r − 12g) or not. This
can be decided in time O(gℓn) by [46, Theorem 10], where n = |V (G)|. If this is indeed the case,
applying [81, Lemma 3.3] yields the desired output. The proof of [81, Lemma 3.3] consists in simple
local operations based on a notion of distance that uses the existence of an object called respectful
tangle, proved to exist in [269, Theorem 4.1]. It is easy to verify that these local operations and the
definition of the distance function can be done in linear time.

Otherwise, if the representativity is less than ℓ, the proof first reduces the Euler genus of the
surface by applying a so-called splitting operation, and then uses the induction hypothesis and a
sequence of local operations that identify a set of edges to be contracted to obtain the desired output.
Again, these local operations are easily seen to be done in linear time.

The algorithm

We now have all the necessary ingredients to prove the algorithm. Before proceeding to the proof of
Theorem 7.1.6, we restate it for the sake of readability.

Theorem 7.1.6. Let L be a hereditary R-action and H be the class of graphs embeddable in a
surface Σ of Euler genus at most g. There is an algorithm that, given a graph G, S′ ⊆ V (G),

7.3. The algorithms 143

(H ′
2, ϕ

′) ∈ L(G[S′]), and k ∈ N, runs in time 2Og(k9) · n2 and either outputs a solution of L-AR-H
for the instance (G,S′, H ′

2, ϕ
′, k) or reports a no-instance.

Let L be a hereditary R-action. Let G be a graph, S′ ⊆ V (G), (H ′
2, ϕ

′) ∈ L(G[S′]), and k ∈ N.
Let us describe in what follows how to solve L-AR-exc(F) on (G,S′, H ′

2, ϕ
′, k).

We set G′ := GS′

(H′
2,ϕ

′) and define the following constants. Remember that aF = 1 in this section.

a, b = g4.6.2(sF) = OℓF (1), q = g7.3.3(k) = OℓF (k
3),

l = (q − 1) · (k + b) = OℓF (k
4), p = h7.3.3(k) = OℓF (k

2),

d = (q − 1) · a+ k + 1 = OℓF (k
3), r6 = f7.3.2(k) = OℓF (k),

r5 = odd(max{12g, (2g + 2) · 2r6}) = OℓF (k), r4 = 4r5 · (g + 1) + 1 = OℓF (k),

r3 = f4.6.8(d, r4, 1) = OℓF (k
5/2), r2 = 2 + f4.6.2(sF) · r3 = OℓF (k

5/2),

r′2 = odd(max{f7.3.3(k), f4.6.8(l + 1, r2, p)}) = OℓF (k
9/2), r1 = odd(f4.6.2(sF) · r′2 + k) = OℓF (k

9/2).

Recall that we assume that G has OsF (k
√
log k · n) edges.

Step 1, 2, and 3a are done as in the general case. If, for some of the r2-subwalls of W1 not
containing a vertex of S′, we find a set A ⊆ V (DW2) with |A| ≤ a and a flatness pair (W3,R3) of
DW2 −A of height r3 then we go to Step 4. Otherwise, we go to Step 7.

Step 4 (obligatory vertex case 1). Let R′
3 be the 5-tuple obtained by adding all the vertices of

G′−V (DW2)−A in the set in the first coordinate of R3. Similarly to Claim 7.3.8, we get that (W3,R
′
3)

is a flatness pair of G′−A. We apply the algorithm of Proposition 4.6.7 to find in time O(k
√
log k ·n)

a regular flatness pair (W ∗
3 ,R

∗
3) of G′−A of height r3 such that CompassR∗

3
(W ∗

3) ⊆ CompassR′
3
(W3).

Let Q̃ be a W ∗
3 -canonical partition of G′ −A. If there is a vertex v ∈ A that has neighbors in

at least q p-internal bags of Q̃, then, given that r′2 ≥ f7.3.3(k), q = g7.3.3(k), and p = h7.3.3(k), by
Lemma 7.3.3, for every solution (S,H2, ϕ) of L-AR-P for the instance (G,S′, H ′

2, ϕ
′, k), it holds

that v ∈ S \ S′ and that |ϕ+(v)| < |v| = 1. In other words, ϕ(v) = ∅, that is, v must be deleted.
Let S′′ := S′ ∪ {v} and ϕ′′ := ϕ′ ∪ (v 7→ ∅). Hence, if (H ′

2, ϕ
′′) ∈ L(G[S′′]), then (G,S,H ′

2, ϕ
′, k)

and (G,S′′, H2, ϕ
′′, k) are equivalent instances of L-AR-P. Hence, the algorithm runs recursively

on (G,S′′, H2, ϕ
′′, k) and outputs its result. Otherwise, if (H ′

2, ϕ
′′) /∈ L(G[S′′]), then we report a

no-instance. Thus, we can now assume that every vertex of A has neighbors in at most q − 1
p-internal bags of Q̃ and go to Step 5.

Step 5 (finding a flat wall whose compass is disk-embeddable). Given that r3 = f4.6.8(d, r4, 1),
we apply the algorithm Packing of Proposition 4.6.8 with input (d, r4, 1, DW2 −A,W3,R3) to find in
time O(k

√
log k · n) a collection W = {W 1, . . . ,W d} of r4-subwalls of W ∗

3 respecting the properties
of the output of Proposition 4.6.8. For i ∈ [d], we apply the algorithm of Proposition 4.6.6 to find in
time OsF (k

√
log k · n) a W i-tilt (W̃ i, R̃i) of (W ∗

3 ,R
∗
3).

Given that each vertex of A has neighbors in at most q − 1 p-internal bags of Q̃ and that
d ≥ (q− 1) · a+ k+1, by the pigeonhole principle, there is I ⊆ [d] of size at least k+1 such that, for
each i ∈ I, CompassR̃i

(W̃ i) has no neighbors in A. Note that, by the properties of Proposition 4.6.8,
the graphs CompassR̃i

(W̃ i) are pairwise disjoint for i ∈ I. Let R̃′
i be the 5-tuple obtained by adding

all the vertices of A in the set in the first coordinate of R̃i. Therefore, for each i ∈ I, (W̃ i, R̃′
i) is a

flatness pair of G′.

7.3. The algorithms 144

For each i ∈ I, let Ci := CompassR̃′
i
(W̃ i) and let C+

i be the graph obtained from Ci by adding a
vertex vi adjacent to each vertex of Xi ∩Yi, where Xi (resp. Yi) is the first (resp. second) coordinate
of R̃i. For each i ∈ I, we check whether C+

i embeds in Σg, and if it does, we find such an embedding.
This can be done in linear time by using the algorithm of Mohar [232]. Given that |I| ≥ k + 1, for
any solution (S,H2, ϕ) of L-AR-P for the instance (G,S′, H ′

2, ϕ
′, k), there is j ∈ I such that Cj does

not contain a vertex of ϕ(S) (and in particular of ϕ′(S′)). Therefore, C+
j must have Euler genus at

most g. Thus, if, for each i ∈ I, C+
i is not embeddable in Σg, we report a no-instance. Otherwise,

there is j ∈ I such that C+
j is embeddable in Σg and does not contain a vertex of ϕ′(S′). Then,

by Proposition 7.3.9 and the discussion after it, given that tw(C+
j) ≥ r4 ≥ 4r5 · (g + 1) and that

r5 ≥ 12g, we can find in linear time an edge set F ⊆ E(C+
j) of size at most g and an (r5, g)-gridoid

H that is (∅, F)-embeddable in S0, such that there exists a contraction mapping from C+
j to H with

respect to their corresponding embeddings. Let M be the union of vj and the set of vertices of H
incident to edges in F . We have |M | ≤ 2g+1. Given that r5 ≥ (2g+2) ·2r6, again by the pigeonhole
principle there is an induced subgraph of H −M that is a partially triangulated (2r6 × 2r6)-grid
Γ. In particular, there is a contraction mapping from C+

j to Γ with respect to their corresponding
embeddings, with Γ embedded in S0. Given that Γ is 3-connected (if we dissolve the corners), by
Whitney’s theorem [310], it has a unique embedding in S0. In particular, the perimeter of Γ bounds
a face. Also, there is an elementary r6-wall W6 that is a subgraph of Γ. Given that the maximum
degree in W6 is three and that it avoids the vertices in M , it implies that C+

j , and thus G′, contains a
r6-wall W ′

6 as a subgraph (whose contraction gives W6). Hence, given that the contractions preserve
the embedding, we conclude that there is some rendition R6 such that (W ′

6,R6) is a flatness pair of
G′ whose R6-compass does not contain a vertex of ϕ′(S′) and is embeddable in a disk with X6 ∩ Y6
on its boundary, where X6 (resp. Y6) is the first (resp. second) coordinate of R̃6.

Step 6 (irrelevant vertex case). Thus, given that r6 = f7.3.2(k), we can apply the algorithm
Planar-Irrelevant-Vertex of Theorem 7.3.2 with input (G,S′, H ′

2, ϕ
′, k,W ′

6,R6). It outputs in
time O(k

√
log k · n) a non-empty set Y ⊆ V (G) \ S′ such that (G,S′, H ′

2, ϕ
′) and (G− Y, S′, H ′

2, ϕ
′)

are equivalent instances of L-AR-P. Hence, the algorithm runs recursively for the instance (G−
Y, S′, H ′

2, ϕ
′) and concludes.

Step 7 (obligatory vertex case 2). This step is essentially the same as Step 5 of the general
case. Consider all the r′2-subwalls of W1 that do not contain vertices of S′, which are at most(
r1
r′2

)2
= 2OℓF (k9/2 log k) many, and for each of them, say W̃2, compute its canonical partition Q′. Note

that W̃2 is a wall of G− S′, and thus of G′. Then, in G′, we contract each bag Q of Q′ to a single
vertex vQ, and add a new vertex vall and make it adjacent to each vQ such that Q is an internal bag
of Q′. In the resulting graph G′

Q′ , for every vertex v of G′ − V (W̃2), check, using augmenting paths
from usual maximum flow techniques [87], whether there are q internally vertex-disjoint paths from
vall to v in time O(q ·m) = OℓF (k

4
√
log k · n). If this is the case for some v, then by Lemma 7.3.3,

it holds that, for every solution (S,H2, ϕ) of L-AR-P for the instance (G,S′, H ′
2, ϕ

′, k), it holds that
v ∈ S \ S′ and that |ϕ+(v)| < |v| = 1. Hence, we conclude as in Step 4.

Note that, if (G,S′, H ′
2, ϕ

′, k) is a yes-instance, then, by Claim 7.3.7, there is such a v, since
otherwise we would have gone to Step 4. Therefore, if there is no such a v, then we report a
no-instance.

Running time. Step 1, 2, 3a, 4, 5, 6, and 7 respectively take timeOℓF (1), 2
OℓF (k9)·n, 2OℓF (k5/2 log k)·

n, OℓF (k
√
log k · n), OℓF (k

√
log k · n), OℓF (k

√
log k · n), and 2OℓF (k9/2 log k) · n2. Given that Step 6

7.4. Irrelevant vertex 145

can be applied at most k times, since the size of S′ increases by one each time, and that the other
steps can be applied at most n times, the algorithm thus runs in time 2OℓF (k9) · n2.

7.4 Irrelevant vertex

This section is dedicated to proving Theorem 7.3.1 and Theorem 7.3.2. The irrelevant vertex
technique, which originates from [271], essentially consists in finding inside a flat wall W a smaller
flat wall W ′ that is tight and homogeneous (Proposition 4.6.12), and then arguing that the central
vertices of W ′ are irrelevant with respect to the considered problem, in the sense that they can be
removed without affecting the type (positive or negative) of the instance (Lemma 7.4.3).

The proof of Lemma 7.4.3 in Subsection 7.4.2 takes inspiration from the proof of [285, Lemma
16], which corresponds to the particular case of Vertex Deletion to exc(F). Indeed, both proofs
combine a result of [24] (Proposition 4.6.11) with an auxiliary result (Subsection 7.4.1) claiming the
existence, inside a flat wall W with a central vertex v, of a smaller flat wall W ′ avoiding vertices of
a solution aside from its central part, that also contains v. The more general case of L-AR-exc(F)
is however more involved, given that doing some modification is not as straightforward as removing
vertices, and that we now have annotations. In particular, it requires to give in Subsection 4.6.4 a
new definition of homogeneous flat wall, that encompasses the one used in [24,235,284–286].

In the bounded genus case, instead of Proposition 4.6.12, we prove in Lemma 7.4.1 that a
flat wall W can be slightly modified to become homogeneous if it respects some additional planar
embeddability conditions. Proposition 4.6.12 and Lemma 7.4.1 are the core ingredients explaining
the gap in the running time between the general and the bounded genus case. Proposition 4.6.11
requires a flat wall that is both homogeneous and tight. In [24,235,284–286], the tightness condition
is implicit, given that a flat wall can always is transformed in a tight flat wall (Proposition 4.6.10).
In the bounded genus case however, if we transform our homogeneous flat wall, we might lose the
homogeneity condition, so we need to explicitly prove that our homogeneous wall is also tight in
Lemma 7.4.1. Finally, we prove Theorem 7.3.2 in Subsection 7.4.3.

The size of the flatness pair (W,R) necessary to find a homogeneous flatness pair in Proposi-
tion 4.6.12 is very large and is the main cause of the huge degree of the polynomial in k in the
running time of Theorem 7.1.3.

However, in the bounded genus case, we can find a homogeneous wall inside a flatness pair of
smaller size if we additionally ask that its compass is embeddable in a disk and that no “leaf-block”
of the graph is planar. A leaf-block in a graph G is either a connected component C of G, or the
graph G[V (C) ∪ {v}] for some vertex v ∈ V (G) and some connected component C of G− v. Given
a leaf-block B, with denote by VB the set of V (C).

Lemma 7.4.1. There exists an algorithm with the following specifications:

Planar-Homogeneous(G,W,R)
Input: A graph G whose leaf-blocks are not planar and a flatness pair (W,R = (X,Y, P,C, ρ)) of G
whose R-compass is embeddable in a disk with X ∩ Y on its boundary.
Output: A 5-tuple R′ such that (W,R′) is a flatness pair of G that is regular, tight, and ℓ-homogeneous
with respect to ∅ for any ℓ ∈ N.
Moreover, the algorithm runs in time O(n+m).

Proof. Let Ω be the cyclic ordering of the vertices of X ∩ Y as they appear in D(W). Given that
G[Y] is embeddable in a disk with X ∩ Y on its boundary, there is a vortex-free rendition ρ′ of
(G[Y],Ω) in the sphere such that πρ′(N(ρ′)) = V (G) and each cell of ρ′ contains exactly one edge

7.4. Irrelevant vertex 146

of G, i.e., for each c ∈ C(ρ′), there is e ∈ E(G) such that σρ′(c) = (e, {e}). Note that, for each
c ∈ C(ρ′), |c̃| = 2.

Let us transform ρ′ into a tight rendition of (G[Y],Ω). Note that the only item that is not easily
verified is item 5 of the definition of a tight rendition. That is, there might be a c ∈ C(ρ′) such that
there are strictly less than |c̃| = 2 vertex-disjoint paths in G from πρ′(c̃) to V (Ω). Let c be such a
cell. If there is no path in G from πρ′(c̃) to V (Ω), then σ(c) belongs to a connected component C of
G that does not contain vertices of V (Ω). Therefore, C is a planar leaf-block of G, a contradiction.
Otherwise, there is v ∈ V (G) \ πρ′(c̃) such that every path from πρ′(c̃) to V (Ω) contains v, so v is
a cut vertex of G. Therefore, σρ′(c) belongs to a connected component C of G− v not containing
vertices of V (Ω), and thus a planar leaf-block of G, again a contradiction. Therefore, ρ′ is a tight
rendition.

We set R′ := (X,Y, P,C, ρ′). Given that (W,R) is a flatness pair of G and that none of the cells
of ρ′ is W -external, W -marginal, or untidy, we conclude that (W,R′) is also a regular flatness pair
of G.

Finally, given that each cell of ρ′ contains exactly one edge and has a boundary of size two, we
conclude that, for any ℓ ∈ N, the ℓ-folio of F is the same for each F ∈ FlapsR(W). Therefore, (W,R′)
is ℓ-homogeneous with respect to ∅, hence the result.

7.4.1 An auxiliary lemma

The following lemma says that given a big enough flat wall W and a vertex set S of size at most k,
there is a smaller flat wall W ∗ such that the central vertices of W and the intersection of S with the
compass of W ∗ are contained in the compass of the central wall of height five of W ∗. This result is
used in [285], but is not stated as a stand-alone result, so we reprove it here for completeness.

Lemma 7.4.2. There exists a function f7.4.2 : N3 → N, whose images are odd integers, such that
the following holds.

Let a, d, k, q, z ∈ N, with odd q ≥ 3 and odd z ≥ 5, G be a graph, S ⊆ V (G), where |S| ≤ k, (W,R)
be a regular and tight flatness pair of G of height at least f7.4.2(k, z, q) that is (a, d)-homogeneous,
and (W ′,R′) be a W (q)-tilt of (W,R). Then, there is a flatness pair (W ∗,R∗) of G such that:

• (W ∗,R∗) is a W̃ ′-tilt of (W,R) for some z-subwall W̃ ′ of W,

• (W ∗,R∗) is regular, tight, and (a, d)-homogeneous, and

• V (CompassR′(W ′)) and S∩V (CompassR∗(W ∗)) are both subsets of the vertex set of the compass
of every W ∗(5)-tilt of (W ∗,R∗).

Moreover, f7.4.2(k, z, q) = odd((k + 1) · (z + 1) + q).

Proof. Let r := f7.4.2(k, z, q). For every i ∈ [r], we denote by Pi (resp. Qi) the i-th vertical (resp.
horizontal) path of W. Let z′ := z+1

2 and observe that, since z is odd, we have z′ ∈ N. We also define,
for every i ∈ [k + 1] the graph

Bi :=
⋃

j∈[z′−1]

Pfz′ (i,j)
∪

⋃
j∈[z′]

Pr+1−fz′ (i,j)
∪

⋃
j∈[z′−1]

Qfz′ (i,j)
∪

⋃
j∈[z′]

Qr+1−fz′ (i,j)
,

where fz′(i, j) := j + (i− 1) · (z′ + 1). For every i ∈ [k + 1], we define Wi to be the graph obtained
from Bi after repeatedly removing from Bi all vertices of degree one (see Figure 7.7 for an example).
Since z = 2z′ − 1, for every i ∈ [k + 1], Wi is a z-subwall of W. For every i ∈ [k + 1], we set Li

in

7.4. Irrelevant vertex 147

Figure 7.7: A 15-wall and the 5-walls W1 and W2 as in the proof of Lemma 7.4.3, depicted in green
and blue, respectively. The white vertices are subdivision vertices of the walls W1 and W2. This
figure is adapted from [285, Figure 3].

to be the inner layer of Wi. Notice that Li
in, for i ∈ [k + 1], and D(W (q)) are R-normal cycles of

CompassR(W).

By definition of a tilt of a flatness pair, it holds that V (CompassR′(W ′)) ⊆ V (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(W

(q))).
Moreover, for every i ∈ [k + 1], the fact that r ≥ (k + 1) · (z + 2) + q implies that

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(W

(q))
is a subgraph of

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(L

i
in). Hence, for every i ∈ [k + 1], we have that V (CompassR′(W ′)) ⊆

V (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(L

i
in)).

For every i ∈ [k+ 1], let (W ′
i ,Ri) be a flatness pair of G that is a Wi-tilt of (W,R) (which exists

due to Proposition 4.6.6). Also, note that, for every i ∈ [k + 1], Li
in is the inner layer of Wi and

therefore it is an Ri-normal cycle of CompassRi
(W ′

i). Additionally, for every i ∈ [k + 1], (W ′
i ,Ri) is

(a, d)-homogeneous due to Observation 4.6.9, and, due to Observation 4.6.5, (Wi,Ri) is also regular.
Also, by Proposition 4.6.10, we can assume (W ′

i ,Ri) to be tight.
For every i ∈ [k + 1], we set Di := V (CompassRi

(W ′
i)) \ V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceRi(L

i
in)). Given that the

vertices of V (Wi) are contained between the ((i − 1) · (z′ + 1) + 1)-th and the (i · (z′ + 1) − 1)-
th layers of W for i ∈ [k + 1], it implies that the vertex sets Di, i ∈ [k + 1], are pairwise
disjoint. Therefore, since that |S| ≤ k, there exists a j ∈ [k + 1] such that S ∩ Dj = ∅. Thus,
S ∩ V (CompassRj

(W ′
j)) ⊆ V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceRj (L

j
in)).

Let Y be the vertex set of the compass of some W (5)
j -tilt of (W ′

j ,Rj). Note that Lj
in is the

perimeter of W (3)
j , and therefore, we have S ∩ V (CompassRj

(W ′
j)) ⊆ V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceRj (L

j
in)) ⊆ Y and

V (CompassR′(W ′)) ⊆ V (
⋃⋃⋃⋃⋃⋃⋃⋃⋃
InfluenceR(L

j
in)) ⊆ Y . Therefore, (W ′

j ,Rj) is the desired flatness pair.

7.4.2 Finding an irrelevant vertex in a homogeneous flat wall

The next lemma states that the central vertex of a big enough homogeneous flat wall is irrelevant.
As mentioned previously, Lemma 7.4.3 takes inspiration from [285, Lemma 16], though the proof is
more involved in Lemma 7.4.3, due to the more general modifications allowed and the annotation.

Lemma 7.4.3. Let F be a finite collection of graphs and L be a hereditary R-action. There exists a
function f7.4.3 : N4 → N, whose images are odd integers, such that the following holds.

Let k, q, a ∈ N, with odd q ≥ 3. Let G be a graph, S′ ⊆ V (G) be a set of size at most k,
(H ′

2, ϕ
′) ∈ L(G[S′]), and G′ := GS′

(H′
2,ϕ

′). Let A ⊆ V (G′) be a subset of size at most a, (W,R) be a

7.4. Irrelevant vertex 148

regular and tight flatness pair of G′ −A of height at least f7.4.3(a, ℓF , q, k) that is (a, g4.6.11(a, ℓF))-
homogeneous and such that ϕ′(S′) ∩ V (CompassR(W)) = ∅. Let (W ′,R′) be a W (q)-tilt of (W,R)
and Y := V (CompassR′(W ′)).

Then, (G,S′, H ′
2, ϕ

′, k) and (G− Y, S′, H ′
2, ϕ

′, k) are equivalent instances of L-AR-exc(F).
Moreover, f7.4.3(a, ℓF , q, k) = f7.4.2(k, f4.6.11(a, ℓF , 5), q).

Proof. Let z := f4.6.11(a, ℓF , 5), d := g4.6.11(a, ℓF), and r =: f7.4.3(a, ℓF , q, k) = f7.4.2(k, z, q).
The forward direction is immediate given that L is hereditary. Indeed, suppose (S,H2, ϕ)

is a solution of L-AR-exc(F) for the instance (G,S′, H ′
2, ϕ

′, k). Let S∗ = S \ Y ⊆ V (G) \ Y.
Then, because L is hereditary, the restriction of (H2, ϕ) to S∗ is in L((G − Y)[S∗]). Given that
Y ⊆ V (CompassR(W)) ⊆ V (G′)\ϕ+(S′) = V (G)\S′, it follows that S′∩Y = ∅, and thus that S′ ⊆ S∗.
Therefore, the restriction of (H∗

2 , ϕ
∗) to S′ is (H ′

2, ϕ
′). Moreover, G∗ := (G−Y)S

∗

(H∗
2 ,ϕ

∗) = GS
(H2,ϕ)

−Y ,
so G∗ ∈ exc(F). We conclude that (S∗, H∗

2 , ϕ
∗) is a solution of (G− Y, S′, H ′

2, ϕ
′, k).

Suppose now that (S,H2, ϕ) is a solution of L-AR-exc(F) for the instance (G− Y, S′, H ′
2, ϕ

′, k).
Let us now prove that there is S∗ ⊆ S such that (S∗, H2[ϕ

+(S∗)], ϕ|S∗) is a solution of L-AR-exc(F)
for the instance (G,S′, H ′

2, ϕ
′, k).

By Lemma 7.4.2, there exists a regular and tight flatness pair (W ∗,R∗) of G′ − A of height z
that is d-homogeneous with respect to 2A such that Y and S ∩ Y ∗ are both subsets of the vertex
set of the compass of every W ∗(5)-tilt of (W ∗,R∗), where Y ∗ = V (CompassR∗(W ∗)). Additionally,
Y ⊆ V (CompassR(W)), so S′ ∩ Y ∗ = ∅. Let S∗ = S \ Y ∗ ⊇ S′. Given that L is hereditary, the
restriction (H∗

2 , ϕ
∗) of (H2, ϕ) to S∗ is in L(G[S∗]). Moreover, the restriction of (H∗

2 , ϕ
∗) to S′ is

(H ′
2, ϕ

′). It thus remains to prove that G∗ := GS∗

(H∗
2 ,ϕ

∗) ∈ exc(F).

Let Y ′ be the compass of some W ∗(5)-tilt of (W ∗,R∗). Hence we have Y, S ∩ Y ∗ ⊆ Y ′ and
S∗ ∩ Y ′ ̸= ∅. Therefore, we have G∗ − Y ′ = (G− Y)S(H2,ϕ)

− Y ′. Given that (G− Y)S(H2,ϕ)
∈ exc(F)

and that exc(F) is minor-closed, it implies that G∗ − Y ′ ∈ exc(F).

Claim 7.4.4. Y ′ is ℓF -irrelevant in G∗.

Proof of claim. Let Sr = S∗ \ S′. We set A∗ := A \ Sr ∪ ϕ+(A∩ Sr). If R∗ = (X∗, Y ∗, P, C,Γ, σ, π),
then we set R∗

L = (X∗
L, Y

∗, P, C,Γ, σ, π), where X∗
L = (X∗\Sr)∪ϕ+(Sr)\A∗. Given that Sr∩Y ∗ = ∅,

it implies that (W ∗,R∗
L) is a flatness pair of G∗ − A∗. Notice that the R∗-compass and the R∗

L-
compass of W ∗ are identical, which implies that (W ∗,R∗

L) is a regular flatness pair of G∗ −A∗ that
is (a, d)-homogeneous. Given that |A∗| ≤ |A| ≤ a, it implies in particular that (W ∗,R∗

L) is a regular
flatness pair of G∗ −A∗ that is d-homogeneous with respect to A∗.

Given that z = f4.6.11(a, ℓF , 5) and d := g4.6.11(a, ℓF), we can thus apply Proposition 4.6.11 with
input (a, ℓF , 5, G∗, A∗, (W ∗,R∗

L)) which implies that the vertex set of the compass of every W ∗(5)-tilt
of (W ∗,R∗

L) is ℓF -irrelevant. This is in particular the case of Y ′, given that the R∗-compass and the
R∗

L-compass of W ∗ are identical. ⋄

Given that Y ′ is ℓF -irrelevant in G∗ by Claim 7.4.4 and that every graph in F has detail at most
ℓF , it implies that G∗ ∈ exc(F) if and only if G∗ − Y ′ ∈ exc(F), hence the result.

After combining Proposition 4.6.12 and Lemma 7.4.3, we finally get our algorithm to find an
irrelevant vertex inside a flat wall in the general case.

Proof of Theorem 7.3.1. Let r = f7.4.3(a, ℓF , 3, k), ℓ = g4.6.11(a, ℓF), and f7.3.1(k, a) = f4.6.12(r, a, ℓ) =
Oa,ℓF (k

c).

7.4. Irrelevant vertex 149

We apply the algorithm Homogeneous of Proposition 4.6.12 with input (r, a, ℓ, t, G′−A,W,R). It
outputs in time 2O(g4.6.12(a,ℓ)·r log r+t log t) · (n+m) a flatness pair (W̆ , R̆) of G′−A of height r that is
tight, (a, ℓ)-homogeneous, and is a W ′-tilt of (W,R) for some subwall W ′ of W . Given that (W,R) is
a regular flatness pair, by Observation 4.6.5, so is (W̆ , R̆). Given that r = f7.4.3(a, ℓF , 3, k), that ℓ =
g4.6.11(a, ℓF), and that ϕ′(S′) does not intersect the R-compass of W , and thus neither the R̆-compass
of W̆ , we conclude by Lemma 7.4.3, that for any W (3)-tilt (W ′,R′) of (W̆ , R̆), (G,S′, H ′

2, ϕ
′, k) and

(G− Y, S′, H ′
2, ϕ

′, k) are equivalent instances of L-AR-exc(F), where Y := V (CompassR′(W ′)). Let
v be a central vertex of W̆ . Given that v ∈ Y , (G,S′, H ′

2, ϕ
′, k) and (G − v, S′, H ′

2, ϕ
′, k) are in

particular equivalent instances of L-AR-exc(F). Hence the result.

7.4.3 Irrelevant vertex in the bounded genus case

The next lemma essentially states that planar leaf-blocks are irrelevant in the bounded genus case.

Lemma 7.4.5. Let L be a hereditary R-action and F be the collection of obstructions of the graphs
embeddable in a surface Σ of genus at most g. Let G be a graph and k ∈ N. Let S′ ⊆ V (G) be a set of
size at most k and (H ′

2, ϕ
′) ∈ L(G[S′]). Suppose that there is a planar leaf-block B of G′ := GS′

(H′
2,ϕ

′)

such that VB ∩ϕ′(S′) = ∅. Then, (G,S′, H ′
2, ϕ

′, k) and (G−VB, S′, H ′
2, ϕ

′, k) are equivalent instances
of L-AR-exc(F).

Proof. Suppose that there is a solution (S,H2, ϕ) of L-AR-exc(F) for the instance (G,S′, H ′
2, ϕ

′, k).
Let S∗ := S \ VB. Note that S′ ⊆ S∗. Let (H∗

2 , ϕ
∗) be the restriction of (H2, ϕ) to S∗. Given that

L is hereditary, (H∗
2 , ϕ

∗) ∈ L(G[S∗]). Given that (G − VB)S
∗

(H∗
2 ,ϕ

∗) = GS
(H2,ϕ)

− VB is a subgraph
of GS

(H2,ϕ)
∈ exc(F) and that exc(F) is hereditary, it implies that (G − VB)S

∗

(H∗
2 ,ϕ

∗) ∈ exc(F). So
(S∗, H∗

2 , ϕ
∗) is a solution of L-AR-exc(F) for the instance (G− VB, S′, H ′

2, ϕ
′, k).

Suppose now that there is a solution (S,H2, ϕ) of L-AR-exc(F) for the instance (G−VB, S′, H ′
2, ϕ

′, k).
Let G′′ := (G− VB)S(H2,ϕ)

and G∗ := GS
(H2,ϕ)

. Note that G∗ is obtained by taking the disjoint union
of G′′ and B and identifying at most one vertex of both sides (that is, the vertex v ∈ V (B) \VB , if it
exists). Given that G′′ is embeddable in Σ and that B is planar, we conclude that G∗ is embeddable
in Σ as well. Therefore, (S,H2, ϕ) is a solution of L-AR-exc(F) for the instance (G,S′, H ′

2, ϕ
′, k).

After combining Lemma 7.4.1, Lemma 7.4.3, and Lemma 7.4.5, we finally get our algorithm to
find an irrelevant vertex inside a flat wall in the bounded genus case.

Proof of Theorem 7.3.2. Let r = f7.3.2(k) := f7.4.3(0, ℓF , 3, k) and ℓ = g4.6.11(a, ℓF).
We can find all the cut vertices of G′ using a depth-first search algorithm in time O(n +m).

Therefore, if there is a planar leaf-block B in G′, then we can find it in time O(n+m). In that case,
we can return VB by Lemma 7.4.5.

Otherwise, we apply the algorithm Planar-Homogeneous of Lemma 7.4.1 with input (G′,W,R),
which outputs a 5-tuple R′ such that (W,R′) is a flatness pair of G′ that is regular, tight, and
(0, ℓ)-homogeneous. Given that r = f7.4.3(0, ℓF , 3, k), that ℓ = g4.6.11(a, ℓF), and that ϕ′(S′) does
not intersect the R-compass of W , which is also the R′-compass of W , we conclude by Lemma 7.4.3
that for any W (3)-tilt (W ∗,R∗) of (W,R′), (G,S′, H ′

2, ϕ
′, k) and (G− Y, S′, H ′

2, ϕ
′, k) are equivalent

instances of L-AR-exc(F), where Y := V (CompassR∗(W ∗)). Let v be a central vertex of W ∗.
Given that v ∈ Y , (G,S′, H ′

2, ϕ
′, k) and (G− v, S′, H ′

2, ϕ
′, k) are in particular equivalent instances of

L-AR-exc(F). So we can return Y := {v}, hence the result.

7.5. Obligatory sets 150

7.5 Obligatory sets

This section is dedicated to proving Lemma 7.3.3. The proof is quite similar to [285, Lemma 13],
with a more involved notation. However we require, and thus prove a stronger result, which is that,
not only we find a set A containing a vertex in the solution, but the size of this set A must decrease
after the modification. We prove in Lemma 7.5.3 that if G contains a complete A-apex grid as an
A-fixed minor (see below for the definitions), then A intersects any solution S. More specifically,
after the modification of G restricted to A is done, the size of G must decrease. We then derive
Lemma 7.3.3 from Lemma 7.5.3, that is merely a translation that helps us in our setting of walls to
easily find such an A-fixed minor.

Apex grids. Let H be a graph, A ⊆ V (H), and r ∈ N. H is an A-apex r-grid if H −A is a r-grid.
H is a complete A-apex r-grid if it is a A-apex r-grid and that there is an edge between each vertex
of A and each vertex of H −A.

Fixed minors. Given a graph G and a set A ⊆ V (G), we say that a graph H is a A-fixed minor of
G if H can be obtained from a subgraph G′ of G where A ⊆ V (G′) after contracting edges without
endpoints in A. For example, the graph of Figure 7.3 contains an A-apex 3-grid as an A-fixed minor.

The following result says that a complete A-apex grid is always an A-fixed minor of a big enough
A-apex grid Γ such that each vertex of A has sufficiently many neighbors in the central part of Γ.

Proposition 7.5.1 ([285]). There exist three functions f7.5.1, g7.5.1 : N2 → N, and h7.5.1 : N → N
such that if r, a ∈ N, H is an A-apex h-grid, where A ⊆ V (H) has size at most a, h ≥ f7.5.1(r, a) +
2 · h7.5.1(r), and each vertex of A has at least g7.5.1(r, a) neighbors in the central f7.5.1(r, a)-grid of
H −A, then H contains as an A-fixed minor a complete A-apex r-grid.

Moreover, f7.5.1(r, a) = O(r4 · 2a), g7.5.1(r, a) = O(r6 · 2a), and h7.5.1(r) = O(r2).

The following easy observation intuitively states that every planar graph H is a minor of a big
enough grid, where the relationship between the size of the grid and |V (H)| is linear (see e.g., [282]).

Proposition 7.5.2. There exists a function f7.5.2 : N→ N such that every planar graph on n vertices
is a minor of the f7.5.2(n)-grid. Moreover, f7.5.2(n) = O(n).

We now prove that, if G contains a complete A-apex grid as an A-fixed minor, then A intersects
any solution S, and that the partial modification of A decreases the size of the graph.

Lemma 7.5.3. There exists a function f7.5.3 : N→ N such that the following holds.
Let F be a finite collection of graphs, L be a hereditary R-action, and k ∈ N. Let G be a graph,

S′ ⊆ V (G) be a set of size at most k, and (H ′
2, ϕ

′) ∈ L(G[S′]). Suppose that G′ := GS′

(H′
2,ϕ

′) contains
a complete A-apex f7.5.3(k)-grid H as an A-fixed minor for some A ⊆ V (G′) with |A| = aF .

Then, for every solution (S,H2, ϕ) of L-AR-exc(F) for (G,S′, H ′
2, ϕ

′), it holds that A′ ̸= ∅,
where A′ := (S \ S′) ∩A, and that |ϕ+(A′)| < |A′|.

Moreover f7.5.3(k) = O(
√
(k + aF 2 + 1) · sF).

Proof. Let d = f7.5.2(sF − aF) and r =
⌈√

(k + a2F + 1) · d
⌉
. We set f7.5.3(aF , sF , k) = r and we

notice that, since d = O(sF), it holds that f7.5.3(k) = O(
√
(k + a2F + 1) · sF).

7.6. The case of bounded treewidth 151

Observe that since r =
⌈√

(k + a2F + 1) ·d
⌉
, V (H \A) can be partitioned into (k+a2F +1) vertex

sets V1, . . . , Vk+a2F+1 such that, for every i ∈ [k + a2F + 1], the graph H[Vi] is a d-grid.

Let {Sv | v ∈ V (H)} be a model of H in G′. Let S∗ := S \ S′ ∪ ϕ+(S′). There exists a pair
(H∗

2 , ϕ
∗) ∈M(G′[S∗]) such thatG∗ := GS

(H2,ϕ)
= G′S∗

(H∗
2 ,ϕ

∗). Note in particular that, given that (H ′
2, ϕ

′)

is the restriction of (H2, ϕ) to S′, it implies that ϕ∗|ϕ+(S′) = idϕ+(S′) and that ϕ∗|V (G′)\ϕ+(S′) =
ϕ|V (G′)\ϕ+(S′). Given that |S∗| ≤ |S| ≤ k, there is I ⊆ [k + a2F + 1] of size at least a2F + 1 such that
for each i ∈ I, for each v ∈ Vi, Sv ∩ S∗ = ∅. Hence, H ′ := H[A ∪

⋃
i∈I Vi] is a minor of G′ such that

V (H ′) ∩ S∗ ⊆ A.

A

A ∩ S∗

A′

A ∩ ϕ+(S′)

A∗

(ϕ∗)+(A ∩ S∗)

ϕ+(A′)
A ∩ ϕ+(S′)

Figure 7.8: The sets A and A∗ in the proof of Lemma 7.5.3.

Suppose towards a contradiction that |ϕ+(A′)| = |A′|. Let A∗ := (A \ S∗) ∪ (ϕ∗)+(S∗) be the
set of G∗ obtained from A after the modification (H∗

2 , ϕ
∗). Given that |A∗| − |A| = |ϕ+(A′)| − |A′|

(see Figure 7.8 for an illustration), this implies that |A∗| = |A|. Intuitively, this means that the
modification (H∗

2 , ϕ
∗) only deleted or added edges of G′[A], but no vertices where deleted and no

two vertices were identified together. Therefore, the graph H∗ obtained from H ′ by removing the
edges between the vertices of A is a minor of G∗.

Let F be a graph in F of apex number aF . We fix i ∈ I. Given that d = f7.5.2(sF − aF),
Proposition 7.5.2 implies that every planar graph on sF−aF vertices is a minor of H[Vi]. Additionally,
given that |I \ {i}| = a2F and that, for each j ∈ I \ {i}, H ′′[Vj ∪A] is a complete A-apex d-grid, for
each pair of vertices in A, we can find a path connecting them through some H ′′[Vj ∪A], and thus it
implies that every graph on aF vertices is a minor of H ′′ − Vi. Therefore, F is a minor of H ′′, and
hence of G∗, a contradiction.

We finally prove the main result of the section.

Proof of Lemma 7.3.3. Let r := f7.5.3(k), h = f7.3.3(k) := f7.5.1(r, aF) + 2 · h7.5.1(r) + 2, q =
g7.3.3(k) := g7.5.1(r, aF), and p = h7.3.3(k) := f7.5.1(r, aF). Note that r = OsF (k

1/2), and thus
that h = OsF (k

2), q = OsF (k
3), and p = OsF (k

2). Let G′
Q̃ be the graph obtained from G′ by

contracting each bag Q of Q̃ to a single vertex vQ. Then G′
Q̃ contains an A-apex (h− 2)-grid H as

a subgraph such that each vertex of A has at least g7.5.1(r, aF) neighbors in the central f7.5.1(r, aF)-
grid of H − A. Therefore, G′ contains H as an A-fixed minor. By Proposition 7.5.1, given that
h − 2 = f7.5.1(r, aF) + 2 · h7.5.1(r), q = g7.5.1(r, aF), and p = f7.5.1(r, aF), it implies G contains a
complete A-apex r-grid as an A-fixed minor. Therefore, we can conclude using Lemma 7.5.3, given
that r = f7.5.3(k).

7.6 The case of bounded treewidth

In this section, we present a dynamic programming algorithm in the case where the input graph has
bounded treewidth.

7.6. The case of bounded treewidth 152

Theorem 7.3.4. Let F be a finite collection of graphs and L be an R-action. There is an algorithm
that, given k ∈ N, a graph G of treewidth at most w, a set S′ ⊆ V (G) of size at most k, and
(H ′

2, ϕ
′) ∈ L(G[S′]), in time 2OℓF (k2+(k+w) log(k+w)) · n either outputs a solution of L-AR-exc(F) for

the instance (G,S′, H ′
2, ϕ

′, k), or reports a no-instance.

Our dynamic programming algorithm essentially goes as follows. Let G be the input graph of
treewidth w. By Proposition 4.3.1 and Proposition 4.3.3, we compute a nice tree decomposition
T = (T, β, r) of G of width at most 2w + 1 with O(w · n) nodes in time 2O(k) ·w2 · n. Let (S,H2, ϕ)
be a solution of L-R-exc(F) for (G, k). Then, for each node of T , in a leaf-to-root manner, we guess
the restriction (H ′

2, ϕ
′) of (H2, ϕ) to the graph Gt induced by the subtree of T rooted at t. That is,

each time we introduce a vertex v, we guess whether v belongs to S or not, and if we guess that it
does, we also guess how it is modified: it can either be deleted (ϕ′(v) = ∅), or identified to a vertex
(ϕ′(v) = ϕ′(u) for some u ∈ V (Gt) \ {v}), or it can be a new vertex in H ′

2 (when ϕ′−1(ϕ′(v)) = {v}).
In this latter case, we also need to guess the edges between ϕ′(v) and u ∈ V (H ′

2) \ {ϕ′(v)} to get
H ′

2. Obviously, each time, we need to check that the guessed partial solution (S′, H ′
2, ϕ

′) is such
that |S′| ≤ k and that (Gt)

S′

(H′
2,ϕ

′) ∈ exc(F), otherwise we reject this guess. After the dynamic
programming, we add a post-processing step to keep only the set A of guessed solutions (S,H2, ϕ)
for the root such that (H2, ϕ) ∈ L(G[S]). Hence, we have a yes-instance if and only if A ̸= ∅. For
ease of notation, we only formally write our dynamic programming algorithm for L-R-exc(F). It
can be easily adapted to the annotated version L-AR-exc(F), by simply rejecting tuples that do not
follow the annotation during the introduce and the join operations.

The number of possible partial solutions generated by the above description is too big to store
them all, given that there is

(
n
k

)
choices for the set S of vertices involved in the modification.

Therefore, we instead store a “signature” of Gt that keeps only the necessary information to ensure
that each partial solution is represented by an element of the signature, that each element of the
signature represents at least one partial solution, and that the signature at a node t ∈ V (T) can
be deduced from those of its children. In order to bound the number of elements in a signature
while still being able to check that a guessed partial solution (S′, H ′

2, ϕ
′) at node t is such that

(Gt)
S′

(H′
2,ϕ

′) ∈ exc(F), we use the representative-based technique of [24]. Let Gt be a boundaried graph
with underlying graph Gt and the bag β(t) as its boundary. This technique essentially guarantees
that, if Gt ∈ exc(F), then we can replace Gt with a boundaried graph R with the same boundary but
of smaller size, called representative of Gt, such that, for any boundaried graph H, H⊕Gt ∈ exc(F)
if and only if H⊕R ∈ exc(F) (see below for the definition of ⊕). In our case, Gt does not necessarily
belong to exc(F), but we know that (Gt)

S′

(H′
2,ϕ

′) does. Therefore, we remember a representative R of

G′ := (Gt)
S′

(H′
2,ϕ

′) in the signature. As said above, when introducing a vertex v, we may guess that
v ∈ S′ and that ϕ′(v) = ϕ′(u) for some u ∈ V (Gt)\{v}. Therefore, we need to remember each vertex
of G′ that is a modified vertex (that is in (ϕ′)+(S′)). Thus, the boundaried graph that we consider
is a boundaried graph G′ with underlying graph G′ and boundary β(t) ∪ (ϕ′)+(S′). Moreover, to
remember which vertex of the boundary is in (ϕ′)+(S′), we reserve them the labels in [k]. So H2

is the graph induced by the vertices with such labels in R. Additionally, to be able to check that
|S′| ≤ k and that (H ′

2, ϕ
′) ∈ L(G[S′]), we remember the graph H ′

1 := G[S′]. Finally, to be able to
construct the extension of H ′

1 when adding a new vertex v in S, we remember the vertices of S′

that may be adjacent to v, that is SB := S ∩ β(t). Therefore, the signature of Gt is the set of all
such (R, H ′

1, ϕ
′, SB). See Subsection 7.6.1 for a formal definition of the signature, and Figure 7.9 for

an illustration. The way to construct a signature from its children for leaf (in this case, without
children), forget, introduce, and join nodes is explained in Subsection 7.6.2.

7.6. The case of bounded treewidth 153

7.6.1 Signature

Let F be a finite collection of graphs, L be a R-action, and k,w ∈ N. Let R be the set of
representatives in Rk+w

ℓF
whose underlying graphs are F-minor-free.

H ′
1

H ′
2

φ′

R

B′SB

G

B

G′ ∈ exc(F)

Figure 7.9: An element (R = (R,B′, ρ′), H1, ϕ, SB) in the signature of G = (G,B, ρ).

Let G = (G,B, ρ) be a w-boundaried graph with no label in [k]. We call signature of G the set
of all tuples (R = (R,B′, ρ′), H ′

1, ϕ
′, SB) such that there exists a set S′ ⊆ V (G) of size at most k,

there exists a graph H ′
2 such that (H ′

2, ϕ
′) ∈M(H ′

1) and G′ := GS′

(H′
2,ϕ

′) ∈ exc(F), and there exists
an injective function φ : (ϕ′)+(S′) 7→ [k] that is such that:

• G[S′] = H ′
1 and R[(ϕ′)+(S′)] = H ′

2,

• SB = S′ ∩B,

• B′ = (B \ SB) ∪ (ϕ′)+(S′),

• ρ′ is the function such that ρ′|B\SB
= ρ|B\SB

and ρ′|(ϕ′)+(S′) = φ, and

• R is the representative in R of (G′, B′, ρ′).

See Figure 7.9 for an illustration.

Let us give an upper bound on the number of tuples (R, H ′
1, ϕ

′, SB) in the signature of G.
By Proposition 4.4.2, there are 2OℓF ((k+w) log(k+w)) choices for R. Given that H ′

1 has at most k
vertices, there are at most 2(

k
2) choices for H ′

1 and at most kk choices for ϕ : V (H ′
1)→ V (H ′

2) ∪ {∅}
(if |V (H ′

1)| = |V (H ′
2)|, then ϕ : V (H ′

1) → V (H2)
′ must be a bijection, and otherwise |V (H ′

1)| ≥
|V (H ′

2) ∪ {∅}|). Finally, there are
(
w
≤k

)
choices for SB. Hence, the number of tuples is at most

2(
k
2)+OℓF ((k+w) log(k+w)).

7.6.2 Dynamic programming

Let G be a graph and let T = (T, β, r) be a nice tree decomposition of G of width w. Let
ρ0 : V (G)→ [|k + 1, k + V (G)|] be a bijection. For t ∈ V (T), we define by Gt the graph induced by
the subtree of T rooted at t and by Gt the boundaried graph (Gt, β(t), ρt), where ρt := ρ0|β(t).

Note that, for each element (R = (R,B, ρ), H1, ϕ, SB) of the signature of Gr, given that
Gr = G, there is S ⊆ V (G) of size at most k such that H1 = G[S] and GS

(H2,ϕ)
∈ exc(F), where

H2 := R[ρ−1([k])]. Therefore, (G, k) is a yes-instance of L-R-F if and only if there is an element
(R, H1, ϕ, SB) in the signature of Gr such that (H2, ϕ) ∈ L(H1). This can be checked in time
22(

k
2)+OℓF ((k+w) log(k+w)).

7.6. The case of bounded treewidth 154

We want to build the signature of Gt, t ∈ V (T), in a bottom-up fashion. Let G∅ be the graph
with no vertices, and G∅ be the corresponding boundaried graph. Let us assume that F does not
contain G∅, since in that case the problem is trivial. Let Rep be the algorithm of Lemma 4.4.3.

Leaf nodes. Let t be a leaf of T . Given that β(t) = ∅, the signature of Gt is the singleton
containing the tuple (G∅, G∅, ∅ → ∅, ∅). Constructing the signature for a leaf node takes time O(1).

H ′
1

H ′
2

ϕ′

Rep(R− (v))

B′ − vSB
β(t)

v

H ′
1

H ′
2

ϕ′

R

B′SB − v
β(t)

v
v

u

v is not modified v is modified

Figure 7.10: Forgetting a vertex v.

Forget nodes. When we forget a vertex v, we simply remove it from the boundary of R if it is
not in the partial solution, i.e., in SB. Otherwise, if it is in the partial solution, we still need to
remember it, so it remains in the boundary of R. However, we remove it from SB as it does not
belong to the current bag anymore. See Figure 7.10 for an illustration. More formally, we do as
follows.

Let t ∈ V (T) be a forget node of T . Let t′ be the child of t and v ∈ β(t′) \ β(t) be the
forgotten vertex. The signature of Gt is the set constructed by adding, for each tuple (R =
(R,B′, ρ′), H ′

1, ϕ
′, SB) of the signature of Gt′ , the following tuple:

• (v is not part of the modification) if v ∈ SB , then (Rep(R− (v)), H ′
1, ϕ

′, SB), where R− (v) :=
(R,B′ \ {v}, ρ′|B′\{v}),

• (v is part of the modification) otherwise, (R, H ′
1, ϕ

′, SB \ {v}).

Given that R ∈ R ⊆ Rk+w
ℓF

and that R does not contain KsF as a minor, by Proposition 4.4.1,
|V (R)| = OℓF (k+w). Thus, by Lemma 4.4.3, Rep(R−(v)) can be computed in time 2OℓF ((k+w) log(k+w)).
Given that the signature of Gt′ has at most 2k

2+OℓF ((k+w) log(k+w)) elements, we conclude that con-
structing the signature of Gt takes time 2k

2+OℓF ((k+w) log(k+w)).

Introduce nodes. When we introduce a vertex v, we guess whether v belongs to S′ or not, and
if we guess that it does, we also guess how it is modified: it can either be deleted (ϕ′(v) = ∅), or
identified to a vertex (ϕ′(v) = ϕ′(u) for some u ∈ V (Gt) \ {v}), or it can be a new vertex in H ′

2

(when ϕ′−1(ϕ′(v)) = {v}). In this latter case, we also need to guess the edges between ϕ′(v) and
u ∈ V (H ′

2) \ {ϕ′(v)} to get H ′
2. If v is not part of the modification, then we simply add v to R (and

to its boundary given that v is in the current bag). If v is modified, then it is added to H ′
1, and we

need to check that the obtained graph H ′
1 + v has at most k vertices. In the case when v is either

deleted or identified to another vertex, H ′
2 does not change, but v must be additionally mapped by

ϕ′ to ∅ in the first case, or to a modified vertex, that is, a vertex in ρ−1([k]), in the second case.
When v is deleted, R does not change either, but when v is identified, we need to add the edges
between ϕ′(v) and the vertices adjacent to v in Gt. Otherwise, v is mapped to a new vertex, in
which case we add a new vertex to H ′

2, and by extension, to R, we guess its adjacencies to H ′
2, and

7.6. The case of bounded treewidth 155

we guess its label in [k]. In any case, we need to check that the modified graph is indeed in exc(F).
See Figure 7.11 for an illustration. More formally, we do as follows.

H ′
1

H ′
2ϕ′

SB
β(t)

v

R+ v H ′
1 + v

H ′
2 + u

ϕ′

SB
β(t)

v

R+ u

v

v is not modified v is modified

B′ ∪ {v}
B′ ∪ {u}

Figure 7.11: Introducing a vertex v.

Let t ∈ V (T) be an introduce node of T . Let t′ be the child of t and v ∈ β(t) \ β(t′) be the
introduced vertex. Let Et ⊆ E(G[β(t)]) be the set of edges uv for u ∈ β(t). The signature of Gt is
the set constructed by adding, for each tuple (R = (R,B′, ρ′), H ′

1, ϕ
′, SB) of the signature of Gt′ ,

the following tuples:

• (v is not part of the modification) if R+ v ∈ exc(F), then (Rep(R+ v), H ′
1, ϕ

′, SB), where

– R+ v := (R+ v,B′ ∪ {v}, ρ′ ∪ (v 7→ ρt(v)) and

– R+ v is the graph with vertex set V (R) ∪ {v} and edge set the union of E(R) and, for
each edge uv ∈ Et, the edge uv if u /∈ SB or the edge ϕ′(u)v if u ∈ SB and ϕ′(u) ̸= 0,

• (v is deleted) if |V (H ′
1)| ≤ k − 1, then (R, H ′

1 + v, ϕ′ ∪ (v 7→ ∅), SB ∪ {v}), where

– H ′
1 + v is the graph with vertex set V (H ′

1) ∪ {v} and edge set the union of E(H ′
1) and

the edges uv ∈ Et for each u ∈ SB,

• (v is identified to a vertex u that is in the partial solution) if |V (H ′
1)| ≤ k − 1, then, for each

u ∈ ρ−1([k]), (Rep(R′), H ′
1 + v, ϕ′ ∪ (v 7→ u), SB ∪ {v}), where

– R′ is obtained from R by adding an edge uw for each w ∈ β(t) \SB such that vw ∈ E(G)
and

– H ′
1 + v is defined as above.

• (v is part of the modification but not deleted nor identified to another vertex in the partial
solution) for each i ∈ [k] such that ρ′−1(i) = ∅, for each (H ′

2 + ui, ϕ
′ ∪ (v → ui)) ∈M(H ′

1 + v)
whose restriction to V (H ′

1) is (H ′
2, ϕ

′), if |V (H ′
1)| ≤ k − 1 and R + ui ∈ exc(F), then

(Rep(R+ ui), H
′
1 + v, ϕ′ ∪ (v 7→ ui), SB ∪ {v}), where

– R+ ui := (R+ ui, B
′ ∪ {ui}, ρ′ ∪ (ui 7→ i)),

– R+ ui is the graph with vertex set V (R) ∪ {ui} and edge set the union of E(R) and the
edges uui for each edge uui ∈ E(H ′

2 + ui),

– H ′
2 := R[(ϕ′)+(V (H ′

1))], and

– H ′
1 + v is defined as above.

7.6. The case of bounded treewidth 156

As proved in the forget case, |V (R)| = OℓF (k + w). Therefore, by [205], checking whether R+ v ∈
exc(F) takes time OℓF ((k + w)1+o(1)). And again, by Lemma 4.4.3, Rep(R+ v) can be computed
in time 2OℓF ((k+w) log(k+w)). Given that |V (H ′

2)| ≤ |V (H ′
1)| ≤ k − 1, there are at most 2k−1 choices

for H ′
2 + ui. Hence, given that the signature of Gt′ has at most 2k

2+OℓF ((k+w) log(k+w)) elements, we
conclude that constructing the signature of Gt takes time 2k

2+OℓF ((k+w) log(k+w)).

H1
1

H1
2SB

H2
1

H2
2

ϕ1

ϕ2

ϕ′(S′)

Figure 7.12: Joining bags.

Join nodes. When we join two bags, we join any partial solutions of both sides that are compatible
together. They are compatible if the restriction to the current bag is the same on both sides. Vertices
on the same label in [k] are vertices of the modification that are identified. Additionally, we need to
guess the edges that may be added between vertices of H1

2 − V (H2
2) and vertices of H2

2 − V (H1
2).

See Figure 7.12 for an illustration. More formally, we do as follows.
Let t ∈ V (T) be a join node of T . Let t1 and t2 be the children of t. The signature of Gt is the

set constructed by adding, for each tuple (Ri = (Ri, Bi, ρi), H
i
1, ϕi, SB) of the signature of Gti , for

i ∈ [2], each tuple (Rep(R′), H1, ϕ, SB) such that:

• |V (H1)| ≤ k and (H ′
2, ϕ) ∈M(H1), where:

– H1 := H1
1 ⊕H2

1, where Hi
1 := (H i

1, SB, ρt|SB
) for i ∈ [2],

– H2 := H1
2 ⊕H2

2, where H i
2 := Ri[ρ

−1
i ([k])] and Hi

2 := (H i
2, ϕ

+
i (SB), ρi|ϕi(SB)) for i ∈ [2],

– H ′
2 is obtained from H2 by adding a set E′ of edges between vertices of H1

2 − ϕ1(SB) and
vertices of H2

2 − ϕ2(SB), and

– ϕ1|S′ = ϕ2|S′ , allowing us to define that ϕ : V (H1)→ V (H2) such that ϕ|V (Hi
1)
= ϕi for

i ∈ [2],

• R′ ∈ exc(F), where

– R′ is obtained from (R′
1⊕R′

2, B, ρ) ∈ exc(F) by adding the edge set E′ to the underlying
graph,

– R′
1 and R′

2 are compatible, with B′
i := Bi \ (ρ−1

i ([k]) \ ϕi(SB)) and R′
i := (Ri, B

′
i, ρi|B′

i
)

(informally, R′
i is obtained from Ri by removing from the boundary the vertices that are

part of the modification but not in the bag β(t)),

– B := B1 ∪B2, which is well-defined given that B1 ∩B2 = B′
1 = B′

2 by compatibility, and

– ρ is a function such that ρ|Bi = ρi for i ∈ [2], which is well-defined by compatibility.

The signature of each Gti has at most 2k
2+OℓF ((k+w) log(k+w)) elements, and there are at most

2k
2 choices for E′, so constructing the signature of Gt takes time 2OℓF (k2+(k+w) log(k+w)).

7.6. The case of bounded treewidth 157

Running time. Given that each step takes time 2OℓF (k2+(k+w) log(k+w)) and the the tree decom-
position has O(w + n) nodes by Proposition 4.3.3, we conclude that the dynamic programming
algorithm takes time 2OℓF (k2+(k+w) log(k+w)) · n.

Remark that, while the dynamic programming algorithm solve here the decision problem, it
suffices to apply standard backtracking to obtain a solution in case of a yes-instance.

CHAPTER 8

Elimination distance to minor-closedness

Contents
8.1 Sketch of the algorithms . 159
8.2 Preliminaries . 160

8.2.1 F-elimination trees . 160
8.2.2 Bidimensionality of elimination sets . 162

8.3 Elimination distance to a minor-closed graph class 164
8.3.1 Quickly finding a wall . 165
8.3.2 Description of the algorithm for Elimination Distance to exc(F) 167
8.3.3 Correctness of the algorithm . 168

8.4 Elimination distance when excluding an apex-graph 169
8.4.1 Generalization to annotated elimination distance 169
8.4.2 Description of the algorithm for Elimination Distance to exc(F) when

aF = 1 . 171
8.4.3 Correctness of the algorithm . 172

8.5 Solving Elimination Distance to exc(F) on tree decompositions 174
8.5.1 Annotated trees . 175
8.5.2 Characteristic of a boundaried graph . 177
8.5.3 The procedures . 178
8.5.4 The algorithm . 186
8.5.5 Exchangeability of boundaried graphs with the same characteristic 187

8.6 Bounding the obstructions of Ek(exc(F)) 188
8.6.1 Bounding the treewidth of an obstruction 189
8.6.2 Bounding the size of an obstruction of small treewidth 190

In this chapter, we prove the results presented in Section 2.4, which are restated here for
convenience.

158

8.1. Sketch of the algorithms 159

Theorem 2.4.1. Let H be a minor-closed graph class. Then there is an algorithm that solves

Elimination Distance to H in time 22
2k

OsH (1)

· n2.
If H is apex-minor-free, then this algorithm runs in time 22

OsH (k2 log k)

· n2.

Theorem 2.4.2. Let H be an apex-minor-free graph class. Then there is an algorithm that solves
Elimination Distance to H in time 2k

OsH (1)

· n3.

Theorem 2.4.3. Let H be a minor-closed graph class. Then there is an algorithm that solves
Elimination Distance to H in time 2O(k·w+w logw) · n on graphs of treewidth at most w.

Theorem 2.4.4. Let H be a minor-closed graph class. Then the obstructions of Ek(H) have

22
22

k
OsH (1)

vertices.
Moreover, this bound drops to 22

k
OsH (1)

when H is apex-minor-free.

More particularly, we sketch the algorithms in Section 8.1, we give additional definitions and nota-
tions in Section 8.2 and, we prove Theorem 2.4.1, Theorem 2.4.2, Theorem 2.4.3, and Theorem 2.4.4
in Section 8.3, Section 8.4, Section 8.5, and Section 8.6, respectively.

Some notations and conventions. By k-elimination set of a graph G for a graph class H, we
refer to a set X ⊆ V (G) such that td(torso(G,X)) ≤ k and G − X ∈ H. Additionally, we note
edH := H-td. Recall that that Ek(H) is the class of graphs G such that edH(G) ≤ k

As in the previous chapter, instead of considering a minor-closed graph class H, we consider its
obstruction set F , and thus the minor-closed graph class exc(F). We define aF as the minimum apex
number of a graph in F , we set sF := max{|V (F)| | F ∈ F}, and we define ℓF to be the maximum
detail of a graph in F . Also, we say that F is non-trivial when all graphs in F contain at least two
vertices.

8.1 Sketch of the algorithms

The strategy to solve Theorem 2.4.1 (cf. Theorem 8.3.1) and Theorem 2.4.2 (cf. Theorem 8.4.1) is
similar to the one used in Subsection 7.3.2 to solve L-Replacement to exc(F). It uses the same
following ingredients.

Bounded treewidth: When the input graph as bounded treewidth, i.e. to prove Theorem 2.4.3, we
design our own dynamic programming algorithm (cf. Section 8.5) combining the representative-based
technique of [23] with the dynamic programming algorithm of [256] deciding whether the treedepth
is at most k in FPT-time parameterized by tw + k (Proposition 8.5.4).

Irrelevant vertex: We use as a blackbox the irrelevant vertex technique from [285] (cf. Proposi-
tion 8.2.4), which is similar to the one of Chapter 7 (cf. Theorem 7.3.1).

Obligatory set: However, there is a difference due to the fact that the modulator has bounded
treedepth instead of bounded size.

For the L-Replacement to exc(F) problem, if we find a set A′ that intersects any solution,
then we can branch by guessing the intersection of A′ with the modulator and recursively solving the
reduced instance obtained after doing the guessed modification. As proved in Subsection 7.3.2, this
step is applied 2OℓF (k2) times. This bound comes from the fact that we know that the modulator
has at most k vertices, and that we guess at least one vertex of the modulator each time we enter
this step.

8.2. Preliminaries 160

However, for Elimination Distance to exc(F), the size of the modulator (a k-elimination set)
may not depend on k. Thus, the number of time this step may be applied depends exponentially
on n (instead of k), which does not give an FPT-algorithm. To circumvent this problem, we propose
two alternatives:

Option 1: The first alternative is to not use the branching technique (Step 5 in Subsection 7.3.2),
but only the irrelevant vertex technique. In this case, when using the algorithms Grasped-or-Flat
(Proposition 4.6.2) and Clique-or-twFlat (Proposition 4.6.3), we force the outcome to be an apex
set A and a flatness pair of G−A, using the fact that (KsF+k, k) is a no-instance of the problem.
However, the bound on the size of A now depends on k, and thus, so does the variable a in the input
of the algorithm Homogeneous (Proposition 4.6.12). This explains the triple-exponential parametric
dependence on k in Theorem 2.4.1. Interestingly, a precise analysis of the time complexity, which can
be found in Section 8.3, shows that if aF = 1, i.e., when F contains an apex graph, the parametric
dependence is only double-exponential on k (cf. Theorem 2.4.1).

Option 2: The second alternative is to restrict ourselves to the case where aF = 1. Thus, in the
branching case (Step 5 in Subsection 7.3.2), we find a vertex v that belongs to every k-elimination
set. There is no need to branch, and this step is done at most n times. However, the fact that the
time complexity of this step is quadratic in n explains the cubic complexity of the algorithm in
Theorem 2.4.2.

8.2 Preliminaries

In this section, we give some more definitions. Namely, in Subsection 8.2.1, we define elimination
trees, that is an alternative way to define elimination distance of a graph to a graph class and, in
Subsection 8.2.2, we define the notion of bidimensionality with respect to a wall, which is crucial to
be able to apply the irrelevant vertex technique for Elimination Distance to exc(F).

8.2.1 F-elimination trees

We start this subsection by defining some notions on (rooted) trees.

Notations on trees and rooted trees. Let T be a tree and u, v be two nodes of T . We denote
by uTv the path in T between u and v. A rooted tree is a pair (T, r) where T is a tree and r is
a node of T called root of (T, r). Let (T, r) be a rooted tree and let u be a node of T . We define
the descendants of u in (T, r) by DescT,r(u) = {x ∈ V (T) | u ∈ V (xTr)} and the ancestors of u
in (T, r) by AncT,r(u) = V (rTu) \ {u}. We define the leaves in (T, r) by Leaf(T, r) = {u ∈ V (T) |
DescT,r(u) = {u}} and the internal nodes in (T, r) by Int(T, r) = V (T) \ Leaf(T, r). If u ̸= r then
we denote by ParT,r(u) the unique node in AncT,r(u) ∩NT (u). We also agree that ParT,r(r) = void.
We denote by ChT,r(u) = DescT,r(u)∩NG(u) the set of the children of u (certainly ChT,r(u) = ∅ if u
is a leaf of T). Given K ⊆ V (T), the least common ancestor of K in (T, r) is the node u such that
K ⊆ DescT,r(u) and there is no child v of u such that K ⊆ DescT,r(v).

The height function heightT,r : V (T) → N maps v ∈ Leaf(T, r) to 0 and v ∈ Int(T, r) to
1 + max{heightT,r(x) | x ∈ ChT,r(v)}. The height of (T, r) is heightT,r(r). Note that the height
function is decreased by one here compared to the usual definition of the height.

We use (T r
u , u) to denote the rooted tree where T r

u = T [DescT,r(u)] and we call (T r
u , u) subtree of

(T, r) rooted at u. To simplify notation and when the root r is clear from the context, we use Tu
instead of T r

u .

8.2. Preliminaries 161

A rooted forest is a pair (F,R) where F is a forest and R is a set of roots such that each tree in
F has exactly one root in R. All notations above naturally extend to forests.

Elimination trees. We now define elimination trees, that can be used to define alternatively
graphs of bounded elimination distance. Let F be a non-empty finite collection of non-empty graphs.
An F-elimination tree of a connected graph G is a triple (T, χ, r) where (T, r) is a rooted tree and
χ : V (T)→ 2V (G) such that:

• for each t ∈ Int(T, r), |χ(t)| = 1,

• (χ(t))t∈V (T) is a partition of V (G),

• for each uv ∈ E(G), if u ∈ χ(t1) and v ∈ χ(t2), then t1 ∈ AncT,r(t2) ∪ DescT,r(t2),

• for each t ∈ Leaf(T, r), G[χ(t)] ∈ exc(F), and

• for each t ∈ V (T), G[χ(Tt)] is connected.

The height of (T, χ, r) is the height of (T, r). It is straightforward to see that the minimum
height of an F-elimination tree of a connected graph G is edexc(F)(G). Note that χ(Int(T, r)) is a
k-elimination set of G for exc(F) and that, if F is trivial, then, for each t ∈ Leaf(T, r), χ(t) = ∅.
Observe also that for every u ∈ Int(T, r) with at least two children x and y, any path between χ(Tx)
and χ(Ty) intersects χ(uTr).

An F-elimination forest of a graph G is a triple (F, χ,R), such that, if cc(G) = {G1, ..., Gl},
then F is the disjoint union of the trees T1, . . . , Tl and R = {r1, ..., rl} where (Ti, χ|V (Ti), ri) is an
F-elimination tree of Gi for i ∈ [l].

The following simple lemma is based on the fact that, given an F -elimination tree (T, χ, r) of a
graph G, for every non-leaf node u of T , χ(uTr) separates the vertex sets χ(Tx) and χ(Ty), where x
and y are distinct children of v in (T, r).

Lemma 8.2.1. Let F be a finite collection of graphs. Let G be a graph and let H be a connected
subgraph of G. Let (F, χ,R) be an F-elimination forest of G. Then the least common ancestor of
χ−1(V (H)) exists and belongs to χ−1(V (H)).

Proof. Let K := χ−1(V (H)). Since H is connected, K is a subset of a tree in F , and therefore the
least common ancestor of K is defined. Let u be the least common ancestor of K. Let r ∈ R be the
root of the tree containing u. Let x, y ∈ V (H) such that the least common ancestor of χ−1(x) and
χ−1(y) is u. Since H is connected, there is a path P in H between x and y. By the third property
of elimination trees, {u} ∪ AncF,R(u) intersects χ−1(V (P)), and so {u} ∪ AncF,R(u) intersects K.
Since u is the least common ancestor of K, u ∈ K.

We now present a lemma to justify that the graphs with bounded elimination distance to exc(F)
are minor-free. Intuitively, the proof of this lemma is based on the fact that, due to Lemma 8.2.1,
the size of the largest clique minor that can “fit” inside an elimination tree is equal to the height of
the elimination tree.

Lemma 8.2.2. Let F be a finite collection of graphs. Let G be a graph and k ∈ N such that
edexcF (G) ≤ k. Then KsF+k is not a minor of G.

8.2. Preliminaries 162

Proof. Let (F, χ,R) be an F-elimination forest of G of height at most k. Suppose towards a
contradiction that there is a model of KsF+k in G. Let x1, ..., xsF+k be the vertices of KsF+k and
for every i ∈ [sF + k], let Vi be the model of xi in G. Let G′ be the graph obtained by contracting,
for each i ∈ [sF + k], the edges in each Vi. Let vi, i ∈ [sF + k] be the resulting vertices after the
contraction of each Vi. Thus, the graph G′[{v1, ..., vsF+k}] is isomorphic to KsF+k.

Let (F ′, χ′, R) be obtained from (F, χ,R) as follows. For every i ∈ [sF + k], let ui be the least
common ancestor of Ki := χ−1(Vi) in (F,R). Due to Lemma 8.2.1, ui ∈ Ki. The forest F ′ is obtained
after removing each node v ∈ (Ki \ ui) ∩ (Int(F,R) \ R) from V (F) and adding an edge between
ParF,R(v) and each node in ChF,R(v). The function χ′ is defined as χ′(v) := χ(v) if v ∈ Int(F ′, R)
and χ′(v) := χ(v) \ (Vi \ ui) if v ∈ Leaf(F ′, R). In the latter case, if G′[χ′(v)] is not connected,
then we update F ′ by replacing v by |cc(G′[χ′(v)])| nodes, each one associated with a connected
component of G′[χ′(v)]. Observe that (F ′, χ′, R) is an F -elimination forest of G′ of height at most k
and that we can assume that for every i ∈ [sF + k], vi ∈ χ′(ui).

Since the vertices in {v1, ..., vsF+k} are pairwise connected by an edge in G′, the third property of
elimination trees implies that there is u ∈ Leaf(F ′, R) and r ∈ R such that {v1, ..., vsF+k} ⊆ χ′(uF ′r).
Let u′ := ParF ′,R(u). For every t ∈ u′F ′r, t ∈ Int(F ′, R), so |χ′(t)| = 1, and therefore, |χ′(u′Fr)| ≤ k.
Thus, |χ′(u) ∩ V (H)| ≥ sF . Therefore, KsF is a minor of G′[χ′(u)]. This contradicts the fact that
G′[χ′(u)] ∈ exc(F), so KsF+k is not a minor of G.

We also show that given a graph G and an integer k, the removal of a k-elimination set from G
does not decrease the treewidth of G more than k.

Lemma 8.2.3. Let F be a finite collection of graphs. Let c, k be two integers and let G be a graph
such that tw(G) ≥ c. Let S be a k-elimination set of G for exc(F). Then tw(G− S) ≥ c− k.

Proof. Suppose first that G is connected. Let (T, χ, r) be an F-elimination tree of G with
χ(Int(T, r)) = S. Let v1, ..., vl be the leaves of (T, r), whose label is given by a depth-first search order
starting from r. Let Ci := G[χ(vi)] for i ∈ [l], and note that tw(G− S) = maxi∈[l] tw(Ci). Suppose
for contradiction that tw(G− S) < c− k, and we proceed to show that tw(G) < c, contradicting our
hypothesis. Let (Ti, βi) be an optimal tree decomposition of Ci of width wi and let Pi be the path
from the parent of vi to r in T , for i ∈ [l]. Let w := maxi∈[l]wi, so we have that w ≤ c− k − 1. We
construct a tree decomposition (T , β) of G, starting from the tree decompositions (Ti, βi), as follows.
Create a path with nodes x1, ..., xl such that for i ∈ [l], β(xi) = V (Pi). Then for i ∈ [l], add an edge
between xi and a node of Ti. For each x ∈ V (Ti), we set β(x) := βi(x) ∪ V (Pi). Since the height of
(T, r) is at most k, Pi has size at most k for i ∈ [l], so (T , β) has width at most w + k ≤ c− 1, a
contradiction.

If G is not connected, we can apply the above proof to each of its connected components.

8.2.2 Bidimensionality of elimination sets

In this subsection, we present the notion of bidimensionality of a set X with respect to a wall
W of a graph G. Essentially, if X has big bidimensionality with respect to W , then X has big
bidimensionality bg(G,X) (see Section 1.6).

Bidimensionality. Let W be a wall of a graph G, Q̃ be a W -canonical partition of G, and
X ⊆ V (G). The bidimensionality of X in G with respect to Q̃, denoted by bidQ̃(X), is the number
of internal bags of Q̃ intersected by X. The bidimensionality of X in G with respect to W , denoted
by bidG,W (X), is the maximum bidimensionality of X with respect to a W -canonical partition of G.

8.2. Preliminaries 163

As discussed in Section 1.6, the irrelevant vertex technique holds for modulators of bounded
bidimensionality. The combinatorial version of this result is stated in [285, Lemma 16] and can be
algorithmized using [286, Theorem 5] (Proposition 4.6.6). Recall that the Unique Linkage theorem
was mentioned in Subsection 4.6.5.

Proposition 8.2.4 ([285, 286]). Let F be a finite collection of graphs. There exist two functions
f8.2.4 : N4 → N and g8.2.4 : N2 → N, and an algorithm with the following specifications:

Find-Irrelevant-Vertex(k, a,G,A,W,R)
Input: Two integers k, a ∈ N, a graph G, a set A ⊆ V (G), and a regular and tight flatness pair
(W,R) of G−A of height at least f8.2.4(a, ℓF , 3, k) that is g8.2.4(a, ℓF)-homogeneous with respect to(

A
≤a

)
.

Output: A vertex v of G − A such that for every set X ⊆ V (G) with bidG−A,W (X) ≤ k and
|A \X| ≤ a, it holds that G−X ∈ exc(F) if and only if G− (X \ v) ∈ exc(F).
Moreover, f8.2.4(a, ℓF , q, k) = O(k · (ful(16a+ 12ℓF))

3 + q), where ful is the function of the Unique
Linkage Theorem and g8.2.4(a, ℓF) = a+ ℓF + 3, and this algorithm runs in time O(n+m).

In this case, similarly to Theorem 7.3.1 in Chapter 7, we use the following result of [285] that
basically says that if there is a big enough flat wall W and an apex set A′ of aF vertices that are all
adjacent to many bags of a canonical partition of W , then each k-elimination set intersects A′. See
Figure 7.3 for an illustration.

Proposition 8.2.5 ([285]). There exist three functions f8.2.5, g8.2.5, h8.2.5 : N3 → N, such that
if G is a graph, k ∈ N, A is a subset of V (G), (W,R) is a flatness pair of G − A of height at
least f8.2.5(aF , sF , k), Q̃ is a W -canonical partition of G − A, A′ is a subset of vertices of A that
are adjacent, in G, to vertices of at least g8.2.5(aF , sF , k) h8.2.5(aF , sF , k)-internal bags of Q̃, and
|A′| ≥ aF , then for every set X ⊆ V (G) such that G−X ∈ exc(F) and bidG−A,W (X) ≤ k, it holds
that X ∩ A′ ̸= ∅. Moreover, f8.2.5(a, s, k) = O(2a · s5/2 · k5/2), g8.2.5(a, s, k) = O(2a · s3 · k3), and
h8.2.5(a, s, k) = O((a2 + k) · s), where a = aF and s = sF .

Lemma 8.2.7 provides a setX ⊆ V (G) that can be used to apply Proposition 8.2.5 to Elimination
Distance to exc(F). Given a k-elimination set S, we can find a set X ⊇ S of bidimensionality at
most k(k + 1)/2 such that G−X ∈ exc(F). To prove this, we first prove the following result, which
intuitively states that a k-elimination set can intersect at most k horizontal and vertical paths of a
wall.

Lemma 8.2.6. Let F be a finite collection of graphs. Let G be a graph, let k ∈ N, let r, h be odd
integers with r ≥ h+ k, let W be an r-wall of G, and let S be a k-elimination set of G for exc(F).
Then there is an h-subwall W ′ of W with V (W ′) ∩ S = ∅.

Proof. Since S is a k-elimination set of G for exc(F), there is an F -elimination forest (F, χ,R) of G
of height k such that χ(Int(F,R)) = S.

We set W0 := W . For i ∈ [k], we proceed to construct an ri-subwall Wi of the ri−1-wall Wi−1

with ri ≥ r − i such that for every i ∈ [k] there is a node zi of F such that (Fzi , zi) has height at
most k − i and V (Wi) ⊆ χ(V (Fzi)). This will imply the existence of a wall of size at least r − k
whose vertex set will be a subset of χ(V (Fz), where z ∈ Leaf(F,R).

Let Si := V (Wi−1) ∩ S. If Si = ∅, we set Wj := Wi−1 for j ∈ [i, k]. Otherwise, let ui be the
least common ancestor of χ−1(Si) in (F,R). According to Lemma 8.2.1, since Wi−1 is connected, ui
exists and belongs to χ−1(Si).

We obtain an (ri−1 − 1)-subwall Wi of Wi−1 that does not contain χ(ui) by taking the wall
containing all horizontal and vertical paths of Wi−1 aside from the ones intersecting ui and we set

8.3. Elimination distance to a minor-closed graph class 164

ri := ri−1 − 1 (to simplify the argument, here we call the resulting graph a wall even when the
height is even). Note that since Wi is a subgraph of G[χ(V (Fui))] that is connected, there is a
zi ∈ ChFui ,ui(ui) such that V (Wi) ⊆ V (Fzi). Notice that (Fui , χ|V (Fui

, ui) is an F -elimination forest
of G[χ(Fui)] of height at most k − i.

Observe that zk should be a leaf of (F,R) and therefore, since we have that V (Wk) ⊆ V (Fzk) ⊆
V (G) \ S, Wk is a wall of G− S of height at least r − k ≥ h.

Now we prove our result regarding the bidimensionality of k-elimination sets.

Lemma 8.2.7. Let F be a finite collection of graphs. Let G be a graph, let A ⊆ V (G), let k ∈ N, let
r ≥ 2k+ 3 be an odd integer, let (W,R) be a flatness pair of G−A, and let S be a k-elimination set
of G for exc(F). There is a set X ⊇ S such that G−X ∈ exc(F) and bidG−A,W (X) ≤ k(k + 1)/2.

Proof. Let p = odd(r − k). Let W ′ be a p-subwall of W that is a wall of G− S, which exists due to
Lemma 8.2.6. Let C be the connected component of G − S that contains W ′. Since C ∈ exc(F),
KsF is not a minor of C. Moreover, since S is a k-elimination set of G for exc(F), there is a set
P ⊆ S of size at most k such that (L,R) := (V (G) \ V (C), V (C) ∪ P) is a separation of G with
L ∩R = P .

Let us show that bidG−A,W (V (G) \ V (C)) ≤ k(k + 1)/2. Let Q̃ be a W -canonical partition of
G−A. Let l be the number of internal bags of Q̃ intersected by P and note that l ≤ k.

Let G′ be the graph obtained from G after contracting each bag of Q̃ to a vertex. It is easy to
observe that G′ is isomorphic to a planar supergraph of an h-grid H, where h = r− 2, together with
an additional vertex that is adjacent to every vertex of the perimeter of H.

We let [h]2 be the vertex set ofH, where (i, j) and (i′, j′) are adjacent if and only if |i−i′|+|j−j′| =
1. We will show that there is a separation (L′, R′) of H of order at most l that maximizes
min{|L′|, |R′|}. Let A = L′ ∩R′. We suppose without loss of generality that |L′| ≤ |R′|. Notice that
l < h. We take A := {(i, j) ∈ [h]2 | i+ j = l}, i.e., L′ is the set of pairs of indices in the triangle
bounded by (0, 0), (0, l), and (l, 0). Thus, |L′| = l(l + 1)/2. It is easy to verify that this maximizes
|L′|.

Therefore, since the vertices of H are the internal bags of Q̃ and P intersects l internal bags,
it implies that one of L and R intersects at most l(l + 1)/2 ≤ k(k + 1)/2 internal bags of Q̃.
Recall that W ′ is a wall of C of height p. It is easy to verify that an elementary x-wall W ∗ has
2x2 − 2 vertices with 8x − 10 vertices in the perimeter. Hence, it has 2(x − 2)2 vertices not in
the perimeter, and therefore the canonical partition of W ∗ has (x − 2)2 internal bags. Thus, the
canonical partition of W ′ has (p − 2)2 internal bags. Observe that each such a bag is contained
in an internal bag of Q̃ and therefore V (C) intersects at least (p − 2)2 internal bags of Q̃. Since
(p− 2)2 ≥ (r − k − 2)2 ≥ (k + 1)2 > k(k + 1)/2, it holds that bidG−A,W (V (C) ∪ P) > k(k + 1)/2.
Therefore, bidG−A,W (V (G) \ V (C)) ≤ k(k + 1)/2.

8.3 Elimination distance to a minor-closed graph class

Let present our main result for Elimination Distance to exc(F). The following theorem is a
restatement of Theorem 2.4.1.

Theorem 8.3.1. For every finite collection of graphs F , there exists an algorithm that, given a

graph G and an integer k, decides whether edexc(F)(G) ≤ k in time 22
2k

OℓF
(1)

· n2. In the particular

case when F contains an apex-graph, this algorithm runs in time 22
OℓF

(k2 log k)

· n2.

8.3. Elimination distance to a minor-closed graph class 165

We will use the following result solving the problem on graphs of bounded treewidth. The proof
of Theorem 8.3.2 is deferred to Section 8.5.

Theorem 8.3.2. For every finite collection of graphs F , there exists an algorithm that, given a
graph G of treewidth at most tw and a non-negative integer k, decides whether edexc(F)(G) ≤ k in
time 2OℓF (tw·k+tw log tw) · n.

In Subsection 8.3.1, we present an analogue of Proposition 7.1.2 (Lemma 8.3.3), which either
reports an upper bound on the treewidth of the input graph, or finds a wall, or reports that we
deal with a no-instance. The algorithm of Theorem 8.3.1 is described in Subsection 8.3.2 and,
in Subsection 8.3.3, we present the proof of its correctness.

8.3.1 Quickly finding a wall

In this section, we prove the following result, that is the analog of Proposition 7.1.2 for Elimination
Distance to exc(F).

Lemma 8.3.3. Let F be a finite collection of graphs. There exist a function f8.3.3 : N→ N and an
algorithm with the following specifications:

Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and k ∈ N.
Output: One of the following:

• Case 1: Either a report that (G, k) is a no-instance of Elimination Distance to exc(F), or

• Case 2: a report that G has treewidth at most f8.3.3(sF) · r + k, or

• Case 3: an r-wall W of G.

Moreover, f8.3.3(sF) = 2O(s2F ·log sF), and the algorithm runs in time 2OℓF (r2+k2) · n.

The proof is very similar to the one given in [284] for Proposition 7.1.2 in the case of Vertex
Deletion to exc(F) and is achieved using the following result from Perkovic and Reed [250]. The
main difference with respect to the proof of Proposition 7.1.2 given in [284] is that we need to use
two new ingredients tailored for Elimination Distance to exc(F), namely Theorem 8.3.2 and
Lemma 8.2.3.

Proposition 8.3.4 ([250]). There exists an algorithm with the following specifications:

Input: A graph G and t ∈ N such that |V (G)| ≥ 12t3.
Output: A graph G∗ such that |V (G∗)| ≤ (1− 1

16t2
) · |V (G)| and,

• either G∗ is a subgraph of G such that tw(G) = tw(G∗), or

• G∗ is obtained from G after contracting the edges of a matching in G.

Moreover, the algorithm runs in time 2O(t) · n.

Proof of Lemma 8.3.3. Let c := f4.6.1(sF) · r + k.

Suppose that |V (G)| < 12c3. Run the algorithm of [17] that, in time O(|V (G)|c+2) =
2OℓF ((r+k)·log(r+k)), checks whether tw(G) ≤ c. If this is the case, report the same and stop.
If not, we aim to find an r-wall of G or conclude that we are dealing with a no-instance. First
consider an arbitrary ordering (v1, . . . , v|V (G)|) of the vertices of G. For each i ∈ [|V (G)|], set Gi to

8.3. Elimination distance to a minor-closed graph class 166

be the graph induced by the vertices v1, . . . , vi. Iteratively run the algorithm of Proposition 4.3.1
on Gi and c for increasing values of i. This algorithm runs in time 2O(c) · |V (G)| = 2OℓF (r+k).
Let j ∈ [|V (G)|] be the smallest integer such that the above algorithm outputs a report that
tw(Gj) > c (it exists since tw(G) > c) and notice that there exists a tree decomposition (Tj , βj) of
Gj of width at most 2c+ 2, obtained by the one of Gj−1 by adding the vertex vj to all the bags.
Thus, we can call the algorithm of Theorem 8.3.2 with input (Gj , 2c + 2, k), which runs in time
2OℓF (c·(k+log c)) · |V (Gj)| = 2OℓF ((r+k)·(k+log(r+k))), in order to find, if it exists, a k-elimination set Sj
of Gj for exc(F).

• If such a set Sj does not exist, then safely report that (G, k) is a no-instance.

• If such a set Sj exists, then call the algorithm of Proposition 4.3.4 for Gj − Sj , (and the
decomposition of Gj − Sj obtained from (Tj , βj) by removing the vertices of Sj from all the
bags) in order to check whether it contains an elementary r-wall W as a minor. This algorithm
runs in time 2O(c·log c) · rO(c) · 2O(r2) · |V (Gj) \ Sj | = 2OℓF ((r+k)·log(r+k)) · rOℓF (r+k) · 2O(r2) =

2OℓF (r2+(r+k)·log(r+k)), since |E(W)| = O(r2). Since all connected components of Gj − Sj are
in exc(F), Gj − Sj does not contain KsF as a minor. By Lemma 8.2.3, tw(Gj − Sj) ≥ c− k =
f4.6.1(sF) · r. So because of Proposition 4.6.1, the algorithm of Proposition 4.3.4 will output
an elementary r-wall W of Gj − Sj . We also return W as a wall of G.

Therefore, in the case where |V (G)| < 12c3, we obtain one of the three possible outputs in time
2OℓF (r2+k2).

If |V (G)| ≥ 12c3, then call the algorithm of Proposition 8.3.4 with input (G, c), which outputs a
graph G∗ such that |V (G∗)| ≤ (1− 1

16c2
) · |V (G)| and

• either G∗ is a subgraph of G such that tw(G) = tw(G∗), or

• G∗ is obtained from G after contracting the edges of a matching in G.

In both cases, recursively call the algorithm on G∗ and distinguish the following two cases.

Case 1: G∗ is a subgraph of G such that tw(G) = tw(G∗).

(a) If the recursive call on G∗ reports that tw(G∗) ≤ c, then return that tw(G) ≤ c.

(b) If the recursive call on G∗ outputs an r-wall W of G∗, then return W as a wall of G.

(c) If (G∗, k) is a no-instance, then report that (G, k) is also a no-instance.

Case 2: G∗ is obtained from G after contacting the edges of a matching in G.

(a) If the recursive call on G∗ reports that tw(G∗) ≤ c, then do the following. First notice that
the fact that tw(G∗) ≤ c implies that tw(G) ≤ 2c, since we can obtain a tree decomposition
(T, β) of G from a tree decomposition (T ∗, β∗) of G∗, by replacing, in every t ∈ V (T ∗), every
occurrence of a vertex of G∗ that is a result of an edge contraction by its endpoints in G.
Thus, we can call the algorithm of Theorem 8.3.2 with input (G, 2c, k), which runs in time
2OℓF (c(k+log c)) · n, in order to find, if it exists, a k-elimination set S of G for exc(F). We
distinguish again two cases.

• If such a set S does not exist, then the algorithm reports that (G, k) is a no-instance.

8.3. Elimination distance to a minor-closed graph class 167

• If such a set S exists, then apply the algorithm of Proposition 4.3.1 with input (G−S, 2c),
which runs in time 2O(c) · n, and obtain a tree decomposition of G− S of width at most
4c + 1. Using this decomposition, call the algorithm of Proposition 4.3.4 for G − S in
order to check whether it contains an elementary r-wall W as a minor. This algorithm
runs in time 2O(c·log c) · rO(c) · 2O(r2) · n = 2OℓF ((r+k)·log(r+k)) · rOℓF (r+k) · 2O(r2) · n =
2OℓF (r2+(r+k)·log(r+k)) ·n, since |E(G−S)| = O(n) and |E(W)| = O(r2). If this algorithm
outputs an elementary r-wall W of G − S, then output W . Otherwise, safely report,
because of Proposition 4.6.1 and Lemma 8.2.3, that tw(G) ≤ f4.6.1(sF) · r + k = c.

(b) If the recursive call on G∗ outputs an r-wall W ∗ of G∗, then by uncontracting the edges of M
in W ∗, we can return an r-wall of G.

(c) If (G∗, k) is a no-instance, then report that (G, k) is also a no-instance.

It is easy to see that the running time of the above algorithm is given by the function

T (n, k, r) ≤ T

(
(1− 1

16c2
) · n, k, r

)
+ 2OℓF (r2+k2) · n,

which implies that T (n, k, r) = 2OℓF (r2+k2) · n, as claimed.

8.3.2 Description of the algorithm for Elimination Distance to exc(F)

Let us describe our algorithm for the general case.
We define the following constants.

a = g4.6.2(sF + k), q = g8.2.5(aF , sF , k(k + 1)/2),

p = h8.2.5(aF , sF , k(k + 1)/2), l = (q − 1) · a,
d = g8.2.4(aF − 1, ℓF), r4 = f8.2.4(aF − 1, ℓF , 3, k(k + 1)/2),

r3 = f4.6.12(r4, aF − 1, a, d), r2 = odd(max{f4.6.8(l + 1, r3, p), f8.2.5(aF , sF , k(k + 1)/2)}),
r1 = odd(f4.6.3(sF + k) · r2),

Note that r4 = OℓF (k
2), r3 = OℓF (k

2·c), r2 = OℓF (k
2·c+15), and r1 = 2OℓF (k2 log k+c log k), where

c = g4.6.12(aF − 1, a, d) = 2OℓF (k24·(aF−1)). Observe also that Ek(H) is a KsF+k-minor-free graph
class, and thus, by Proposition 4.2.1, we can always assume that G has OsF (k

√
log k ·n) edges, since

otherwise we can directly conclude that (G, k) is a no-instance for the problem.

Run the algorithm Find-Wall-Ed from Lemma 8.3.3 with input (G, r1, k) and, in time 2OℓF (r21+k2)·

n = 22
OℓF

(k2 log k+c log k)

· n,

• either report a no-instance, or

• conclude that tw(G) ≤ f8.3.3(sF) · r1+ k and solve Elimination Distance to exc(F) in time

2OℓF ((r1+k)k+(r1+k) log(r1+k)) · n = 22
OℓF

(k2 log k+c log k)

· n using the algorithm of Theorem 8.3.2,
or

• obtain an r1-wall W1 of G.

8.3. Elimination distance to a minor-closed graph class 168

If the output of Lemma 8.3.3 is a wall W1, then run the algorithm Clique-or-twFlat of Propo-

sition 4.6.3 with input (G, r2, sF + k). This takes time 22
OℓF

(k2 log k)·r32 log r2 ·n = 22
OℓF

(k2 log k+c log k)

·n.
If the result is a set A of size at most a and a regular flatness pair (W2,R2) of G−A of height r2
whose R2-compass has treewidth at most r1, then proceed, otherwise output a no-answer.

Compute a W2-canonical partition Q̃ of G − A. Compute the set B of vertices of A that are
adjacent to at least q p-internal bags of Q̃. Apply the algorithm Packing of Proposition 4.6.8 with
input (l+1, r3, p,G−A,R2, Q̃) to compute in time OsF (k

√
log k ·n) a collectionW = {W 1, ...,W l+1}

of r3-subwalls of W2 respecting the properties of Proposition 4.6.8. By the choice of l, there is an
i ∈ [l + 1] such that no vertex of

⋃
influenceR2(W

i) is adjacent to a vertex of A \B.
Run the algorithm from Proposition 4.6.6 with input (G−B,W2,R2,W

i) to obtain a W i-tilt
(W3,R3) of (W2,R2) in time OsF (k

√
log k · n).

After this, apply the algorithm Homogeneous of Proposition 4.6.12 with input (r4, aF−1, a, d, r1, G,B,W3,R3),

which, in time 2O(c·r4 log r4+r1 log r1) · (n +m) = 22
OℓF

(k2 log k+c log k)

· n, outputs a tight flatness pair
(W4,R4) of G − B of height r4 that is d-homogeneous with respect to

(
B

<aF

)
and is a W ∗-tilt of

(W3,R3) for some subwall W ∗ of W3.
Finally, apply the algorithm Find-Irrelevant-Vertex of Proposition 8.2.4 with input (k(k +

1)/2, aF − 1, G,B,W4,R4), which outputs, in time OsF (k
√
log k · n), an irrelevant vertex v such

that (G, k) and (G− v, k) are equivalent instances of Elimination Distance to exc(F). Then the
algorithm runs recursively on the equivalent instance (G− v, k).

Since each run takes time 22
OℓF

(k2 log k+c log k)

· n and there are at most n runs, the algorithm

indeed runs in time 22
OℓF

(k2 log k+c log k)

· n2.
Note that c = 2OℓF (k24·(aF−1)), so if F contains an apex-graph, i.e., if aF = 1, then c = OℓF (1).

Thus, the running time is 22
2
OℓF

(k24·(aF−1))

· n2 in the general case and 22
OℓF

(k2 log k)

· n2 in the case
where F contains an apex-graph.

8.3.3 Correctness of the algorithm

Let (G, k) be a yes-instance and let S be a k-elimination set of G for exc(F). By running Lemma 8.3.3
with input (G, r1, k), the algorithm should either get a report that tw(G) ≤ f8.3.3(sF) · r1 + k or find
an r1-wall. The correctness of the former is obvious, so we will focus on the latter.

Let W1 be an r1-wall of G. According to Lemma 8.2.2, KsF+k is not a minor of G. Moreover,
since W1 is a wall of G of height r1, tw(G) ≥ tw(W1) ≥ r1 ≥ f4.6.3(sF + k) · r2. Hence, if the
algorithm runs Clique-or-twFlat of Proposition 4.6.3 with input (G, r2, sF + k), it should obtain a
set A of size at most a and a regular flatness pair (W2,R2) of G−A of height r2 whose R2-compass
has treewidth at most r1.

As described in the algorithm, due to Proposition 4.6.8 and the fact that r2 ≥ f4.6.8(l + 1, r3, p),
there is an r3-wall W i that is a subwall of W2 such that no vertex of

⋃
influenceR2(W

i) is adjacent
to a vertex of A \B, where B is the set of vertices of A adjacent to at least q p-internal bags of a
W2-canonical partition Q̃ of G−A.

When the algorithm applies Proposition 4.6.6 with input (G−B,W2,R2,W
i), it obtains a W i-tilt

(W3,R3) of (W2,R2). Due to Observation 4.6.4 and Observation 4.6.5, (W3,R3) is a regular flatness
pair of G−B whose R5-compass has treewidth at most r1. Thus, since r3 = f4.6.12(r4, aF−1, a, d), the
algorithm can apply Homogeneous of Proposition 4.6.12 with input (r4, aF − 1, a, d, r1, G,B,W3,R3)

8.4. Elimination distance when excluding an apex-graph 169

to obtain a tight flatness pair (W4,R4) of G−B of height r4 that is d-homogeneous with respect
to

(
B

<aF

)
and is a W ∗-tilt of (W3,R3) for some subwall W ∗ of W3. According to Observation 4.6.5,

(W4,R4) is regular.
Let S′ be a k-elimination set of G for exc(F). Lemma 8.2.7 implies that there is a set XS′ ⊇ S′

such that G−XS′ ∈ exc(F) and bidG−A,W2(XS′) ≤ k(k + 1)/2.
Since r2 ≥ f8.2.5(aF , sF , k(k + 1)/2), every subset of B of size aF intersects XS′ according to

Proposition 8.2.5. Hence, |B \XS′ | ≤ aF − 1.
Moreover, note that (W3,R3) is a W i-tilt of (W2,R2), (W4,R4) is a W ∗-tilt of (W3,R3), and

(W4,R4) is a flatness pair of G−B with B ⊆ A. Thus, given a W4-canonical partition Q1 of G−B,
there is a W2-canonical partition Q2 of G−A such that each internal bag of Q1 is an internal bag
of Q2. Thus, bidG−B,W4(XS′) ≤ bidG−A,W2(XS′).

Hence, the algorithm can apply Find-Irrelevant-Vertex of Proposition 8.2.4 with input (k(k+
1)/2, aF − 1, G,B,W4,R4) and obtain a vertex v such that, for any k-elimination set S′ of G for
exc(F), G−XS′ ∈ exc(F) if and only if G− (XS′ \ v) ∈ exc(F). Thus, there is a k-elimination set
of G for exc(F) if and only if there is a k-elimination set of G− v for exc(F). It follows that (G, k)
and (G− v, k) are equivalent instances of Elimination Distance to exc(F).

Suppose now that (G, k) is a no-instance. Note that as long as Proposition 4.6.3 outputs a
flatness pair (W2,R2), what follows in the proof of correctness works even if (G, k) is a no-instance.
Therefore, we will find an irrelevant vertex. Otherwise, we would have declared a no-instance
beforehand. Thus, Theorem 8.3.1 follows.

8.4 Elimination distance when excluding an apex-graph

In the case where F contains an apex-graph, we obtain an alternative algorithm whose complexity is
single-exponential in k and cubic in n. The following theorem is a restatement of Theorem 2.4.2.

Theorem 8.4.1. For every finite collection of graphs F that contains an apex-graph, there exists
an algorithm that, given a graph G and an integer k, decides whether edexc(F)(G) ≤ k in time

2k
OℓF

(1)

· n3.

We are now in Option 2 of Section 8.1. That is, contrary to the previous section, since aF = 1,
any vertex fulfilling the criteria of Proposition 8.2.5 belongs to every k-elimination set S of the input
graph for exc(F). Hence, we can add a step (Step 3 of Subsection 8.4.2) very similar to the Step 5
of Subsection 7.3.2. Here, a k-elimination set may have size Ω(n), so we may run Step 3 Ω(n) times.
Since our Step 3 below runs in quadratic time, this gives the cubic dependence of this algorithm.
Fortunately, since we apply this Step 3, contrary to Section 8.3, we manage to find a flatness pair
along with an apex set whose size does not depend on k. Hence, when applying Proposition 4.6.12,
we do not get a triple-exponential dependence on k anymore for the size of the wall we need to find
originally.

In order to remember the vertices that are found to belong to every k-elimination set, since
they do not decrease k, we need to distinguish them in the input. Hence, we actually give here an
algorithm to solve a more general problem with annotations described in Subsection 8.4.1.

8.4.1 Generalization to annotated elimination distance

Contrary to the previous section, since aF = 1, when applying Proposition 8.2.5, we find a vertex
that belongs to every k-elimination set S. Such vertices are taken into account by considering the
following generalization of Elimination Distance to exc(F).

8.4. Elimination distance when excluding an apex-graph 170

Input: A graph G, a set S0 ⊆ V (G), and a non-negative integer k.
Task: Find, if it exists, a k-elimination set S of G for the class exc(F) such that

S0 ⊆ S.

Annotated Elimination Distance to exc(F)

S0 is a set of annotated vertices that corresponds to the vertices identified as vertices of every
k-elimination set S while running the algorithm. Clearly, Elimination Distance to exc(F) is the
particular case of Annotated Elimination Distance to exc(F) when S0 is empty.

In the following lemma, we generalize Theorem 8.3.2 to its “annotated” version. More precisely,
we present a simple trick to reduce the above problem to its “unannotated” version while not changing
the treewidth of the input graph so much.

Lemma 8.4.2. Let F be a finite collection of graphs. There is an algorithm that, given a graph G,
a set S0 ⊆ V (G), and two integers k and tw such that the treewidth of G is bounded by tw, decides
whether (G,S0, k) is a yes-instance of Annotated Elimination Distance to exc(F) in time
2OℓF (tw·k+tw log tw)) · n.

Proof. Given a minor-closed graph class H, let C(H) := {G | ∀C ∈ cc(G), C ∈ H}. Bulian and
Dawar [44] showed that if H ∈ obs(H) has l connected components, then each graph H̄ obtained
from H by adding l − 1 edges to obtain a connected graph belongs to obs(C(H)). Thus, let
HF ∈ obs(C(exc(F)))) obtained in such a way. As said above, HF is connected.

Let G be a graph of treewidth at most tw and S0 be a subset of V (G). Let G′ be a graph
obtained from G by gluing a graph Hv isomorphic to HF to each vertex v of S0, where v is identified
with an arbitrarily chosen vertex of Hv.

Let us show that (G,S0, k) is a yes-instance of Annotated Elimination Distance to exc(F)
if and only if (G′, k) is a yes-instance of Elimination Distance to C(exc(F)). If S0 = ∅, the proof
is trivial, so we suppose S0 ̸= ∅.

Let (F ′, χ′, R′) be a C(exc(F)))-elimination forest of G′ of height at most k with associated
k-elimination set S′. For each v ∈ S0, the fact that Hv /∈ C(exc(F))) implies that V (Hv) ∩ S′ ̸= ∅.
Let y ∈ V (F ′) be the least common ancestor of χ′−1(Hv) in F ′. Since Hv is connected, according to
Lemma 8.2.1, y exists and belongs to χ′−1(Hv). Moreover, since V (Hv) ∩ S′ ̸= ∅, y ∈ Int(F ′, R′).

Let (F ′′, χ′′, R′′) be the F -elimination forest of G obtained from (F ′, χ′, R′) as follows. For every
v ∈ S0 and every t ∈ χ′−1(Hv − v) if t ∈ Int(F ′, R′), remove t from F ′′ and add edges between the
parent and the children of t and if t ∈ Leaf(F ′, R′), remove Hv − v from χ′′(t). If G[χ′′(t)] is not
connected, then we update F ′′ by replacing t by |cc(G[χ′′(t)])| nodes, each one associated with a
connected component of G[χ′′(t)].

Thus, we have an F-elimination forest of G associated with a k-elimination set S with S0 ⊆ S
and with height at most k, implying that (G,S0, k) is a yes-instance of Annotated Elimination
Distance to exc(F).

Conversely, given an F-elimination forest (F, χ,R) of G of height at most k, and S0 ⊆ S :=
χ(Int(F,R)), we can obtain a obs(Cexc(F)))-elimination forest (F ′, χ′, R′) of G′ of height at most
k by adding to each node χ−1(v) for v ∈ S0 ⊆ S a leaf associated with Hv − v ∈ C(exc(F))). The
height of (F ′, χ′, R′) is indeed still at most k. Therefore, (G,S0, k) is a yes-instance for Annotated
Elimination Distance to exc(F) if and only if (G′, k) is a yes-instance for Elimination Distance
to C(exc(F)).

Thus, if we apply the algorithm of Theorem 8.3.2 to (G′, k) to solve Elimination Distance to
C(exc(F)), we solve Annotated Elimination Distance to exc(F) on instance (G,S0, k) in time
2OℓF (tw(G′)·k+tw(G′) log tw(G′))) · |V (G′)|.

8.4. Elimination distance when excluding an apex-graph 171

Given a tree decomposition T = (T, β) of G of width t, we can obtain a tree decomposition T ′ of
G′ of width at most t+|V (HF)| by adding a node xv for each v ∈ S0 such that β(v) = V (Hv), adjacent
to a node y of T such that v ∈ β(y). Thus, tw(G′) ≤ tw(G) + |V (HF)| = tw(G) +OℓF (1). Moreover,
|V (G′)| = |V (G)| + (|V (HF)| − 1) · |S0| = OℓF (|V (G)|). Therefore, we can solve Annotated
Elimination Distance to exc(F) on instance (G,S0, k) in time 2OℓF (tw·k+tw log tw)) · n, and the
lemma follows.

8.4.2 Description of the algorithm for Elimination Distance to exc(F) when
aF = 1

We now describe the algorithm to solve Annotated Elimination Distance to exc(F), and hence
Elimination Distance to exc(F), when aF = 1, i.e., when F contains an apex-graph. Note that,
similarly to this algorithm, the one from Section 8.3 in the general case can also very easily be
generalized to its “annotated” version. We stress that the reason for the better parametric dependence
of this algorithm compared to the algorithm of Theorem 8.3.1 is that we pursue homogeneous flat
walls where homogeneity is asked for subsets of size not depending on k.

We define the following constants.

a = g4.6.2(sF), q = g8.2.5(1, sF , k(k + 1)/2),

p = h8.2.5(1, sF , k(k + 1)/2), l = (q − 1) · (k + a),

d = g8.2.4(a, ℓF) r4 = f8.2.4(a, ℓF , 3, k(k + 1)/2),

r3 = f4.6.12(r4, a, a, d), t = f4.6.3(sF) · r3,
r2 = odd(t+ 3), r′2 = odd(max{f8.2.5(1, sF , k(k + 1)/2), f4.6.8(l + 1, r2, p)}),
r′1 = odd(f4.6.2(sF) · r′2), r1 = odd(r′1 + k).

Note that r4 = OℓF (k
2), r3, r2 = OℓF (k

2c), and r′2, r′1, r1 = OℓF (k
2c+7/2), where c = g4.6.12(a, a, d) =

OℓF (1). Recall that we assume that G has OsF (k
√
log k · n) edges.

The input of this algorithm is a graph G, a set S0 ⊆ V (G), and an integer k.

Step 1. Run the algorithm Find-Wall-Ed from Lemma 8.3.3 with input (G − S0, r1, k) and, in
time 2OℓF (r21+k2) · n = 2OℓF (k4c+7) · n,

• either report a no-instance, or

• conclude that tw(G− S0) ≤ f8.3.3(sF) · r1 + k and solve Annotated Elimination Distance
to exc(F) with input (G,S0, f8.3.3(sF) · r1 + 2k, k) in time 2OℓF ((r1+k)·k+(r1+k) log(r1+k))) · n =

2OℓF (k2c+9/2) · n using the algorithm of Lemma 8.4.2, or

• obtain an r1-wall W1 of G.

If the output of Lemma 8.3.3 is a wall W1, consider all the
(
r1
r2

)2
= 2OℓF (k2c log k) r2-subwalls of

W1 and for each one of them, say W2, let W ∗
2 be the central (r2 − 2)-subwall of W2 and let DW2

be the graph obtained from G− S0 after removing the perimeter of W2 and taking the connected
component containing W ∗

2 . Run the algorithm Clique-or-twFlat of Proposition 4.6.3 with input
(DW2 , r3, sF). This takes time 2OℓF (r23) · n = 2OℓF (k4c) · n. If for one of these subwalls the result
is a set A of size at most a and a regular flatness pair (W3,R3) of DW2 − A of height r3 whose
R3-compass has treewidth at most t, then we proceed to Step 2, otherwise proceed to Step 3.

8.4. Elimination distance when excluding an apex-graph 172

Step 2. We obtain a 5-tuple R′
3 by adding all vertices of G− (S0 ∪ V (CompassR3

(W3))) to the set
in the first coordinate of R3, such that (W3,R

′
3) is a regular flatness pair of G− (S0 ∪A).

We apply the algorithm Homogeneous of Proposition 4.6.12 with input (r4, a, a, d, t, G−S0, A,W3,R
′
3),

which outputs, in time 2OℓF (r4 log r4+t log t) · (n+m) = 2OℓF (k2c log k) · n a tight flatness pair (W4,R4)
of G− (S0∪A) of height r4 that is d-homogeneous with respect to 2A and is a W ∗-tilt of (W3,R

′
3) for

some subwall W ′ of W . At this point, we stress that the reason for the better parametric dependence
of this algorithm compared to the previous one comes from the fact that the third input parameter a
in Homogeneous does not depend of k. We apply the algorithm Find-Irrelevant-Vertex of Propo-
sition 8.2.4 with input (k(k+1)/2, a,G−S0, A,W4,R4), which outputs, in time OsF (k

√
log k · n), a

vertex v such that (G,S0, k) and (G−v, S0, k) are equivalent instances of Annotated Elimination
Distance to exc(F). Then the algorithm runs recursively on the equivalent instance (G− v, S0, k).

Step 3. Consider all the r′2-subwalls of W1, which are
(
r1
r′2

)2
= 2OℓF (k2c+7/2 log k) many, and for

each of them, say W ′
2, compute its canonical partition Q. Then, contract each bag Q of Q to a

single vertex vQ, remove the vertices vQ where Q is not a p-internal bag of Q, and add a new
vertex vall and make it adjacent to all remaining vQ’s. In the resulting graph G′, for every vertex
y of G − S0 − V (W ′

2), check, in time O(q · m) = OℓF (k
7
√
log k · n), using a flow augmentation

algorithm [87], whether there are q internally vertex-disjoint paths from vall to y. Let Ã be the set
of such y’s.

If Ã = ∅, then report a no-instance.
If 1 ≤ |Ã| ≤ k + a, then each vertex of Ã should intersect every k-elimination set S of G for

exc(F). The algorithm runs recursively on (G,S0 ∪ Ã, k).
If, for every wall, |Ã| > k + a, then report that (G,S0, k) is a no-instance of Annotated

Elimination Distance to exc(F).

After Step 2, the size of G decreases by one, so Step 2 can be applied at most n times. After
Step 3, the size of S0 increases by at least one, so Step 3 can also be applied at most n times. Note
that, if S0 = V (G), then tw(G − S0) = 0, so the algorithm stops. Thus, the algorithm finishes.
Notice also that Step 3, when applied, takes time 2OℓF (k2c+7/2 log k) · n2, because we apply a flow
algorithm for each of the 2OℓF (k2c+7/2 log k) r′2-subwalls and for each vertex of G. Since Step 1 and
Step 2 run in time 2OℓF (k4c+7) · n and 2OℓF (k2c log k) · n, respectively, and both may be applied at
most n times, the claimed time complexity follows: the algorithm runs in time 2OℓF (k4c+7) · n3.

8.4.3 Correctness of the algorithm

Let (G,S0, k) be a yes-instance and let S be a k-elimination set of G for exc(F) with S0 ⊆ S.
By running Lemma 8.3.3 with input (G− S0, r1, k), the algorithm should either get a report that
tw(G− S0) ≤ f8.3.3(sF) · r1 + k or find an r1-wall.

If tw(G − S0) ≤ f8.3.3(sF) · r1 + k, then since S0 ⊆ S, tw(G − S) ≤ f8.3.3(sF) · r1 + k. Hence,
according to Lemma 8.2.3, tw(G) ≤ f8.3.3(sF) · r1 + 2k.

Otherwise, let W1 be an r1-wall of G− S0. According to Lemma 8.2.6, since r1 ≥ r′1 + k, there is
an r′1-subwall W ′

1 of W1 that is a subwall of G− S. Let H be the connected component of G− S
containing W2. The fact that H belongs to exc(F) implies that it has no KsF -minor. Therefore, by
Proposition 4.6.2, since r′1 ≥ f4.6.2(sF) · r′2, there is a set B ⊆ V (H), with |B| ≤ a, and a flatness
pair (W ′

2,R
′
2) of H −B of height r′2.

8.4. Elimination distance when excluding an apex-graph 173

Let Q be the canonical partition of W ′
2. Let G′ be the graph obtained after contracting every

bag Q of Q to a single vertex vQ, removing the vertices vQ where Q is not a p-internal bag of
Q, and adding a new vertex vall and making it adjacent to all remaining vQ’s. Let Ã be the set
of vertices y of G− V (W ′

2) such that there are q internally vertex-disjoint paths from vall to y in
G′. Since S is a k-elimination set of G for exc(F), there is a set P ⊆ S of size at most k so that
(L,R) := (V (G) \ V (H), V (H) ∪ P) is a separation of G with P = L ∩R.

Note that Ã ⊆ P ∪ B. To show this, we first prove that, for every y /∈ P ∪ B, the maximum
number of internally vertex-disjoint paths from vall to y in G′ is less than q. Indeed, if y is a vertex
in (V (G) \ V (H)) \ P , then every path from y to a vertex of W ′

2 intersects P . Therefore, there are
at most k < q internally vertex-disjoint paths from vall to such a y ∈ (V (G) \ V (H)) \ P in G′. If
y ∈ V (H) \B, then we distinguish two cases. First, if y is a vertex in the R′

2-compass of W ′
2, there

are at most k+a such paths that intersect the set P ∪B and at most four paths that do not intersect
P ∪B (in the graph G′ − (P ∪B)) due to the flatness of W ′

2. If y is in V (H) but not a vertex in the
R′

2-compass of W ′
2, then, since by the definition of flatness pairs the perimeter of W ′

2 together with
the set P ∪B separate y from the R′

2-compass of W ′
2, every collection of internally vertex-disjoint

paths from vall to y in G′ should intersect the set {vQext} ∪ P ∪B, where Qext is the external bag of
Q. Therefore, in all cases, if y /∈ P ∪B, the maximum number of internally vertex-disjoint paths
from vall to y in G′ is at most k + a+ 4 < q. Therefore, y /∈ Ã. Hence, |Ã| ≤ k + a.

Let R′′
2 be the 5-tuple obtained by adding all vertices of G− S0 − P −H to the set in the first

coordinate of R′
2. Notice that since every path between G−H and H intersects P , (W ′

2,R
′′
2) is a

flatness pair of G− (P ∪B).

If Ã = ∅, then let Q̃ be an enhancement of Q on G − (P ∪ B). No vertex of (P ∪ B) \ S0 is
adjacent to vertices of at least q p-internal bags of Q̃. This means that the p-internal bags of Q̃ that
contain vertices adjacent to some vertex of P ∪B are at most (q − 1) · (k + a) = l.

Consider a family W = {W 1, . . . ,W l+1} of l+1 r2-subwalls of W ′
2 such that for every i ∈ [l+1],⋃

influenceR′′
2
(W i) is a subgraph of

⋃
{Q | Q is a p-internal bag of Q̃} and for every i, j ∈ [l + 1],

with i ≠ j, there is no internal bag of Q̃ that contains vertices of both V (
⋃
influenceR′′

2
(W i))

and V (
⋃

influenceR′′
2
(W j)). The existence of W follows from Proposition 4.6.8 and the fact that

r′2 ≥ f4.6.8(l + 1, r2, p).
The fact that the p-internal bags of Q̃ that contain vertices adjacent to some vertex of (P ∪B)\S0

are at most l implies that there exists an i ∈ [l + 1] such that no vertex of V (
⋃
influenceR′′

2
(W i)) is

adjacent, in G, to a vertex in (P ∪B) \ S0.
Let W2 :=W i, let W ∗

2 be the central (r2 − 2)-subwall of W2, and let DW2 be the graph obtained
from G− S0 after removing the perimeter of W2 and taking the connected component containing
W ∗

2 . Any path going from a vertex in H to a vertex in G−H intersects P . Thus, DW2 ⊆ H and
therefore, KsF is not a minor of DW2 . Moreover, W ∗

2 is a wall of DW2 of height r2 − 2 ≥ t+ 1, so
tw(DW2) > t = f4.6.3(sF)·r3. Therefore, if the algorithm runs Clique-or-twFlat of Proposition 4.6.3
with input (DW2 , r3, sF), it should obtain a set A of size at most a and a regular flatness pair (W3,R3)
of DW2 −A of height r3 whose R3-compass has treewidth at most t. Hence, the algorithm then runs
Step 2.

If Ã ≠ ∅, then recall that for every y ∈ Ã, y has q internally vertex-disjoint paths P1, ..., Pq

to different p-internal bags Q1, ..., Qq of Q in G. Hence, there is an enhancement Q̃y of Q on
G − (P ∪ B) such that Pi belongs to the bag Q̃i that extends Qi for i ∈ [q]. Therefore, y is
adjacent to vertices of at least q p-internal bags of Q̃y. Let S′ be a k-elimination set of G for
exc(F). According to Lemma 8.2.7, there is a set XS′ ⊆ V (G) such that G − XS′ ∈ exc(F) and
bidG−(P∪B),W ′

2
(XS′) ≤ k(k + 1)/2. Therefore, y ∈ XS′ due to Proposition 8.2.5 and the fact that

8.5. Solving Elimination Distance to exc(F) on tree decompositions 174

r′2 ≥ f8.2.5(1, sF , k(k + 1)/2). Let CS′ := G − XS′ . Recall that y is adjacent to q > k(k + 1)/2
p-internal bags of Q̃y. However, bidQ̃y

(XS′) ≤ bidG−(P∪B),W ′
2
(XS′) ≤ k(k + 1)/2. Therefore, y is

adjacent to CS′ , so y ∈ S′. Since for every y ∈ Ã, for every k-elimination set S′, we have y ∈ S′, it
implies that Ã is included in every k-elimination set of G for exc(F). Hence, if the algorithm runs
Step 3, it then recursively runs on the equivalent instance (G,S0 ∪ Ã, k).

We do not suppose that (G, k) is a yes-instance anymore. Let us show the correctness of Step 2.
Suppose that we obtained the wanted flatness pair (W3,R3) in Step 1. We obtain a 5-tuple R′

3 by
adding all vertices of G− (S0 ∪ V (CompassR3

(W3))) to the set in the first coordinate of R3. Since
(W3,R3) is a regular flatness pair of DW i −A whose R3-compass has treewidth at most t and since
the vertices added in R′

3 are only adjacent to the perimeter of W i, it follows that (W3,R
′
3) is a

regular flatness pair of G− (S0 ∪A) whose R′
3-compass has treewidth at most t.

If the algorithm applies the algorithm Homogeneous of Proposition 4.6.12 with (r4, a, a, d, t, G−
S0, A,W3,R

′
3) as input, it obtains a tight flatness pair (W4,R4) of G− (S0 ∪A) of height r4 that is

d-homogeneous with respect to 2A and is a W ∗-tilt of (W3,R
′
3) for some subwall W ′ of W . According

to Observation 4.6.5, (W4,R4) is regular.
Lemma 8.2.7 implies that for every k-elimination set S′ ⊇ S0, there is a set XS′ ⊇ S′ with

bidG−(S0∪A),W4
(XS′) ≤ k(k + 1)/2 and G−XS′ ∈ exc(F). We have that |A \X| ≤ |A| ≤ a, so the

algorithm can apply Find-Irrelevant-Vertex of Proposition 8.2.4 with input (k(k + 1)/2, a,G−
S0, A,W4,R4) to obtain a vertex v such that for every k-elimination set S′ ⊇ S0, G−XS′ ∈ exc(F)
if and only if G − (XS′ \ v) ∈ exc(F). It follows that (G,S0, k) and (G − v, S0, k) are equivalent
instances of Annotated Elimination Distance to exc(F).

Suppose now that (G,S0, k) is a no-instance. In Step 1, the algorithm either reports a no-instance
or finds a wall. In the latter case, the algorithm either goes to Step 2 or to Step 3. If it runs Step 2,
the previous paragraph justifies that the algorithm finds a vertex v such that (G − v, S0, k) is a
no-instance. If the algorithm runs Step 3, then it either reports a no-instance or recursively runs
on the instance (G − y, S0 ∪ Ã, k). If (G − y, S0 ∪ Ã, k) is yes-instance, then so is (G, k). Thus,
(G− y, S0 ∪ Ã, k). is a no-instance. Hence, the algorithm always report a no-instance. Therefore,
Theorem 8.4.1 follows.

Constructing the elimination ordering. Notice that the results of Theorem 8.3.1 and The-
orem 8.4.1 solve the decision version of Elimination Distance to H. Using the dynamic
programming algorithm of Section 8.5, we may find a k-elimination set X certifying that edH(G) ≤ k.
One may further determine, from X, the way the elimination ordering is applied on the vertices of
X as follows. Let torso(G,X) be the graph obtained from G[X] if, for every connected component
C of G − X, we make adjacent all pairs of vertices in NG(V (C)) in G[X]. Then we know that
td(torso(G,X)) ≤ k and the required elimination ordering is the same as the one for torso(G,X),
which can be computed by the algorithm of [256] in time 2O(k2) · n.

8.5 Solving Elimination Distance to exc(F) on tree decompositions

In this section, we prove Theorem 8.3.2.
Bodlaender, Gilbert, Kloks, and Hafsteinsson give a relation between the treedepth and the

treewidth of a graph in [36].

Proposition 8.5.1 ([36]). Let G be a graph with n vertices. Then tw(G) ≤ td(G) ≤ tw(G) · log n.

8.5. Solving Elimination Distance to exc(F) on tree decompositions 175

Since edexc(F)(G) ≤ td(G) ≤ tw(G) · log n and td(G) ≤ tw(G) · log n, Theorem 8.3.2 implies the
existence of an XP-algorithm for Elimination Distance to exc(F) parameterized by treewidth.

Corollary 8.5.2. For every finite collection of graphs F , there exists an algorithm that, given a
graph G of treewidth at most tw, computes edexc(F)(G) in time nOℓF (tw2).

According to Proposition 8.5.1 again, tw(G) ≤ td(G) for any graph G. Since we moreover have
edexc(F)(G) ≤ td(G), Theorem 8.3.2 implies the existence of an FPT-algorithm for Elimination
Distance to exc(F) parameterized by treedepth.

Corollary 8.5.3. For every finite collection of graphs F , there exists an algorithm that, given a
graph G of treedepth at most td, computes edexc(F)(G) in time 2OℓF (td2) · n.

Our algorithm takes inspiration from the dynamic programming algorithm of Reidl, Rossmanith,
Villaamil, and Sikdar [256] for treedepth.

Proposition 8.5.4 ([256]). Given a graph G, a tree decomposition of G of width w, and an integer
k, there is an algorithm that decides whether td(G) ≤ k in time 2O(k·w) · n.

If F = {K1}, elimination distance reduces to treedepth. Recall that Elimination Distance
to {K1} is the problem asking whether td(G) ≤ k, which admits an algorithm in time 2O(k·w) · n
because of Proposition 8.5.4. Therefore, we may assume throughout this section that F is non-trivial
in order to have the useful property that a graph with a single vertex belongs to H = exc(F). This
will simplify the algorithm. Moreover, the elimination distance to exc(F) of a disconnected graph
is the maximum of the elimination distance of its connected components, and therefore, we may
assume that the considered graphs and boundaried graphs are connected.

Just as in Section 7.6, we use the representative-based framework introduced in [24], that we
combine here with ideas from [256], to create our dynamic programming algorithm.

In order to describe our dynamic programming algorithm, we have to describe its corresponding
tables, encode “partial elimination sets”, and show how to calculate this information using a nice tree
decomposition of the input graph. For this reason, in Subsection 8.5.1 we define annotated trees.
Annotated trees are labeled rooted trees that come together with a boundaried graph such that
the annotated nodes of the tree are mapped to the vertices of the boundaried graph with the same
label. This notion is used in Subsection 8.5.2 in order to define the characteristic of a boundaried
graph, which intuitively encodes how partial elimination trees can be present inside the boundaried
graph. Forget, introduce, and join procedures that shall be used in the dynamic program on nice
tree decompositions are presented in Subsection 8.5.3. In Subsection 8.5.4, we present the dynamic
program and prove its correctness. We conclude this section with Subsection 8.5.5, where we show
that boundaried graphs with the same characteristic can be exchanged, i.e., give graphs of the same
elimination distance to F when “glued” to the same boundaried graph. This latter result will also be
used in Section 8.6.

Some additional notations. We denote by Im(f) the image of a function f and by Ker(f) its
kernel, i.e., the elements whose image by f is 0. (i↔ j) denotes the transposition of i and j, for i, j
in some set I ⊆ N.

For every q ∈ V (T), we set G(T,β,r)
q = G[β(Tq)]. We may write Gq instead of G(T,β,r)

q when there
is no ambiguity about (T, β, r).

8.5.1 Annotated trees

We proceed to define annotated trees, which we will use to codify the tables of our dynamic program.

8.5. Solving Elimination Distance to exc(F) on tree decompositions 176

Annotated trees. An annotated tree is a tuple T̂ = (T, r, h,R, f), where (T, r) is a rooted tree,
h : V (T)→ N, R = (R,B, ϕ) is a boundaried graph, and f : [|B|]→ V (T). See Figure 8.1 for an
illustration of an annotated tree. We stress that different integers in [|B|] can be mapped, via f , to
the same node of T . The trivial annotated tree, denoted by 1̂, is (T, r, h,1, f) where T is the rooted
tree with a single node r, h is the constant function 0, 1 is the boundaried graph with one single
vertex that is also part of the boundary, and f maps 1 to r. The height of an annotated tree is
h(r). Given an annotated tree T̂ = (T, r, h, (R,B, ϕ), f), we refer to (T, r) as its rooted tree. Given
an annotated tree T̂ = (T, r, h, (R,B, ϕ), f) and a permutation σ of [|B|], we use σ(T̂) to denote
(T, r, h, (R,B, σ ◦ ϕ), f ◦ σ−1).

4

2

6

7

5 1, 3

4
2

6
7

5

1
3

Figure 8.1: An annotated tree made of a rooted tree (left) and a boundaried graph (right). The
numbers in the left figure correspond to the pre-images of f for the nodes of V (T) and the numbers
on the right figure correspond to the images of ϕ. The function h that gives a value to each node of
the tree is not represented.

We also define the following operations on annotated trees, which will be used to combine the
tables of the dynamic programming algorithm. The first one is inspired by a similar operation
introduced in [256].

Crop operation. Given an annotated tree T̂ = (T, r, h, (R,B, ϕ), f), the crop operation, denoted
by crop(T̂), outputs the annotated tree obtained from T̂ by iteratively removing the leaves of T that
are not in Im(f). Given a set A of annotated trees, crop(A) :=

⋃
T̂∈A crop(T̂).

Representation operation. Given an annotated tree T̂ = (T, r, h, (R,B, ϕ), f), the representation
operation, denoted by rep(T̂), outputs the annotated tree T̂ ′ = (T, r, h, (R′, B, ϕ), f) constructed
as follows. For each v ∈ Im(f), let Bv := ϕ−1 ◦ f−1(v), let σv : f−1(v) → [|Bv|] be a bijective
function, and let Rv be the union of the connected components of R containing Bv. If there is
a node v ∈ Im(f) such that Rv /∈ exc(F), then R′ := KsF . Otherwise, for each v ∈ Im(f), let
(R′

v, Bv, σv ◦ ϕ|Bv) ∈ R
|Bv |
ℓF

be the representative of (Rv, Bv, σv ◦ ϕ|Bv) for the equivalence relation
≡ℓF . Then R′ =

⋃
v∈Im(f)R

′
v. Intuitively, if there is a node v ∈ Im(f) such that Rv /∈ exc(F), to

store this information it suffices to set R′ := KsF , while otherwise, we keep for each Rv (in fact, for
the boundaried version of Rv) its representative.

An example of the crop and representation operation is give in Figure 8.2. Observe that rep(1̂) = 1̂

since this is a minimum-sized representative and since we make the assumption that F is non-trivial.
Given a set A of annotated trees, rep(A) :=

⋃
T̂∈A rep(T̂).

8.5. Solving Elimination Distance to exc(F) on tree decompositions 177

4

2

6

7

5 1, 3

4
2

6
7

5

1
3

Figure 8.2: The crop and representation operation applied to the annotated tree of Figure 8.1. The
unlabeled leaves of the tree are iteratively removed. A representative of each component attached to
the boundary of the boundaried graph is kept.

Filter operation. Given a set A of annotated trees and a positive integer k, the filter operation,
denoted by filterk, outputs the set of annotated trees in A with height at most k.

Note that the crop, representation, and filter operations are commutative since they do not
modify the same objects. For more simplicity, we define Mk = filterk ◦ rep ◦ crop. We stress that
Mk is an operation acting on sets of annotated trees.

8.5.2 Characteristic of a boundaried graph

In this subsection we define the characteristic of a boundaried graph that shall be computed by the
dynamic program in Subsection 8.5.4. This characteristic will consist of a set of annotated trees
with some additional properties. In order to present this definition, we first define the complete
characteristic of a boundaried graph, that is a slightly more complicated way to see F-elimination
trees with some distinguished nodes.

Complete characteristic of a boundaried graph. Given a connected boundaried graph
G = (G,X, ρ), the complete characteristic of G, denoted by char∗(G), is the set of annotated trees
T̂ = (T, r, h,R, f) such that

• |Im(f)| = |X|,

• there exists a function χ : V (T)→ 2V (G) such that (T, χ, r) is an F -elimination tree of G and
for x ∈ X, x ∈ χ ◦ f ◦ ρ(x),

• there exists an isomorphism σ between R and (
⋃

v∈Im(f)G[χ(v)], X, ρ), and

• h is the height function heightT,r.

(χ, σ) is called the witness pair of T̂ with respect to G. Since (T, χ, r) is an F -elimination tree,
it is straightforward to see that for any boundaried graph G with underlying graph G, the minimum
height of an annotated tree in char∗(G) is edexc(F)(G).

Characteristic of a boundaried graph. Let G = (G,X, ρ) be a boundaried graph and k be an
integer. The characteristic of G, denoted by chark(G), is the setMk(char

∗(G)).

8.5. Solving Elimination Distance to exc(F) on tree decompositions 178

Lemma 8.5.5. Given a boundaried graph G = (G,X, ρ) with X ̸= ∅ and an integer k, the elimination
distance of G to exc(F) is the minimum height of an annotated tree in chark(G) if edexc(F)(G) ≤ k,
and chark(G) = ∅ otherwise.

Proof. Let G = (G,X, ρ) be a boundaried graph with X ̸= ∅ and let T̂ ∈ char∗(G). Since X ̸= ∅,
the crop operation will not remove the root of the underlying tree of T̂ . Moreover, neither the crop
operation nor the representation operation change the height of the nodes that stay in the tree. So
the height of rep ◦ crop(T̂) is equal to the height of T̂ .

We now prove that the size of the characteristic of a boundaried graph is upper-bounded by a
function of its boundary size and k.

Lemma 8.5.6. There exists a function f8.5.6 : N2 → N such that, given two integers k and w,
if G = (G,X, ρ) is a boundaried graph with |X| ≤ w, then |chark(G)| ≤ f8.5.6(w, k). Moreover,
f8.5.6(w, k) = 2OℓF (w·k+w logw).

Proof. Let T̂ = (T, r, h,R, f) be an annotated tree in chark(G). Let l := |X|. Let x1, ..., xl be an
ordering of the nodes in Im(f) such that if xi ∈ AncT,r(xj), then i < j. Without loss of generality,
we suppose that f(i) = xi for i ∈ [l] (this is true up to a permutation of [l]). Let fi be the restriction
of f to [i], let Ti be the tree obtained from T by iteratively removing the leaves not in Im(fi), and let
hi be the restriction of h to V (Ti). Note that Im(hi) ⊆ [0, k] and Ti is a tree with at most i leaves
because the leaves of T are in Im(fi) and |Im(fi)| = i. So Ti has at most i · (k + 1) nodes.

We set (T0, h0, f0) to be the empty triple. Let us bound the number of triples (Ti, hi, fi) that
can be constructed from (Ti−1, hi−1, fi−1) for i ∈ [l]. For i ∈ [l], we can construct (Ti, hi, fi) from
(Ti−1, hi−1, fi−1) by choosing a node of Ti−1 (if it exists) and adding a path of length at most k
with leaf xi (all nodes in this path are new, except from xi). We consider the function hi that has
the same values as hi−1 on V (Ti−1) and values in [0, k] on the new path such that the value of hi
strictly increases from a leaf to the root r. Observe that the value of hi on the new path is a subset
of 2[k+1]. Therefore, the number of different triples (T, h, f) is at most

w∏
i=1

i(k + 1)2k+1 = w!(k + 1)w2w(k+1) ≤ 2w logw+w log(k+1)+w(k+1).

Since T̂ = (T, r, h,R, f) is an annotated tree in chark(G), it holds that R is the union of l represen-
tatives Ri ∈ Rwi

ℓF
for i ∈ [l] where l = |Im(f)|, such that

∑l
i=1wi = l ≤ w. By Proposition 4.4.2,

|Rwi
ℓF
| = 2OℓF (wi logwi). So the number of ways to construct R is bounded by

l∏
i=1

2OℓF (wi logwi) = 2OℓF (
∑l

i=1 wi logw) = 2OℓF (w logw).

Hence, we obtain the desired result.

8.5.3 The procedures

We define here the procedures that will be used in the dynamic programming algorithm. Given a
nice tree decomposition T of a graph G, we want to define forget, introduce, and join procedures to
obtain the characteristic of Gv for each internal node v in T , given the characteristics of Gv′ for
each child v′ of v. Before defining the procedures for the characteristics, we define the procedures
for the complete characteristics.

8.5. Solving Elimination Distance to exc(F) on tree decompositions 179

Forget procedure

With the forget procedure, given the characteristic of a boundaried graph, we want to compute the
characteristic of the boundaried graph obtained by removing a vertex from the boundary.

Complete forget procedure. The complete forget procedure applied on the annotated tree
(T, r, h,R, f) corresponds to removing the vertex with the largest label from the boundary of R. More
formally, given an annotated tree T̂ = (T, r, h, (R,B, ϕ), f), the complete forget procedure, denoted by
forget∗(T̂), outputs the annotated tree T̂ ′ = (T, r, h, (R,B′, ϕ|B′), f |[|B′|])), where B′ = B \ ϕ−1(|B|).
Given a set A of annotated trees, forget∗(A) :=

⋃
T̂∈A forget∗(T̂).

Lemma 8.5.7. Let G be a graph, (T, β, r) be a nice tree decomposition of G, v be a forget node of
T with child v′ and forgotten vertex x, ρ : β(v)→ [|β(v)|] be a bijection, and ρ′ := ρ ∪ (x 7→ |β(v′)|).
Let A := char∗(Gv, β(v), ρ) and A′ := char∗(Gv′ , β(v

′), ρ′). Then A = forget∗(A′).

Proof. Let T̂ ∈ forget∗(A′). There exists T̂ ′ ∈ A′ with witness pair (χ′, σ′) such that forget∗(T̂ ′) = T̂ .
Let (T, r) (resp. (T ′, r)) be the rooted tree of T̂ (resp. T̂ ′). Note that heightT,r = heightT ′,r. Thus, it
is easy to see that (χ′, σ′) also witnesses that T̂ ∈ A. Conversely, let T̂ = (T, r, h, (R,X, ϕ), f) ∈ A
with witness pair (χ, σ). Let u := χ−1(x), w := σ−1(x), and t = |X|+ 1. Let T̂ ′ := (T, r, h, (R,X ∪
{w}, ϕ∪ (w 7→ t)), f ∪ (t 7→ u)). Then forget∗(T̂ ′) = T̂ and the pair (χ, σ) also witnesses that T̂ ′ ∈ A′,
so T̂ ∈ forget∗(A′).

Forget procedure. Given an annotated tree T̂ , the forget procedure, denoted by forget(T̂), outputs
rep◦crop◦forget∗(T̂). See Figure 8.3 for an illustration. Note that we do not apply the filter operation
since the height does not change under the forget procedure. Given a set A of annotated trees,
forget(A) outputs

⋃
T̂∈A forget(T̂).

4

2

6 5 1, 3

4
2

6

5

1
3

Figure 8.3: The forget procedure applied to the annotated tree of Figure 8.1.

Lemma 8.5.8. Let G be a graph, k be an integer, (T, β, r) be a nice tree decomposition of G,
v be a forget node of T with child v′ and forgotten vertex x, ρ : β(v) → [|β(v)|] be a bijection,
and ρ′ := ρ ∪ (x 7→ |β(v′)|). Let A := chark(Gv, β(v), ρ) and A′ := chark(Gv′ , β(v

′), ρ′). Then
A = forget(A′).

Proof. Let D := char∗(Gv, β(v), ρ) and D′ := char∗(Gv′ , β(v
′), ρ′). According to Lemma 8.5.7,

D = forget∗(D′). The representation and the crop operation do not change the labels of an annotated
tree, while the complete forget procedure only changes the labels of the input annotated tree and it

8.5. Solving Elimination Distance to exc(F) on tree decompositions 180

does not change its height. Thus, rep◦ forget∗ = rep◦ forget∗ ◦ rep, crop◦ forget∗ = crop◦ forget∗ ◦crop,
and filterk ◦ forget∗ = forget∗ ◦ filterk. Since the three operations are commutative, it follows that
Mk ◦ forget∗ = rep ◦ crop ◦ forget∗ ◦Mk = forget ◦Mk. Hence, A =Mk(D) =Mk ◦ forget∗(D′) =
forget(Mk(D′)) = forget(A′).

Introduce procedure

With the introduce procedure, given the characteristic of a boundaried graph and a set I of labels
from the boundary, we want to compute the characteristic of the boundaried graph obtained by
adding a new vertex to the boundary, which is adjacent to the nodes with a label in I.

Diamond-introduce operation. Let (T, r) be a rooted tree, w be an integer, f : [w]→ V (T) be
a function, and I be a subset of [w]. (T, r, f)♢intrI is defined as the set of all pairs (T ′, r′, f ′) such
that:

1. (T ′, r′) is a rooted tree,

2. V (T ′) = V (T) ∪ {u} for some new node u,

3. f ′ = f ∪ (w + 1 7→ u),

4. if v1 ∈ V (T) and v2 ∈ AncT,r(v1), then v2 ∈ AncT ′,r′(v1),

5. if v ∈ f(I), then v ∈ AncT,r(u) ∪ DescT,r(u), and

6. T ′
u ∩ f(I) ̸= ∅, or u ∈ Leaf(T ′, r′) and ParT ′,r′(u) ∈ f(I).

This operation corresponds to introducing a new node u in T so that u has ancestor-descendant
relations with the nodes labeled by a label in I. The last item, which states that u either has
a descendant in f(I) or is a leaf and its parent belongs to f(I), is a property needed to ensure
connectivity and allows the application of the crop operation in Lemma 8.5.9 and Lemma 8.5.10.

Let (T, r) be a rooted tree, K be a subset of V (T), and h : K → N. We define the function
updateT,r,K(h) : V (T)→ N, that maps every v ∈ V (T) to the integer

updateT,r,K(h)(v) = max{h(v), 1 + max
c∈Ch(v)

{updateT,r,K(h)(c)}},

where we suppose that h(v) = 0 if v /∈ K and updateT,r,K(h)(c) = −1 if v is childless. Let (T ′, r′) be
a rooted tree with V (T ′) = K and such that the ancestor-descendant relationship between the nodes
of K is the same in (T, r) and (T ′, r′). Then we can observe that updateT,r,K(heightT ′,r′) = heightT,r.

Complete introduce procedure. Let T̂ = (T, r, h, (R,X, ϕ), f) be an annotated tree and let I
be a set of labels in [|X|]. The complete introduce procedure corresponds to adding a new vertex
v to the boundary X of the boundaried graph (R,X, ϕ) of an annotated tree (T, r, h, (R,X, ϕ), f),
such that v is adjacent to the nodes with a label in I and it is either mapped, via f ◦ϕ, to an already
existing leaf of T (item (a) below) or to a new node of T (item (b) below).

More formally, given an annotated tree T̂ = (T, r, h, (R,X, ϕ), f), a set I ⊆ [|X|] of labels, the
complete introduce procedure, denoted by intr∗(T̂ , I), outputs a set A of annotated trees constructed
as follows. For each (T ′, r′, f ′) ∈ (T, r, f)♢intrI, let w = |Im(f ′)|, u := f ′(w), and u′ := ParT ′,r′(u)
(or u′ := u if u is the root). We add a new vertex v to R and we set X ′ := X ∪ {v} and
ϕ′ := ϕ ∪ (v 7→ w). Let (Ru′ , Xu′ , ϕu′) be the part of the representative R corresponding to u′, as

8.5. Solving Elimination Distance to exc(F) on tree decompositions 181

defined for the representation operation (i.e., Ru′ is the union of the connected components of R
containing ϕ−1 ◦ f−1(u′), Xu′ = ϕ−1 ◦ f−1(u′), ϕu′ = σu′ ◦ ϕ|Xu′ and σu′ : f−1(u′) → [|Xu′ |] is a
bijective function).

(a) If h(u′) = 0: We set f ′′ := f ∪ (w 7→ u′) and R′ := (V (R)∪ {v}, E(R)∪E({v}, ϕ−1(I)∩Xu′))
and we add (T, r, h, (R′, X ′, ϕ′), f ′′) to A if the connected component of R′ containing v belongs
to exc(F).

(b) If u′ /∈ Im(f), or if u′ ∈ Im(f) and |V (Ru′)| = 1: We set R′ := (V (R) ∪ {v}, E(R)) and
h′ := updateT ′,r′,V (T)(h) and we add (T ′, r′, h′, (R′, X,′ ϕ′), f ′) to A.

Note that this is not a dichotomy: if both criteria are fulfilled, then we apply both cases. Given a
set A of annotated trees, we define intr∗(A, I) :=

⋃
T̂∈A intr∗(T̂ , I).

Lemma 8.5.9. Let G be a graph, (T, β, r) be a nice tree decomposition of G, v be an introduce node of
T with child v′ and introduced vertex x, ρ′ : β(v)→ [|β(v)|] be a bijection, ρ := ρ′∪ (x 7→ |β(v)|), and
I := ρ(NGv(x)). Let A := char∗(Gv, β(v), ρ) and A′ := char∗(Gv′ , β(v

′), ρ′). Then A = intr∗(A′, I).

Proof. Let T̂ = (T, r, h, (R,X, ϕ), f) ∈ intr∗(A′, I). There is T̂ ′ = (T ′, r′, h′,R′, f ′) ∈ A′ with witness
pair (χ′, σ′) such that T̂ ∈ intr∗(T̂ ′, I). Let χ := χ′∪(u 7→ x) and σ = σ′∪(w → x) where u := f(|X|)
and w := ϕ−1(|X|).

Suppose that we are in case (a). Thus, h = h′ = heightT ′,r′ = heightT,r. By the construction
of R from R′, since x is only adjacent in Gv to the nodes with a label in I, σ is an isomorphism
between R and (

⋃
w∈Im(f)Gv[χ(w)], β(v), ρ). Moreover, T = T ′ so (T, χ, r) is an F -elimination tree

of Gv. Hence, (χ, σ) witnesses that T̂ ∈ A.
Suppose now that we are in case (b). Notice that in this case

h = updateT,r,V (T ′)(h
′) = updateT,r,V (T ′)(heightT ′,r′) = heightT,r.

It is easy to see that σ is an isomorphism between R and (
⋃

w∈Im(f)Gv[χ(w)], β(v), ρ). Moreover,
as T̂ ∈ intr∗(T̂ ′, I), it holds that (T, r, f) ∈ (T ′, r′, f ′)♢intrI and therefore (T, r) keeps the ancestor-
descendant relations from (T ′, r′) (item 4 of the ♢intr operation), while adding ancestor-descendant
relations between the new node of T and the nodes labeled by I (item 5), and guaranteeing the
connectivity of Gv[χ(Tw)] for each node w ∈ V (T) (item 6). Hence, (χ, σ) witnesses that T̂ ∈ A.

Conversely, let T̂ = (T, r, h,R, f) ∈ A with witness pair (χ, σ). If χ(χ−1(x)) = {x}, then let
T ′ be the tree obtained from T by removing u := χ−1(x) and adding edges between the parent
of u and the children of u, if any. Otherwise, set T ′ := T . Let h′ be the height function of T ′

and r′ be the root of T ′. Let (R′, X ′, ϕ′) be the boundaried graph obtained from R by removing
σ−1(x). Let f ′ := f |X′ . Then the functions obtained from χ and σ after restricting their image
to V (G) \ x witness that T̂ ′ = (T ′, r′, h′, (R′, X ′, ϕ′), f ′) ∈ A′. To show that T̂ ∈ intr∗(T̂ ′, I), the
only non-trivial part is to prove that either Tu ∩ f(I) ̸= ∅, or u ∈ Leaf(T, r) and ParT,r(u) ∈ f(I)
(item 6 of the ♢intr operation). Suppose that Tu ∩ f(I) = ∅. We know that x is exactly adjacent to
ρ−1(I) in Gv since it is an introduce vertex. Moreover, (T, χ, r) is an F-elimination tree of Gv, so
Gv[χ(Tw)] is connected for all w ∈ V (T). In particular, Gv[χ(Tu)] is connected, but x ∈ Gv[χ(Tu)]
and ρ−1(I) /∈ Gv[χ(Tu)] because Tu ∩ f(I) = ∅. Thus, we must have Gv[χ(Tu)] = {x}, and so
u ∈ Leaf(T, r). Since Gv[χ(TParT,r(u))] is also connected, it implies that χ(ParT,r(u)) and x are
connected, so ParT,r(u) ∈ f(I). Hence, T̂ ∈ intr∗(A′, I).

8.5. Solving Elimination Distance to exc(F) on tree decompositions 182

Introduce procedure. Given an annotated tree T̂ , a set I of labels, and a positive integer k,
the introduce procedure, denoted by intrk(T̂ , I), outputs filterk ◦ rep ◦ intr∗(T̂ , I). Examples of the
introduce procedure can be found in Figure 8.4. Note that we do not apply the crop operation,
since the complete introduction procedure applied to a cropped annotated tree outputs a cropped
annotated tree. Given a set A of annotated trees, intrk(A, I) outputs

⋃
T̂∈A intrk(T̂ , I).

4

2

6, 8

7

5 1, 3

4
2

6
8

751

3
4

8

2

7

5 1, 3

6

4
2

8
6

751

3

Figure 8.4: Two annotated trees obtained from the introduce procedure applied to the annotated
tree of Figure 8.1 with I = {2, 6}.

Lemma 8.5.10. Let G be a graph, (T, β, r) be a nice tree decomposition of G, v be an introduce node
of T with child v′ and introduced vertex x, ρ′ : β(v)→ [|β(v)|] be a bijection, ρ := ρ′ ∪ (x 7→ |β(v)|),
and I := ρ(NGv(x)). Let k be an integer, A := chark(Gv, β(v), ρ), and A′ := chark(Gv′ , β(v

′), ρ′).
Then A = intrk(A′, I).

Proof. Let D := char∗(Gv, β(v), ρ) and D′ := char∗(Gv′ , β(v
′), ρ′). According to Lemma 8.5.9,

D = intr∗(D′, I).
The crop operation acts on the tree T of an annotated tree (T, r, h,R, f) to remove the leaves

that are not in Im(f). By item 6 of the ♢intr operation, the complete introduce procedure may only
add a new node in T above a node in Im(f), or add a leaf to T with a parent node in Im(f). Hence,
the new node may only be added to the cropped tree. Since the new vertex is also in the boundary,
it implies that, given a set C of annotated trees, crop ◦ intr∗(C, I) = intr∗(crop(C), I).

The representation operation acts on R to replace it by a boundaried graph whose connected
components are representatives of the connected components of R. The complete introduce procedure
adds a new vertex in the boundary of R that is adjacent to boundary vertices only. Hence,
rep ◦ intr∗(C, I) = rep ◦ intr∗(rep(C), I).

Moreover, the complete introduce procedure can only increase the height of an annotated tree.
Therefore, filterk ◦ intr∗(C, I) = filterk ◦ intr∗(filterk(C), I).

Since the three operations are commutative, we have that Mk ◦ intr∗(C, I) = filterk ◦ rep ◦
intr∗(Mk(C), I) = intrk(Mk(C), I). Therefore, A =Mk(D) =Mk◦intr∗(D′, I) = intrk(Mk(D′), I) =
intrk(A′, I).

For the introduce procedure, we finally prove that it can generate a bounded number of annotated
trees.

Lemma 8.5.11. Let w and k be two positive integers, let G be a w-boundaried graph, let I ⊆ [w],
and let T̂ ∈ chark(G). Then |intrk(T̂ , I)| = O(w · k).

Proof. Let T̂ = (T, r, h,R, f). Let us show that |(T, r, f)♢intrI| = O(w ·k). Since Leaf(T, r) ⊆ Im(f),
T has at most w leaves. Thus, T has at most w · (k + 1) nodes. The ♢intr operation consists in
adding a new node to T , either as the new parent of a node, or as a new leaf of T . Therefore,
|(T, r, f)♢intrI| ≤ 2w · (k + 1).

8.5. Solving Elimination Distance to exc(F) on tree decompositions 183

Let (T ′, r′, f ′) ∈ (T, r, f)♢intrI. In the introduction procedure, we obtain at most two annotated
trees from (T ′, r′, f ′). Therefore, |intrk(T̂ , I)| ≤ 4w · (k + 1).

Join procedure

With the join procedure, given the characteristic of two boundaried graphs G1 and G2 that are
compatible, we want to compute the characteristic of G1

⊕
G2.

Diamond-join operation. Let (T1, r1) and (T2, r2) be two rooted trees, w be an integer, and
f1 : [w]→ V (T1) and f2 : [w]→ V (T2) be two functions such that {f−1

1 (u) | u ∈ Im(f1)} = {f−1
2 (u) |

u ∈ Im(f2)}. Thanks to this equality, we can identify f1 with f2 and say that V (T1)∩V (T2) = Im(f1).
We define (T1, r1, f1)♢join(T2, r2, f2) as the set of all pairs (T, r, f) such that:

1. f = f1 = f2,

2. (T, r) is a rooted tree,

3. V (T) = V (T1) ∪ V (T2),

4. for i ∈ {1, 2}, if u ∈ V (Ti) and v ∈ AncTi,ri(u), then v ∈ AncT,r(u), and

5. for every v ∈ Leaf(T, r) and every w ∈ AncT,r(v), if V (vTw) ∩ Im(f) = ∅, then there is an
i ∈ {1, 2} such that vTw = vTiw.

The last item, which states that a branch of T that does not intersect Im(f) either belongs to T1
or T2, is a property needed to ensure connectivity and allows the application of the crop operation
in Lemma 8.5.12 and Lemma 8.5.13.

Let (T, r) be a rooted tree, and for i ∈ {1, 2}, letKi ⊆ V (T) and hi : Ki → N. updateT,r,K1,K2
(h1, h2)

is the function that maps v ∈ V (T) to the maximum of h1(v), h2(v), and maxc∈Ch(v){1+updateT,r,K1,K2
(h1, h2)(c)},

when they are defined. For i ∈ {1, 2}, let (Ti, ri) be a rooted tree with V (Ti) = Ki and such that
the ancestor-descendant relationship between the nodes of Ki is the same in T and Ti. Then we can
observe that updateT,r,K1,K2

(heightT1,r1 , heightT2,r2) = heightT,r.

Complete join procedure. The join procedure corresponds to “merging” two annotated trees
whose intersection is exactly their boundary. More formally, given two annotated trees T̂1 =
(T1, r1, h1,R1, f1) and T̂2 = (T2, r2, h2,R2, f2), the complete join procedure, denoted by join(T̂1, T̂2),
outputs a set A of annotated trees constructed as follows. Initially, A is empty. If R1 and R2 are
compatible (i.e., such that {f−1

1 (u) | u ∈ Im(f1)} = {f−1
2 (u) | u ∈ Im(f2)}) and such that Ker(h1 ◦

f1) = Ker(h2◦f2), then for (T, r, f) ∈ (T1, r1, f1)♢join(T2, r2, f2), let h := updateT,r,V (T1),V (T2)(h1, h2).
Let (R,X, ρ) := R1

⊕
R2. If each connected component of R belongs to exc(F), then we add

(T, r, h,R1
⊕

R2, f) to A. Given two sets A1 and A2 of annotated trees, we set join∗(A1,A2) :=⋃
T̂1∈A1,T̂2∈A2

join∗(T̂1, T̂2).

Lemma 8.5.12. Let G be a graph, (T, β, r) be a nice tree decomposition of G, v be a join node
of T with children v1 and v2, and ρ : β(v) → [|β(v)|] be a bijection. Let A := char∗(Gv, β(v), ρ),
A1 := char∗(Gv1 , β(v1), ρ), and A2 := char∗(Gv2 , β(v2), ρ). Then A = join∗(A1,A2).

Proof. Let T̂ = (T, r, h, (R,X, ϕ), f) ∈ join∗(A1,A2). There is T̂1 = (T1, r1, h1,R1, f1) ∈ A1 and
T̂2 = (T2, r2, h2,R2, f2) ∈ A2 such that T̂ ∈ join∗(T̂1, T̂2) with witness pair (χ1, σ1) and (χ2, σ2),
respectively, such that χ1|Im(f) = χ2|Im(f) and σ1|X = σ2|X . Note that

h := updateT,r,V (T1),V (T2)(h1, h2) = updateT,r,V (T1),V (T2)(heightT1,r1 , heightT2,r2) = heightT,r.

8.5. Solving Elimination Distance to exc(F) on tree decompositions 184

Let (χ, σ) = (χ1 ∪ χ2, σ1 ∪ σ2).
It is easy to see that σ is an isomorphism between R and (

⋃
w∈Im(f)G[χ(w)], β(v), ρ). If

uv ∈ E(Gv), since Gv1 − β(v) and Gv2 − β(v) are not connected, then there is i ∈ {1, 2} such that
χi(u) ∈ AncT,r(χi(v)) ∪ DescT,r(χi(v)) holds, so χ(u) ∈ AncT,r(χ(v)) ∪ DescT,r(χ(v)) due to item 4
of the ♢join operation.

Moreover, item 5 of the ♢join operation ensures the connectivity of Gv[χ(Tw)] for each w ∈ V (T).
Indeed, let i ∈ {1, 2} be such that w ∈ V (Ti). Suppose towards a contradiction that Gv[χ(Tw)] is not
connected. Note that it implies that w /∈ Im(f), because Im(f) ⊆ V (T1)∪V (T2) and (T1, χ1, r1) and
(T2, χ2, r2) are F -elimination trees of Gv1 and Gv2 , respectively, so Gv1 [χ1((T1)w)] and Gv2 [χ2((T2)w)]
are connected and therefore Gv[χ(Tw)] would be connected. We assume that w is a minimal node such
that Gv[χ(Tw)] is not connected, i.e., for every u ∈ V (Tw)\{w}, Gv[χ(Tu)] is connected. Hence, there
is u ∈ ChT,r(w) such that χ(w) is not connected to Gv[χ(Tu)]. So V (Tu)∪V (Ti) = ∅, since otherwise,
the connectivity of Gvi [χi((Ti)w)] would imply the connectivity of χ(w) with Gv[χ(Tu)]. Thus, there
is an x ∈ Leaf(T, r) such that u ∈ AncT,r(x), and therefore w ∈ AncT,r(x), and V (xTw)∩ Im(f) = ∅.
So, according to item 5 of the ♢join operation, there is i ∈ {1, 2} such that xTw = xTiw. This
contradicts the fact that w ∈ V (Ti) \ Im(f) and V (Tu) ⊆ V (Tj) \ Im(f) where {i, j} = {1, 2}. Thus,
(T, χ, r) is an F-elimination tree of Gv. Therefore, (χ, σ) witnesses that T̂ ∈ A.

Conversely, let T̂ ∈ A with witness pair (χ, σ). Let (χ1, σ1) and (χ2, σ2) be the co-restrictions of
(χ, σ) to Gv1 and Gv2 , respectively.

Let T1 be the tree obtained from T by removing the nodes not in Im(χ1) and adding edges
between the parent and children of each removed node. Let r1 be the root of T1 and h1 := heightT1,r1 .
Let R1 be obtained from R by removing the vertices not in Im(σ1). Then it is easy to see
that T̂1 = (T1, r1, h1,R1, f) belongs to B1 with witness pair (χ1, σ1). We construct similarly
T̂2 = (T2, r2, h2,R2, f) ∈ B2 with witness pair (χ2, σ2).

Moreover, we claim that T̂ ∈ join∗(T̂1, T̂2). To prove this claim, the less trivial part is to
show that T respects item 5 of the ♢join operation. Let x ∈ Leaf(T, r) and w ∈ AncT,r(x) such
that V (xTw) ∩ Im(f) = ∅. Suppose towards a contradiction that V (xTw) ∩ V (T1) ̸= ∅ and
V (xTw)∩V (T2) ̸= ∅. Thus, there exist u1 ∈ V (xTw)∩V (T1)\Im(f) and u2 ∈ V (xTw)∩V (T2)\Im(f).
Without loss of generality, suppose that x ∈ V (T1). We take such a node u2 that is closest to x
and u1 to be the node just before u2 in the path from x to u2. Since V (xTu1) ⊆ V (T1) \ Im(f) and
u2 ∈ V (T2) \ Im(f), χ(u2) and χ(xTu1) are not connected. This contradicts the fact that Gv[χ(Tu2)]
is connected. Therefore, T̂ ∈ join∗(T̂1, T̂2), which implies that T̂ ∈ join∗(A1,A2).

Join procedure. Given two annotated trees T̂1 and T̂2, the join procedure, denoted by join(T̂1, T̂2),
outputs filterk ◦ rep ◦ join∗(T̂1, T̂2). See Figure 8.5 for an example. Note that we do not apply the
crop operation since joining two cropped annotated trees gives a cropped annotated tree. Given two
sets A1 and A2 of annotated trees, join(A1,A2) outputs

⋃
T̂1∈A1,T̂2∈A2

join(T̂1, T̂2).

Lemma 8.5.13. Let G be a graph, (T, β, r) be a nice tree decomposition of G, v be a join
node of T with children v1 and v2, and ρ : β(v) → [|β(v)|] be a bijection. Let k be an inte-
ger, A := chark(Gv, β(v), ρ), A1 := chark(Gv1 , β(v1), ρ), and A2 := chark(Gv2 , β(v2), ρ). Then
A = joink(A1,A2).

Proof. Let B := char∗(Gv, β(v), ρ), B1 := char∗(Gv1 , β(v1), ρ), and B2 := char∗(Gv2 , β(v2), ρ). Ac-
cording to Lemma 8.5.12, B = join∗(B1,B2).

Let T̂ = (T, r, h,R, f) ∈ B, T̂1 = (T1, r1, h1,R1, f1) ∈ B1, and T̂2 = (T2, r2, h2,R2, f2) ∈ B2,
such that T̂ ∈ join∗(T̂1, T̂2). The complete join procedure joins R1 and R2 to obtain R, without
modifying their boundary nor deleting vertices or edges, so given two sets of annotated trees C1 and
C2, rep ◦ join∗(C1, C2) = rep ◦ join∗(rep(C1), rep(C2)).

8.5. Solving Elimination Distance to exc(F) on tree decompositions 185

4

2

6

7

5 1, 3

4
2

6
7

5
1

3

7 4

2

6 5 1, 3

4
2

6
7

5
1

3

4

7

2

6

5 1, 3

4
2

6
7

5

1
3

Figure 8.5: An annotated tree (below) obtained from the join procedure applied to the two annotated
trees above.

The procedure can only increase the height of annotated trees, so filterk ◦ join∗(C1, C2) = filterk ◦
join∗(filterk(C1), filterk(C2)).

Moreover, item 6 of the ♢join operation implies that, if for w ∈ V (T), V (Tw) ∩ Im(f) = ∅, then
there is i ∈ {1, 2} such that Tw = (Ti)w. Therefore, each cropped subtree of T is exactly a cropped
subtree of T1 or a cropped subtree of T2. Thus, crop ◦ join∗(C1, C2) = join∗(crop(C1), crop(C2)).

Since these three operations are commutative, we haveA =Mk(B) = filterk◦rep◦join∗(Mk(B1),Mk(B2)) =
joink(A1,A2).

For the join procedure, we finally prove that it can generate a bounded number of annotated
trees.

Lemma 8.5.14. Let w and k be two positive integers, let G1 and G2 be two compatible w-boundaried
graphs, let T̂1 ∈ chark(G1), and let T̂2 ∈ chark(G2). Then |joink(T̂1, T̂2)| = 2O(w·k).

Proof. Let T̂1 = (T1, r1, h1,R1, f1) and T̂2 = (T2, r2, h2,R2, f2). We will show that |(T1, r1, f1)♢join(T2, r2, f2)| =
2O(w·k). Let (T, r, f) ∈ (T1, r1, f1)♢join(T2, r2, f2). Notice that (T, r) has at most w leaves and height
at most k. Each leaf of (T, r) is in Im(f) = Im(f1) = Im(f2), so it corresponds to both a leaf of (T1, r1)
and a leaf of (T2, r2). Also note that T is obtained by choosing, for each path from a leaf v to r, a
subset that corresponds to the path vT1r (the rest is the path vT2r). There are at most w such paths
from a leaf to r, and each of them has length at most k+1. So |(T1, r1, f1)♢join(T2, r2, f2)| ≤ 2w(k+1).
Then, to construct an annotated tree (T, r, h,R, f), the function h and the boundaried graph R are
totally determined by T , h1, h2, R1, and R2. So we obtain the desired result.

8.5. Solving Elimination Distance to exc(F) on tree decompositions 186

8.5.4 The algorithm

We finally present a recursive algorithm (Algorithm 1) that computes the elimination distance to
exc(F) of a graph of bounded treewidth and proves Theorem 8.3.2. More precisely, given a boundary
graph G, a nice tree decomposition, and an integer k, the algorithm outputs chark(G).

Algorithm 1: recEd(G, T , k, v)
Input: A connected boundaried graph G = (G,X, ρ), a nice tree decomposition

T = (T, β, r) of G, an integer k, and a node v ∈ V (T) such that X = β(v).
Output: The characteristic chark(G) of G.

1 A ← ∅
2 w ← |β(v)|
3 if v is a leaf then
4 A ← {1}
5 end
6 else if v is a forget node with child v′ and forgotten vertex x then
7 ρ′ ← ρ ∪ (x 7→ w + 1)
8 A′ ← recEd((G, β(v′), ρ′), T , k, v′)
9 A ← forget(A′)

10 end
11 else if v is an introduce node with child v′ and introduced vertex x then
12 τ ← (x↔ ρ−1(w))
13 ρ′ ← ρ ◦ τ
14 A′ ← recEd((G, β(v′), ρ′|β(v′)), T , k, v′)
15 N ← NG[β(v)](x)

16 A ← τ(intrk(A′, ρ′(N)))

17 end
18 else if v is a join node with children v1 and v2 then
19 A1 ← recEd((G, β(v), ρ), T , k, v1)
20 A2 ← recEd((G, β(v), ρ), T , k, v2)
21 A ← joink(A1,A2)

22 end
23 return A

Note that using backtracking in Algorithm 1, we can easily construct an annotated tree of
minimum height in char∗(G) as well as its witness pair. In other words, given a connected graph G
such that edexc(F)(G) ≤ k, we can construct an F -elimination tree of G of height edexc(F)(G) using
Algorithm 1.

Lemma 8.5.15. Given a connected graph G, an integer k, a nice tree decomposition T = (T, β, r)
of G of width w, a bijection ρ : β(r) → [|β(r)|], and v ∈ V (T), recEd((G, β(v), ρ), T , k, v) out-
puts chark(Gv, β(v), ρ). Moreover, recEd((G, β(r), ρ), T , k, r) outputs chark(G, β(r), ρ) in time
2OℓF (w·k+w logw) · n.

Proof. We prove that for every v ∈ V (T), by induction on the height of Tv, the algorithm recEd of
Algorithm 1 with input ((G, β(v), ρ), T , k, v) returns chark(Gv, β(v), ρ). Indeed, if v is a leaf, then
chark(Gv, β(v), ρ) = {1̂} = recEd((G, β(v), ρ), T , k, v). Otherwise, v is either a forget node, or an
introduce node, or a join node, and the correctness of the algorithm is implied from the induction

8.5. Solving Elimination Distance to exc(F) on tree decompositions 187

hypothesis and Lemma 8.5.8, Lemma 8.5.10, and Lemma 8.5.13, respectively. Finally, since G = Gr,
we have recEd((G, β(r), ρ), T , k, r) = chark(G, β(r), ρ).

We now analyze the running time. A nice tree decomposition of width w constructed by
Proposition 4.3.3 has O(w · n) bags, hence the linear dependence follows.

Let us first analyze the join procedure. During this procedure, we recursively obtain two
characteristics of size 2OℓF (w·k+w logw) according to Lemma 8.5.6. Each pair of annotated trees can
be joined in 2O(w·k) ways, according to Lemma 8.5.14. Let R1 and R2 be the boundaried graphs
of such a pair of annotated trees. There is an integer z ≤ w such that they belong to Rz

ℓF
. By

Proposition 4.4.1, R1 and R2 have size OℓF (z). So R := R1
⊕

R2 has size OℓF (z) as well. The
representation operation applied to R during the join operation for those two annotated trees finds the
representative of l ≤ z boundaried graphs of respective boundaries of sizes z1, ..., zl with

∑l
i=1 zi ≤ z

and with OℓF (zi) vertices in the underlying graph due to Proposition 4.4.1. So by Lemma 4.4.3,
the representation operation in the join procedure takes time

∑l
i=1 2

OℓF (wi logwi) = 2OℓF (w logw).
Checking that this is an annotated tree, that its height is at most d, and that we did not already
create it also takes time 2OℓF (w·k+w logw). Hence, the total running time of the join procedure is
2OℓF (w·k+w logw).

It is easy to see that the forget procedure applied to an annotated tree creates at most one
annotated tree. Moreover, the introduce procedure applied to an annotated tree creates O(w · k)
annotated trees according to Lemma 8.5.11. Similarly, the representation, crop, and filter operations
in these procedures take time 2OℓF (w·k+w logw). So the lemma follows.

We can finally prove Theorem 8.3.2.

Proof of Theorem 8.3.2. If F = {K1}, the algorithm of Proposition 8.5.4 outputs the desired result
in time 2O(tw·k) · n. So let us assume that F is non-trivial.

Suppose first that G is connected. By Proposition 4.3.1 and Proposition 4.3.3, we can obtain a
nice tree decomposition T = (T, β, r) of width 2tw + 1 in time 2O(tw) · n. Let ρ : β(r)→ [|β(r)|] be
an arbitrary ordering on the vertices of β(r). We apply recEd with input ((G, β(r), ρ), T , k, r). By
Lemma 8.5.15, this gives the desired result in time 2OℓF (tw(k+log tw)) · n.

If G is not connected, we apply the same procedure on each connected component. The running
time is the same as in the above case.

8.5.5 Exchangeability of boundaried graphs with the same characteristic

We give here a simple technical lemma on characteristics that will be used in Section 8.6. We show
that boundaried graphs with the same characteristic can be exchanged, i.e., give graphs of the same
elimination distance to F when “glued” to the same boundaried graph.

Given a positive integer k and a (possibly disconnected) boundaried graph G, we define chark(G)
as (chark(C))C∈cc(G). Note that we still have |chark(G)| = 2OℓF (w·k+w logw). Therefore, we can
extend f8.5.6 so that |chark(G)| ≤ f8.5.6(w, k) with f8.5.6(w, k) = 2OℓF (w·k+w logw) for any boundaried
graph G.

Lemma 8.5.16. Let G, G′, and G′′ be three compatible boundaried graphs and let k be an integer such
that edexc(F)(G⊕G′′) ≤ k and chark(G) = chark(G

′). Then edexc(F)(G⊕G′′) = edexc(F)(G
′ ⊕G′′).

Proof. We suppose without loss of generality that G ⊕ G′′, and therefore G′ ⊕ G′′ as well, is
connected. Indeed, if this is not the case, we may apply the following proof to each one of the
connected components separately.

8.6. Bounding the obstructions of Ek(exc(F)) 188

Let cc(G) = {C1, ...,Cl} and cc(G′) = {C′
1, ...,C

′
l}, such that chark(Ci) = chark(C

′
i) for i ∈ [l].

Let i ∈ [l]. We write Ci = (Ci, Bi, ρi). Let Ti = (Ti, βi, ri) be a nice tree decomposition of Ci, i.e.,
such that βi(ri) = Bi. Since the Bi’s are pairwise disjoint, there is a rooted tree decomposition
T ∗ = (T ∗, β∗, r) of G′′, where G′′ is the underlying graph of G′′, such that, for i ∈ [l], there is
vi ∈ Leaf(T ∗, r) with β∗(vi) = Bi. Let T = (T, β, r) be the tree decomposition obtained from T ∗

and the Ti’s by identifying vi with ri for i ∈ [l] and adding nodes in T ∗ using Proposition 4.3.3, so
that T is a nice tree decomposition of G⊕G′′.

Let T ′ = (T ′, β′, r) be a nice tree decomposition of the graph G′ ⊕G′′ obtained from T by
replacing Ti by a nice tree decomposition T ′

i = (T ′
i , β

′
i, r

′
i) of C′

i for i ∈ [l]. Observe that, for every
i ∈ [l], according to Lemma 8.5.15, recEd((G⊕G′′, β(vi), ρvi), T , k, vi) = chark(G⊕G′′, β(vi), ρ) =
chark(Ci). Similarly, recEd((G′ ⊕G′′, β′(vi), ρvi), T ′, k, vi) = chark(C

′
i). Thus, Algorithm 1 applied

with input ((G⊕G′′, β(vi), ρvi), T , k, vi) and ((G′⊕G′′, β′(vi), ρvi), T ′, k, vi) outputs the same result.
We next set U := V (T)\

⋃
i∈[l] V (Ti). Note that U = V (T ′)\

⋃
i∈[l] V (T ′

i). Therefore, in each node
u of U , Algorithm 1 applied with input ((G⊕G′′, β(u), ρu), T , k, u) and ((G′⊕G′′, β′(u), ρu), T ′, k, u)
outputs the same result. Thus, Algorithm 1 applied with input ((G ⊕G′′, β(r), ρr), T , k, r) and
((G′ ⊕G′′, β′(r), ρr), T ′, k, r) outputs the same result. So chark(G ⊕G′′, β(r), ρr) = chark(G

′ ⊕
G′′, β′(r), ρr). Therefore, according to Lemma 8.5.5, edexc(F)(G⊕G′′) = edexc(F)(G

′ ⊕G′′).

8.6 Bounding the obstructions of Ek(exc(F))
In this section, we prove the following result that provides an upper bound on the size of the graphs
in obs(Ek(exc(F))). The following theorem is a reformulation of Theorem 2.4.4.

Theorem 8.6.1. Let F be a non-empty finite collection of non-empty graphs and k be a positive

integer. Every graph in obs(Ek(exc(F))) has 22
22

k
OℓF

(1)

vertices. In the particular case when F

contains an apex-graph, every graph in obs(Ek(exc(F))) has 22
k
OℓF

(1)

vertices.

Recall that when F = {K1} = obs(H∅), it is known [100] that every graph in obs(Ek(H∅)) has at
most 22

k−1 vertices.
Theorem 8.6.1 implies that one can construct an algorithm that receives as input obs(exc(F)) and

k, and outputs obs(Ek(exc(F))). This is done by enumerating all graphs on at most f(k) vertices,
where f(k) is the bound on the number of vertices given by Theorem 8.6.1, and filtering out those
that are members of Ek(exc(F)) and taking those that are minor-minimal in what is left. The

running time of the algorithm can be bounded by O(222
22

k
OℓF

(1)

· n2) in the general case and by

O(222
k
OℓF

(1)

· n2) if F contains an apex-graph.
Note that this brute-force algorithm can be used to solve Elimination Distance to exc(F).

Indeed, to solve Elimination Distance to exc(F), we can compute obs(Ek(exc(F))) and then
check whether there is a graph in obs(Ek(exc(F))) that is a minor of the input graph. Of course,
this algorithm is much less efficient than the ones presented in the previous sections.

The rest of the section is structured as follows: in Subsection 8.6.1 we bound the treewidth
of a minor-minimal obstruction of Ek(exc(F)), while in Subsection 8.6.2 we bound the size of a
minor-minimal obstruction of Ek(exc(F)) of small treewidth. This immediately implies Theorem 8.6.1.

8.6. Bounding the obstructions of Ek(exc(F)) 189

8.6.1 Bounding the treewidth of an obstruction

In this subsection we aim to prove an upper bound on the treewidth of a minor-minimal obstruction
of Ek(exc(F)).

Lemma 8.6.2. Let F be a finite collection of graphs. There exists a function f8.6.2 : N3 →
N such that if G ∈ obs(Ek(exc(F))), then tw(G) ≤ f8.6.2(k, aF , sF). Moreover, f8.6.2(k, a, s) =

2log(k·c)·2
ka−1·2O(s2 log s)

, where a = aF , s = sF , and c is a constant depending on ℓF .

Note that when aF = 1, f8.6.2(k, 1, s) = OℓF (k
22

O(s2 log s)

).

Proof. For simplicity, we use s, a, and ℓ instead of sF , aF , and ℓF , respectively. We set

b = g4.6.2(s) + k + 1, d = g8.2.4(a− 1, ℓ),

r4 = f8.2.4(a− 1, ℓ, 3, k(k + 1)/2), r3 = f4.6.12(r4, a− 1, b, d),

x = g8.2.5(a, s, k(k + 1)/2), p = h8.2.5(a, s, k(k + 1)/2),

l = (x− 1) · b, r2 = odd(max{f4.6.8(l + 1, r3, p), f8.2.5(a, s, k(k + 1)/2)}),
r1 = f4.6.2(s) · r2, and w = f4.6.1(s) · r1 + k + 1.

It is easy to verify that w = 2log(k·c)·2
ka−1·2O(s2 log s)

.

Suppose towards a contradiction that tw(G) > w. Since G ∈ obs(Ek(exc(F))), for each v ∈ V (G),
G− v ∈ Ek(exc(F)). Therefore, there exists a (k + 1)-elimination set S of G for exc(F). Thus, for
each C ∈ cc(G− S), C ∈ exc(F). According to Lemma 8.2.3, tw(G− S) > w− k − 1 = f4.6.1(s) · r1,
so there is C ∈ cc(G − S), such that tw(C) > f4.6.1(s) · r1. Moreover, Ks is not a minor of C.
Therefore, according to Proposition 4.6.1, C contains an r1-wall W1.

Since r1 = f4.6.2(s) · r2, by Proposition 4.6.2, there is a set A ⊆ V (C) of size at most g4.6.2(s)
and a flatness pair (W2,R2) of C −A of height r2 such that W2 is a tilt of a subwall of W1. Due to
Proposition 4.6.7, there is a regular flatness pair (W ′

2,R
′
2) of C −A of height r2.

Since S is a (k+1)-elimination set of G for exc(F) and C ∈ cc(G−S), there exists a set P ⊆ S of
size at most k+1 such that (L,R) := (V (G) \V (C), V (C)∪P) is a separation of G with L∩R = P .
Thus, if R′′

2 is the 5-tuple obtained by adding the vertices of G − (C ∪ P) to the set in the first
coordinate of R′

2, (W ′
2,R

′′
2) is a regular flatness pair of G− (A ∪ P) of height r2.

Let Q̃ be a W ′
2-canonical partition of G − (A ∪ P). Let B be the set of vertices of A ∪ P

adjacent to vertices of at least x p-internal bags of Q̃. Let W = {W 1, ...,W l+1} be a family
of l + 1 r3-subwalls of W ′

2 such that for every i ∈ [l + 1],
⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR′′

2
(W i) is a subgraph of⋃⋃⋃⋃⋃⋃⋃⋃⋃

{Q | Q is a p-internal bag of Q̃} and for every i, j ∈ [l + 1] with i ̸= j, there is no internal bag
Q ∈ Q̃ that contains vertices of both V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR′′

2
(W i)) and V (

⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR′′

2
(W j)). The existence

of W follows from the fact that r2 ≥ f4.6.8(l + 1, r3, p) and Proposition 4.6.8. Notice that the set
NG((A ∪ P) \ B) intersects the vertex set of at most (x − 1) · |(A ∪ P) \ B| ≤ l p-internal bags
of Q̃. Thus, there is an i ∈ [l + 1] such that no vertex in (A ∪ P) \ B is adjacent to vertices of⋃⋃⋃⋃⋃⋃⋃⋃⋃
influenceR′′

2
(W i).

Let (W3,R3) be a W i-tilt of (W ′
2,R

′′
2). Since |B| ≤ |A ∪ P | ≤ g4.6.2(s) + k + 1 = b and

r3 = f4.6.12(r4, b, a − 1, d), by Proposition 4.6.12, there is a flatness pair (W4,R4) of G − B of
height r4 that is d-homogeneous with respect to

(
B
<a

)
and is a tilt of a subwall of (W3,R3). By

Observation 4.6.4 and Observation 4.6.5, (W4,R4) is regular.
Recall that (W3,R3) is a W i-tilt of (W ′

2,R
′′
2), (W4,R4) is a tilt of a subwall of (W3,R3), and

(W4,R4) is a flatness pair of G−B with B ⊆ A∪P . Thus, given a W4-canonical partition Q̃1 of G−B,

8.6. Bounding the obstructions of Ek(exc(F)) 190

there is a W ′
2-canonical partition Q̃2 of G− (A ∪ P) such that each internal bag of Q̃1 is contained

in an internal bag of Q̃2. Therefore, for every set X ⊆ V (G), bidG−B,W4(X) ≤ bidG−(A∪P),W ′
2
(X).

Moreover, since r2 ≥ f8.2.5(a, s, k(k + 1)/2), according to Proposition 8.2.5, every subset of B of
size a intersects every set X ⊆ V (G) such that G−X ∈ exc(F) and bidG−(A∪P),W ′

2
(X) ≤ k(k+1)/2.

Hence, for any such X, |B \X| < a.
Thus, according to Proposition 8.2.4, since r4 = f8.2.4(a−1, ℓ, 3, k(k+1)/2), it holds that there is

a vertex v such that, for every set X ⊆ V (G) with G−X ∈ exc(F) and bidG−B,W4(X) ≤ k(k+1)/2,
G−X ∈ exc(F) if and only if G− (X \ v) ∈ exc(F).

Lemma 8.2.7 implies that for any k-elimination set S′ ofG−v for exc(F), there is a setX ⊇ S′ such
that G−X ∈ exc(F) and bidG−(A∪P),W ′

2
(X) ≤ k(k+1)/2. Since bidG−B,W4(X) ≤ bidG−(A∪P),W ′

2
(X),

we also have that bidG−B,W4(X) ≤ k(k+1)/2. Thus, G−X ∈ exc(F) if and only ifG−(X\v) ∈ exc(F)
and G ∈ Ek(exc(F)) if and only if G− v ∈ Ek(exc(F)). However, since G ∈ obs(Ek(exc(F))), it holds
that G /∈ Ek(exc(F)) and G− v ∈ Ek(exc(F)), a contradiction.

8.6.2 Bounding the size of an obstruction of small treewidth

In order to bound the size of an obstruction of small treewidth, we first present some additional
notions on tree decompositions on boundaried graphs.

Treewidth of boundaried graphs. Let G = (G,B, ρ) be a boundaried graph. A tree decomposi-
tion of G is a rooted tree decomposition (T, β, r) of G such that β(r) = B. The width of (T, β, r) is
the width of (T, β). The treewidth of a boundaried graph G is the minimum width over all its tree
decompositions and is denoted by tw(G). A nice tree decomposition of G is a tree decomposition
(T, β, r) of G that is also a nice tree decomposition of G rooted at r.

Let G = (G,B, ρ) be a boundaried graph and T = (T, β, r) be a tree decomposition of G. Notice
that if a, b ∈ V (T) and a ∈ AncT,r(b), then Gb is a subgraph of Ga. We define the tq-boundaried
graph Ḡq = (Ḡq, β(q), ρq), where Ḡq = G− (V (Gq) \ β(q)). Notice that Gq and Ḡq are compatible
and Gq ⊕ Ḡq = G.

Linked tree decompositions. Our next step is to use a special type of tree decompositions,
namely linked tree decompositions, defined by Robertson and Seymour in [261]. Thomas in [304]
proved that every graph G admits a linked tree decomposition of width tw(G) (see also [28,106]).
By combining the result of [304] and [55, Lemma 4], we can consider tree decompositions as asserted
in the following result.

Proposition 8.6.3 ([55]). Let t ∈ N≥1. For every boundaried graph G = (G,B, ρ) of treewidth t− 1,
there exists a tree decomposition (T, β, r) of G of width t− 1 such that

1. (T, r) is a binary tree,

2. for every a, b ∈ V (T) where a is a child of b in (T, r), if |β(a)| = |β(b)| then Ga is a proper
subgraph of Gb, i.e., |V (Ga)| < |V (Gb)|,

3. for every s ∈ N and every pair u1, u2 ∈ V (T), where u1 ∈ AncT,r(u2) and |β(u1)| = |β(u2)|,
either there is an internal vertex w of u1Tu2 such that |β(w)| < s, or there exists a collection
of s vertex-disjoint paths in G between β(u1) and β(u2), and

4. |V (G)| ≤ t · |V (T)|.

8.6. Bounding the obstructions of Ek(exc(F)) 191

In fact, linked tree decompositions are defined as the tree decompositions satisfying only property
(3) [261, 304]. In our proofs, we will need the extra properties (1), (2), and (4) that are provided
by [55, Lemma 4].

We bound the size of a minor-minimal obstruction of small treewidth in Lemma 8.6.5. To do so,
we need the following result (for a proof see e.g. [139, Lemma 14]).

Proposition 8.6.4 ([139]). Let r,m ∈ N≥1 and w be a word of length mr over the alphabet [r].
Then there is a number k ∈ [r] and a subword u of w such that u contains only numbers not smaller
than k and u contains the number k at least m times.

We are now ready to prove Lemma 8.6.5. The idea is to apply the technique of Lagergren [213]
combined with the bound on the number of characteristics provided in Subsection 8.5.5. The proof
of Lemma 8.6.5 is very similar to the corresponding proof in [285] for obs(Ak(exc(F))).

Lemma 8.6.5. Let F be a finite non-trivial collection of graphs. There exists a function f8.6.5 :
N2 → N such that if k is an integer and G is a graph in obs(Ek(exc(F))) of treewidth tw, then

|V (G)| ≤ f8.6.5(tw, k). Moreover, f8.6.5(t, k) = 22
OℓF

(t3+k·t2)
.

Proof. Let G ∈ obs(Ek(exc(F))). We set t := tw(G) + 1. For simplicity, we use ℓ instead of ℓF . We
set

d = f8.5.6(t− 1, k) + 1, m = 2(
t
2) · (d− 1) + 1,

x = mt, and b = t · 2x.

It is easy to verify that b = 22
OℓF

(t3+k·t2)
.

Suppose towards a contradiction that |V (G)| > b. Let (T, β) be a tree decomposition of G of
width tw(G) and let r ∈ V (T). We consider the rooted tree (T, r) and we set B := β(r) and a
bijection ρ : B → [|B|]. We set G = (G,B, ρ) and observe that (T, β, r) is a tree decomposition of
G of width tw(G). Since tw(G) = tw(G) = t− 1, by Proposition 8.6.3, we can assume that for the
tree decomposition (T, β, r) of G of width t− 1, Properties (1) to (4) are satisfied.

Since |V (G)| > b = t · 2x, Property (4) implies that |V (T)| > 2x. Also, by Property (1), (T, r) is
a binary tree and therefore there exists a leaf u of T such that |V (rTu)| ≥ x. We set l := |V (rTu)|.

We set v1 = r and for every i ∈ [l − 1], we set vi+1 to be the child of vi in (T, r) that belongs to
V (rTu). Keep in mind that vl = u. For every i ∈ [l], we set ci := |β(vi)| and observe that, since
(T, β, r) has width t− 1, ci ∈ [t].

Let C be the word c1 · · · cx. Since x = mt and every ci ∈ [t], then, due to Proposition 8.6.4,
there is a t′ ∈ [t] and a subword C ′ of C such that, for every c in C ′, c ≥ t′ and there are at least m
numbers in C ′ that are equal to t′. Therefore, there exists a set {z1, . . . , zm} ⊆ V (T) such that for
every i ∈ [2,m], zi is a descendant of zi−1 in (T, r), for every z′ ∈ V (z1Tzm) it holds that |β(z′)| ≥ t′,
and, for every i ∈ [m], |β(zi)| = t′. Hence, Property (3) of the tree decomposition (T, β, r) of G
implies that there exists a collection P = {P1, . . . , Pt′} of t′ vertex-disjoint paths in G between β(z1)
and β(zm).

For every i ∈ [m], let ρi be the function mapping a vertex v in β(zi) to the index of the path of
P it intersects, i.e., for every j ∈ [t′], if v is a vertex in V (Pj) ∩ β(zi), where Pj ∈ P , then ρi(v) = j.
Also, for every i ∈ [m], let Gzi be the t′-boundaried graph (Gzi , β(zi), ρi). Since, m = 2(

t
2) ·(d−1)+1,

there is a set J ⊆ [m] of size d such that for every i, j ∈ J , the graph Gzi [β(zi)] is isomorphic to the
graph Gzj [β(zj)]. Therefore, for every i, j ∈ J , Gzi and Gzj are compatible. Furthermore, observe
that for every i, j ∈ J with i ≤ j, Gzj ⪯m Gzi . To see why this holds, for every i, j ∈ J with i < j,

8.6. Bounding the obstructions of Ek(exc(F)) 192

let Pi,j be the collection of subpaths of P between the vertices of β(zi) and β(zj) and consider the
graph Gzi [β(zi)] ∪

⋃⋃⋃⋃⋃⋃⋃⋃⋃
Pi,j ∪ Gzj , which is a subgraph of Gzi . By contracting the edges in Pi,j , we

obtain a boundaried graph isomorphic to Gzj .
Recall that |J | = d = f8.5.6(t− 1, k) + 1. Thus, by Lemma 8.5.6, there exist i, j ∈ J such that

j is the smallest element in J that is greater than i and chark(Gzi) = chark(Gzj). For simplicity,
we set a := zi and b := zj . Notice that, in G, by contracting the edges of the paths in Pi,j and
removing the vertices of Ga that are not vertices of Gb, we obtain a graph isomorphic to Ḡa ⊕Gb.
Therefore, Ḡa ⊕Gb is a minor of G. Furthermore, |V (Ḡa ⊕Gb)| < |V (G)|. To prove this, we argue
that Gb is a proper subgraph of Ga. First recall that for every y ∈ V (aTb), |β(y)| ≥ t′. If there is a
y ∈ V (aTb) such that |β(y)| > t′, then there is a vertex v ∈ β(y) that is a vertex of V (Ga) \ V (Gb)
and thus Gb is a proper subgraph of Ga, while in the case where for every y ∈ V (aTb), |β(y)| = t′,
Property (2) of Proposition 8.6.3 implies that Gb is a proper subgraph of Ga.

Let G′ := Ḡa ⊕Gb. Since |V (G′)| < |V (G)|, G′ is a minor of G, and G ∈ obs(Ek(exc(F))),
it holds that G′ ∈ Ek(exc(F)). By Lemma 8.5.16, since chark(Ga) = chark(Gb), we have that
edexc(F)(Ḡa ⊕Ga) = edexc(F)(Ḡa ⊕Gb) and therefore edexc(F)(G) = edexc(F)(G

′). This contradicts
the fact that edexc(F)(G) > k and edexc(F)(G

′) ≤ k.

Part IV

Towards generalization

193

CHAPTER 9

Dynamic programming for bipartite treewidth

Contents
9.1 Overview of the dynamic programming scheme 195
9.2 Equivalent definitions of odd-minors . 198
9.3 Bipartite treewidth . 200
9.4 General dynamic programming to obtain FPT-algorithms 204

9.4.1 Gluing boundaried graphs . 204
9.4.2 Nice problems . 205
9.4.3 General dynamic programming scheme . 208
9.4.4 Generalizations . 209

9.5 Applications . 210
9.5.1 Kt-Subgraph-Cover . 211
9.5.2 Weighted Vertex Cover/Weighted Independent Set 216
9.5.3 Odd Cycle Transversal . 220
9.5.4 Maximum Weighted Cut . 226
9.5.5 Hardness of covering problems . 228

In this chapter, we prove the results presented in Section 2.5, which are restated here for
convenience.

Theorem 2.5.1. Let Ht be the class of graphs that exclude Kt as a subgraph. Then, there is an
algorithm that, given a graph G and a bipartite tree decomposition of G of width w, solves Vertex
Deletion to Ht in time O(2w · (wt · (n+m) +m

√
n)).

Theorem 2.5.2. There is an algorithm that, given a graph G and a bipartite tree decomposition of
G of width w, solves Weighted (resp. Unweighted) Vertex Cover in time O(2w · (w · (w +
m) +m · n)) (resp. O(2w · (w · (w +m) +m

√
n))).

Theorem 2.5.3. There is an algorithm that, given a graph G and a bipartite tree decomposition of
G of width w, solves Odd Cycle Transversal in time O(3w · w · (m+ k2) · n).

194

9.1. Overview of the dynamic programming scheme 195

In Table 9.1, we present all the results that we actually found concerning the parameterization
by bipartite treewidth, though we only present the results on graph modification problems in this
thesis. In Section 9.1, we give an overview of our dynamic programming scheme. In Section 9.2,
we give several equivalent definitions of odd-minors. In Section 9.3, we define formally bipartite
treewidth and the more general parameter of 1-H-treewidth and give some preliminary results. In
Section 9.4, we provide our dynamic programming scheme for solving problems parameterized by
bipartite treewidth. Finally, in Section 9.5, we give applications of our scheme and discuss hardness
results.

Problem Complexity Constraints on H/Running time
H-Minor-Cover [314] H containing P3 as a subgraph

H(-Induced)-Subgraph/

para-NP-complete, H bipartite containing P3 as a subgraphOdd-Minor-Cover [314] and

k = 0
H(-Induced)-Subgraph/
H(-Odd)-Minor-Packing
H-Scattered-Packing H 2-connected bipartite with |V (H)| ≥ 2

3-Coloring
para-NP-complete,

k = 3

Kt-Subgraph-Cover

FPT

O(2k · (kt · (n+m) +m
√
n))

Independent Set O(2k · (k · (k + n) +m
√
n))

Weighted Independent Set O(2k · (k · (k + n) + n ·m))
Odd Cycle Transversal O(3k · k · n · (m+ k2))

Maximum Weighted Cut O(2k · (k · (k + n) + nO(1)))

H-Subgraph-Packing

XP
H non-bipartite 2-connected

H-Induced-Subgraph-Packing
H-Scattered-Packing

nO(k)

H-Odd-Minor-Packing

Table 9.1: Summary of the results obtained for problems parameterized by the bipartite treewidth k
of the input graph.

9.1 Overview of the dynamic programming scheme

Compared to dynamic programming on classical tree decompositions, there are two main difficulties for
doing dynamic programming on (rooted) bipartite tree decompositions. The first one is that the bags
in a bipartite tree decomposition may be arbitrarily large, which prevents us from applying typical
brute-force approaches to define table entries. The second one, and apparently more important,
is the lack of an upper bound on the number of children of each node of the decomposition.
Indeed, unfortunately, a notion of “nice bipartite tree decomposition” preserving the width (even
approximately) does not exist (cf. Lemma 9.3.5).

For particular problems, however, we can devise ad-hoc solutions. Namely, for Kt-Subgraph-
Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and
Maximum Weighted Cut parameterized by btw, we overcome the above issue by managing to
replace the children with constant-sized bipartite gadgets. More specifically, we guess an annotation
of the “apex” vertices of each bag t, whose number is bounded by btw, that essentially tells which of
these vertices go to the solution or not (with some extra information depending on each particular
problem; for instance, for Odd Cycle Transversal, we also guess the side of the bipartition of

9.1. Overview of the dynamic programming scheme 196

the non-solution vertices). Having this annotation, each adhesion of the considered node t with a
child contains, by the definition of bipartite tree decompositions, at most one vertex v that is not
annotated. At this point, we crucially observe that, for the considered problems, we can make a
local computation for each child, independent from the computations at other children, depending
only on the values of the optimum solutions at that child that are required to contain or to exclude
v (note that we need to be able to keep this extra information at the tables of the children). Using
the information given by these local computations, we can replace the children of t by constant-sized
bipartite gadgets (sometimes empty) so that the newly built graph, which we call a nice reduction,
is an equivalent instance modulo some constant. If a nice reduction can be efficiently computed for
a problem Π, then we say that Π is a nice problem (cf. Subsection 9.4.2). The newly modified bag
has bounded oct, so we can then use an FPT-algorithm parameterized by oct to find the optimal
solution with respect to the guessed annotation.

An illustrative example. Before entering into some more technical details and general definitions,
let us illustrate this idea with the Weighted Vertex Cover problem. The formal definition of
bipartite tree decomposition can be found in Section 9.2 (in fact, for the more general setting of
1-H-treewidth). For this informal explanation, it is enough to suppose that we want to compute the
dynamic programming tables at a bag associated with a node t of the rooted tree decomposition,
and that the vertices of the bag at t are partitioned into two sets: β(t) induces a bipartite graph
and its complement, denoted by α(t), corresponds to the apex vertices, whose size is bounded by
the parameter btw. The first step is to guess, in time at most 2btw, which vertices in α(t) belong to
the desired minimum vertex cover. After such a guess, all the vertices in α(t) can be removed from
the graph, by also removing the neighborhood of those that were not taken into the solution. The
definition of bipartite tree decomposition implies that, in each adhesion with a child of the current
bag, there is at most one “surviving” vertex. Let v be such a vertex belonging to the adhesion with
a child t′ of t. Suppose that, inductively, we have computed in the tables for t′ the following two
values, subject to the choice that we made for α(t): the minimum weight wv of a vertex cover in the
graph below t′ that contains v, and the minimum weight wv̄ of a vertex cover in the graph below t′

that does not contain v. Then, the trick is to observe that, having these two values at hand, we can
totally forget the graph below t′: it is enough to delete this whole graph, except for v, and attach a
new pendant edge vu, where u is a new vertex, such that v is given weight wv and u is given weight
wv̄. It is easy to verify that this gadget mimics, with respect to the current bag, the behavior of
including vertex v or not in the solution for the child t′. Adding this gadget for every child results in
a bipartite graph, for which we can just solve Weighted Vertex Cover in polynomial time using
a classical algorithm [198,246], and add the returned weight to our tables. The running time of this
whole procedure, from the leaves to the root of the decomposition, is clearly FPT parameterized by
the bipartite treewidth of the input graph.

Extensions and limitations. The algorithm sketched above is problem-dependent, in particular
the choice of the gadgets for the children, and the deletion of the neighborhood of the vertices chosen
in the solution. Which type of replacements and reductions can be afforded in order to obtain an
FPT-algorithm for bipartite treewidth? For instance, concerning the gadgets for the children, as far
as the considered problem can be solved in polynomial time on bipartite graphs, we could attach
to the “surviving” vertices an arbitrary bipartite graph instead of just an edge. If we assume that
the considered problem is FPT parameterized by oct (which is a reasonable assumption, as btw
generalizes oct), then one could think that it may be sufficient to devise gadgets with bounded oct.
Unfortunately, this will not work in general: even if each of the gadgets has bounded oct (take, for

9.1. Overview of the dynamic programming scheme 197

instance, a triangle), since we do not have any upper bound, in terms of btw, on the number of
children (hence, the number of different adhesions), the resulting graph after the gadget replacement
may have unbounded oct. In order to formalize the type of replacements and reductions that can
be allowed, we introduce in Section 9.4 the notions of nice reduction and nice problem. Additional
insights into these definitions, which are quite lengthy, are provided in Subsection 9.4.2.

Another sensitive issue is that of “guessing the vertices into the solution”. While this is quite
simple for Weighted Vertex Cover (either a vertex is in the solution, or it is not), for some
other problems we may have to guess a richer structure in order to have enough information to
combine the tables of the children into the tables of the current bag. This is the reason why, in
the general dynamic programming scheme that we present in Section 9.4, we deal with annotated
problems, i.e., problems that receive as input, apart from a graph, a collection of annotated sets in
the form of a partition X of some X ⊆ V (G). For instance, for Weighted Vertex Cover, we
define its annotated extension, which we call Annotated Weighted Vertex Cover, that takes
as input a graph G and two disjoint sets R and S of vertices of G, and asks for a minimum vertex
cover S⋆ such that S ⊆ S⋆ and S⋆ ∩R = ∅.

General dynamic programming scheme. Our general scheme essentially says that if a problem
Π has an annotated extension Π′ that is

• a nice problem and

• solvable in FPT-time parameterized by oct,

then Π is solvable in FPT-time parameterized by btw. More specifically, it is enough to prove that
Π′ is solvable in time f(|X|) · nO(1) on an instance (G,X) such that G−X is bipartite, where X is
a partition of X corresponding to the annotation. This general dynamic programming algorithm
works in a wider setting, namely for a general graph class H that plays the role of bipartite graphs,
with the additional condition that the annotated extension Π′ is “H-nice” ’; cf. Theorem 9.4.1 for the
details.

Applications. We then apply this general framework to obtain parameterized algorithms for several
problems parameterized by bipartite treewidth. For each of Kt-Subgraph-Cover (Subsection 9.5.1),
Weighted Vertex Cover /Independent Set (Subsection 9.5.2), Odd Cycle Transversal
(Subsection 9.5.3), and Maximum Weighted Cut (Subsection 9.5.4), we prove that the problem
has an annotated extension that is 1) nice and 2) solvable in FPT-time parameterized by oct, as
discussed above.

To prove that an annotated problem has a nice reduction, we essentially use two ingredients.
Given two compatible boundaried graphs F and G with boundary X (a boundaried graph is
essentially a graph along with some labeled vertices that form a boundary, see the formal definition
in Subsection 9.4.2), an annotated problem is usually nice if the following hold:

• (Gluing property) Given that we have guessed the annotation X in the boundary X, a solution
compatible with the annotation is optimal in the graph F⊕G obtained by gluing F and G
if and only if it is optimal in each of the two glued graphs. In this case, it means that the
optimum on (F⊕G,X) is equal to the optimum on (F,X) modulo some constant depending
only on G and X .

• (Gadgetization) Given that we have guessed the annotation in the boundary X \ {v} for some
vertex v in X, there is a small boundaried graph G′, that is bipartite (maybe empty), such that

9.2. Equivalent definitions of odd-minors 198

the optimum on (F⊕G,X) is equal to the optimum on (F⊕G′,X) modulo some constant
depending only on G and X .

The gluing property seems critical to show that a problem is nice. This explains why we solve
H-Subgraph-Cover only when H is a clique. For any graph H, Annotated H-Subgraph-
Cover is defined similarly to Annotated Weighted Vertex Cover by specifying vertices that
must or must not be taken in the solution. If H is a clique, then we crucially use the fact that H
is a subgraph of F⊕G if and only if it is a subgraph of either F or G to prove that Annotated
H-Subgraph-Cover has the gluing property. However, we observe that if H is not a clique, then
Annotated H-Subgraph-Cover does not have the gluing property (see Lemma 9.5.2). This is
the main difficulty that we face to solve H-Subgraph-Cover in the general case.

Note also that if we define in a similar fashion the annotated extension of Odd Cycle Transver-
sal (that is, a set S of vertices contained in the solution and a set R of vertices that do not belong
to the solution), then we can prove that this annotated extension does not have the gluing property.
However, if we define Annotated Odd Cycle Transversal as the problem that takes as input a
graph G and three disjoint sets S,X1, X2 of vertices of G and aims at finding an odd cycle transversal
S⋆ of minimum size such that S ⊆ S⋆ and X1 and X2 are on different sides of the bipartition
obtained after removing S⋆, then Annotated Odd Cycle Transversal does have the gluing
property (see Lemma 9.5.14).

For Maximum Weighted Cut, the annotation is pretty straightforward: we use two annotation
sets X1 and X2, corresponding to the vertices that will be on each side of the cut. It is easy to see
that this annotated extension has the gluing property.

Finding the right gadgets is the main difficulty to prove that a problem is nice. As explained
above, for Annotated Weighted Vertex Cover, we replace the boundaried graph G by an
edge that simulates the behavior of G with respect to v, which is the only vertex that interest us (see
Lemma 9.5.10). For Annotated Kt-Subgraph-Cover, if X = (R,S), depending on the optimum
on (G, (R∪ {v}, S)) and the one on (G, (R,S ∪ {v})), we can show that the optimum on (F⊕G,X)
is equal to the optimum on (F,X) or (F − v,X) modulo some constant (see Lemma 9.5.3). For
Annotated Odd Cycle Transversal, if X = (S,X1, X2), we can show that the optimum on
(F⊕G,X) is equal modulo some constant to the optimum on either (F,X), or (F −v,X), or (F ′,X),
where F ′ is obtained from F by adding an edge between v and either a vertex of X1 or a vertex of
X2 (see Lemma 9.5.15).

Finally, let us now mention some particular ingredients used to prove that the considered
annotated problems are solvable in time f(|X|) · nO(1) on an instance (G,X) such that G−X is
bipartite, where X is a partition of a vertex set X corresponding to the annotation. For Annotated
Kt-Subgraph-Cover and Annotated Weighted Vertex Cover, this is simply a reduction to
(Weighted) Vertex Cover on bipartite graphs. For Odd Cycle Transversal, we adapt the
algorithm of Reed, Smith, and Vetta [254] that uses iterative compression to solve Annotated Odd
Cycle Transversal in FPT-time parameterized by oct, so that it takes annotations into account
(Lemma 9.5.17). As for Maximum Weighted Cut parameterized by oct, the most important
trick is to reduce to a K5-odd-minor-free graph, and then use known results of Grötschel and
Pulleyblank [156] and Guenin [158] to solve the problem in polynomial time (Proposition 9.5.24).

9.2 Equivalent definitions of odd-minors

In this section, we give several equivalent definitions of odd-minors.

9.2. Equivalent definitions of odd-minors 199

H-expansions. Let G and H be two graphs. An H-expansion in G is a function η with domain
V (H) ∪ E(H) such that:

• for every v ∈ V (H), η(v) is a subgraph of G that is a tree Tv, called node of η, such that
each leaf of Tv is adjacent to a vertex of another node of η, and η(v) is disjoint from η(w) for
distinct v, w ∈ V (H), and

• for every uv ∈ E(H), η(uv) is an edge u′v′ in G, called edge of η, such that u′ ∈ V (η(u)) and
v′ ∈ V (η(v)).

We denote by
⋃
η the subgraph

⋃
x∈V (H)∪E(H) η(x) of G. Given a cycle C in H, we set η(C) to be

the unique cycle in G intersecting exactly the edges η(uv) of η such that uv ∈ E(C).
If there is an H-expansion η in G, then notice that H is a minor of G given that the nodes of η

form a model of H in G.

Lemma 9.2.1. Let G and H be two graphs. The following statements are equivalent.

1. There is an H-expansion η in G and a 2-coloring of
⋃
η that is proper in each node of η and

such that each edge of η is monochromatic.

2. There is an H-expansion η in G such that every cycle in
⋃
η has an even number of edges in⋃

v∈V (H) η(v).

3. There is an H-expansion η in G such that the length of every cycle C in H has the same parity
as the length of the cycle η(C) in

⋃
η.

4. H can be obtained from a subgraph of G by contracting each edge of an edge cut.

Proof. See Figure 9.1 to get some intuition.
1 ⇒ 2: Let η be an H-expansion in G with a 2-coloring c of

⋃
η that is proper in each node of η

and such that each edge of
⋃
η is monochromatic.

⋃
η is a subgraph of G. The edges of

⋃
v∈V (H) η(v)

are exactly the bichromatic edges of η. Let C be a cycle in
⋃
η. We transform C into a directed

cyclic graph C ′. The bichromatic edges in C ′ have alternatively color 1-2 and color 2-1. Thus, since
C ′ is a cycle, the number of edges 1-2 and 2-1 is equal. Hence, the number of bichromatic edges in
C is even.

2 ⇒ 1: Let η be an H-expansion in G such that every cycle in
⋃
η has an even number of

edges in
⋃

v∈V (H) η(v). Let v be an arbitrary vertex of H. We color η(v) greedily to obtain a proper
2-coloring of the node. Since η(v) is a tree, there is only one proper 2-coloring up to isomorphism.
We extend this isomorphism greedily to the entire

⋃
η so that each edge of η is monochromatic and

each node of η is properly 2-colored. Assume that there is a vertex v of
⋃
η that is not colorable by

this greedy approach. Then v is part of a cycle C in η such that each other vertex of C is colored,
but the neighbors u and w of v in C give contradictory instructions for the coloring of v. If u has
color cu and w has color cw with cu ̸= cw (resp. cu = cw), then, given that C has an even number of
bichromatic edges, this implies that exactly one of uv and vw is bichromatic (resp. uv and vw are
either both monochromatic or both bichromatic). Thus, v can be colored greedily. Therefore, η is
an H-expansion in G with a 2-coloring c of

⋃
η that is proper in each node of η and such that each

edge of η is monochromatic.
2 ⇔ 3: Let η be an H-expansion in G. By definition, there is a one-to-one correspondence

between the edges of η and the edges of H. Therefore, C is a cycle of H if and only if η(C) is a cycle
of

⋃
η, and there are as many edges of η in η(C) as the number of edges in C. The other edges of

η(C) are in the nodes of η, i.e., in
⋃

v∈V (H) η(v). Thus, every cycle in
⋃
η has an even number of

9.3. Bipartite treewidth 200

edges in
⋃

v∈V (H) η(v) if and only if the length of every cycle C in H has the same parity as the
length of the cycle η(C) in

⋃
η.

1 ⇒ 4: Let η be an H-expansion in G with a 2-coloring c of
⋃
η that is proper in each node of

η and such that each edge of η is monochromatic.
⋃
η is a subgraph of G. Let X1 and X2 be the

sets of vertices of η with color 1 and 2 respectively. Then E′ = E(X1, X2) is an edge cut of
⋃
η and

by contracting E′ in
⋃
η, we obtain H.

4 ⇒ 1: Let G′ be a subgraph of G and E′ be an edge cut of G′ such that H can be obtained
by contracting E′ in G′. Let E′′ = E(G′) \ E′. Let G′′ be a graph obtained from G′ by removing
edges in E′ such that every connected component of G′′ − E′′ is a spanning tree. Then there is an
H-expansion η in G such that

⋃
η = G′′ and the edges of η are exactly the edges in E′′. Let (X1, X2)

be the partition of V (G′) witnessing the edge cut E′. Then, if we give color 1 to the vertices of X1

and color 2 to the vertices of X2, there is a proper 2-coloring of every node of η and each edge of η
is monochromatic.

H

G

Figure 9.1: An odd H-expansion η in a graph G. The nodes of η are the subgraphs in the blue disks,
and the edges of η are the blue edges in G.

An H-expansion for which one of the statements of Lemma 9.2.1 is true is called an odd H-
expansion (see Figure 9.1 for an illustration). Using Statement 3, we say that such an H-expansion
in G preserves cycle parity. If there is an H-expansion in G, then we say that H is an odd-minor
of G. Note that if H is an odd-minor of G, then H is a minor of G. However, the opposite does
not always hold. For instance, K3 is a minor of C4, but is not an odd-minor of C4. We say that a
graph G is H-odd-minor-free if G excludes the graph H as an odd-minor. In particular, observe
that bipartite graphs are exactly the K3-odd-minor-free graphs and that the forests are exactly the
{K3, C4}-odd-minor-free graphs.

9.3 Bipartite treewidth

Let us define formally bipartite treewidth and the more general parameter 1-H-treewidth, and give
some preliminary results.

Notations on tree decompositions. Let (T, χ, r) be a rooted tree decomposition. Given
t ∈ V (T), we denote by Chr(t) the set of children of t and by Parr(t) the parent of t (if t ̸= r). We
set δrt = adh(t,Parr(t)), with the convention that δrr = ∅. Moreover, we denote by Gr

t the graph

9.3. Bipartite treewidth 201

induced by
⋃

t′∈V (Tt)
χ(t′) where (Tt, t) is the rooted subtree of (T, r) containing all descendants of t.

We may use δt and Gt instead of δrt and Gr
t when there is no risk of confusion.

While our goal in this chapter is to study bipartite treewidth, defined below, we provide the
following definition in a more general way, namely of a parameter that we call 1-H-treewidth, with
the hope of it finding some application in future work. We use the term 1-H-treewidth to signify
that the H-part of each bag intersects each neighboring bag in at most one vertex. This also has the
benefit of avoiding confusion with H-treewidth defined in [104], which would be another natural
name for this class of parameters.

1-H-treewidth. Let H be a graph class. A 1-H-tree decomposition of a graph G is a triple (T, α, β),
where T is a tree and α, β : V (T)→ 2V (G), such that

• (T, α ∪ β) is a tree decomposition of G, where α ∪ β maps each t ∈ V (T) to α(t) ∪ β(t),

• for every t ∈ V (T), α(t) ∩ β(t) = ∅,

• for every t ∈ V (T), G[β(t)] ∈ H, and

• for every tt′ ∈ E(T), |(α ∪ β)(t′) ∩ β(t)| ≤ 1.

The vertices in α(t) are called apex vertices of the node t ∈ V (T).
The width of (T, α, β) is equal to max

{
|α(t)|

∣∣ t ∈ V (T)
}
. The 1-H-treewidth of G, denoted by

(1,H)-tw(G), is the minimum width over all 1-H-tree decompositions of G.
A rooted 1-H-tree decomposition is a tuple (T, α, β, r) where (T, α, β) is a 1-H-tree decomposition

and (T, r) is a rooted tree.
Given that (T, α ∪ β) is a tree decomposition, we naturally extend all definitions and notations

concerning treewidth to 1-H-treewidth.
Observe also that a tree decomposition (T, χ) is also a 1-H-tree decomposition for every graph

class H, in the sense that (T, χ, o) is a 1-H-tree decomposition, where o : V (T)→ ∅. Therefore, for
every graph class H and every graph G, (1,H)-tw(G) ≤ tw(G) + 1.

If H is the graph class containing only the empty graph, then a 1-H-tree decomposition is exactly
a tree decomposition.

Remark. The H-treewidth actually corresponds to the 0-H-treewidth (minus one), which is defined
by replacing the “1” by a “0” in the last item of the definition of a 1-H-tree decomposition above.
Indeed, let (T, α, β) be a 0-H-tree decomposition of a graph G of width k. Note that, for each distinct
t, t′ ∈ V (T), β(t) ∩ β(t′) = ∅. Let X =

⋃
t∈V (T) α(t). Then (T, α) is a tree decomposition of X of

width k − 1. Moreover, for each t ∈ V (T), G[β(t)] ∈ H, and therefore the connected components of
G−X belong to H.

Bipartite treewidth [adapted from [85,299]]. A graph G is bipartite if there is a partition
(A,B) of V (G) such that E(G) = E(A,B). We denote the class of bipartite graphs by B. We focus
here on the case where H = B. Then, we use the term bipartite treewidth instead of 1-H-treewidth,
and denote it by btw. As mentioned in the introduction, this definition had already been used (more
or less implicitly) in [85,299].

Given that the bipartite graphs are closed under 1-clique-sums, we have the following.

Observation 9.3.1. A graph has bipartite treewidth zero if and only if it is bipartite.

9.3. Bipartite treewidth 202

Figure 9.2: A graph of bipartite treewidth one. A corresponding bipartite tree decomposition of
width one is depicted, with two bags (one blue and one pink). The apex vertex of each bag is the
squared vertex of the same color.

Moreover, Campbell, Gollin, Hendrey, and Wiederrecht [49] recently announced an FPT-
approximation algorithm to construct a bipartite tree decomposition.

Proposition 9.3.2 ([49]). There exist computable functions f1, f2, g : N→ N and an algorithm that,
given a graph G and k ∈ N, outputs, in time g(k) · n4 log n, either a report that btw(G) ≥ f1(k), or
a bipartite tree decomposition of G of width at most f2(k).

Bipartite treewidth is not closed under minors, given that contracting an edge in a bipartite
graph (which has bipartite treewidth zero) may create a non-bipartite graph (which has positive
bipartite treewidth). However, bipartite treewidth is closed under odd-minors, which is a desirable
property to deal with odd-minor related problems.

Lemma 9.3.3. Bipartite treewidth is closed under odd-minor containment.

Proof. Let G be a graph and H be an odd-minor of G. We want to prove that btw(H) ≤ btw(G).
By Lemma 9.2.1, there is a subgraph G′ of G and an edge cut E′ such that H is obtained from G′

by contracting every edge in E′.
Since we only removed vertices and edges to obtain G′ from G, btw(G′) ≤ btw(G). It remains to

show that btw(H) ≤ btw(G′). Let (T, α′, β′) be a bipartite tree decomposition of G′. We transform
(T, α′, β′) to a bipartite tree decomposition (T, α, β) of H as follows. For each e = uv ∈ E′ and for
each t ∈ V (T) such that {u, v} ∩ (α′ ∪ β′)(t) ̸= ∅,

• if {u, v} ∩ α′(t) ̸= ∅, then the vertex ve resulting from contracting e is placed in α(t),

• otherwise, ve is placed in β(t).

For each v ∈ V (G′) that is not involved in any contraction and for each t ∈ V (T), if v ∈ α′(t) (resp.
v ∈ β′(t)), then v ∈ α(t) (resp. v ∈ β(t)).

Let us show that (T, α, β) is indeed a bipartite tree decomposition of H. It is easy to see that
(T, α ∪ β) is a tree decomposition of H, since it is obtained from (T, α′ ∪ β′) by contracting the edge
set E′, and that treewidth is minor-closed. For simplicity, we identify the vertices in α ∪ β with the
vertices of H. Given that an edge with at least one endpoint in α′(t) contracts to a vertex in α(t),
no new vertex is added to β(t), and therefore, for any t′ ∈ V (T) \ {t}, |(α ∪ β)(t′) ∩ β(t)| ≤ 1.

It remains to prove that, for each t ∈ V (T), H[β(t)] is bipartite. Let t ∈ V (T). Let Et be the
set of edges of E′ with both endpoints in β′(t). We have to prove that the bipartite graph induced
by β′(t) in G′ remains bipartite after contracting Et. Et is an edge cut of G′[β′(t)], witnessed by
some vertex partition (A1, A2). Given a proper 2-coloring (B1, B2) of G′[β′(t)], which is bipartite,
keep the same color for the vertices in A1, and change the color of the vertices in A2, i.e., define
the coloring (C1, C2) = ((B1 ∩A1) ∪ (B2 ∩A2), (B2 ∩A1) ∪ (B1 ∩A2)). Thus, the monochromatic

9.3. Bipartite treewidth 203

edges are exactly the edges of Et. Therefore, contracting Et gives a proper 2-coloring of H[β(t)], so
H[β(t)] is bipartite. Thus, (T, α, β) is a bipartite tree decomposition of H.

Moreover, since the contraction of an edge with both endpoints in β′(t) is a vertex in β(t), it
follows that |α(t)| ≤ |α′(t)| for every t ∈ V (T). Therefore, btw(H) ≤ btw(G′).

A natural generalization of bipartite treewidth can be made by replacing the “1” in the last item
of the definition of 1-H-tree decomposition by any q ∈ N, hence defining q-H-tree decompositions
and q-H-treewidth, denoted by (q,H)-tw(G). For q ≥ 2, however, q-B-treewidth is not closed
under odd-minor containment, as we prove in Lemma 9.3.4 below. Additionally, given that for
q ∈ {0, 1}, torso(G−α(t), β(t)) = G[β(t)], we could replace the third item by the property “for every
t ∈ V (T), torso(G− α(t), β(t)) ∈ H”, hence defining what we call q-torso-H-tree decompositions and
q-torso-H-treewidth, denoted by (q,H)⋆-tw(G). However, we prove in Lemma 9.3.4 that, for q ≥ 2,
(q,B)⋆-tw is also not closed under odd-minors. These facts, in our opinion, provide an additional
justification for the choice of q = 1 in the definition of bipartite treewidth.

Lemma 9.3.4. For q ≥ 2, q(-torso)-B-treewidth is not closed under odd-minor containment. In
particular, for any t ≥ 3, there exist a graph G and an odd-minor H of G, such that (q,B)-btw(G) = 0
and (q,B)-btw(H) = t− 2, and (q,B)⋆-btw(G) ≤ 1 and (q,B)⋆-btw(H) = t− 2.

Proof. Let t ∈ N≥3 and let K ′
t (resp. K ′′

t) be the graph obtained from Kt by subdividing every edge
once (resp. twice). Let V ′ = {v1, . . . , vt} be the set of vertices of K ′′

t that are the original vertices
of Kt. Kt is an odd-minor of K ′′

t since Kt can be obtained from K ′′
t by contracting the edge cut

E(V ′, V (K ′′
t) \ V ′). Note also that K ′

t is bipartite. We show that taking G = K ′′
t and H = Kt

satisfies the statement of the lemma.
Given thatKt is a complete graph, it has to be fully contained in one bag of any tree decomposition,

so in particular of any q(-torso)-B-tree decomposition. Since the smallest odd cycle transversal of
Kt has size t− 2, we have that (q,B)⋆-tw(Kt) = (q,B)-tw(Kt) = t− 2.

Let us first prove that (q,B)-tw(K ′′
t) = 0. For i, j ∈ [t] with i < j, let ei,j be the path of length

three between vi and vj . Let T be a tree with one central vertex x0 and, for each i, j ∈ [t] with
i < j, a vertex xi,j only adjacent to x0 (thus, T is a star). Let β(x0) = V ′ and β(xi,j) = V (ei,j) for
each i, j ∈ [t] with i < j. Let α(x) = ∅ for each x ∈ V (T). V ′ is an independent set, so G[V ′] is
bipartite. Note that paths are bipartite. Moreover, each adhesion contains at most two vertices of
β(x0) and two vertices of β(xi,j). Hence, (T, α, β) is a q-B-tree decomposition of K ′′

t , for q ≥ 2, and
has width zero.

Let us now prove that (q,B)⋆-btw(K ′′
t) ≤ 1. Let ui,j and wi,j be the internal vertices of ei,j , such

that ui,j is adjacent to vi. Let V1 (resp. V2) be the set of vertices ui,j (resp. wi,j). We construct a
q-torso-B-tree decomposition (T, α′, β′) of K ′′

t as follows. We set α′(x0) = ∅ and β′(x0) = V ′ ∪ V2.
For each i, j ∈ [t] with i < j, we set α′(xi,j) = {vi} and β′(xi,j) = {ui,j , wi,j}. Observe that
torso(K ′′

t − α′(x0), β
′(x0)) = K ′

t, since each path vi-ui,j-wi,j is replaced by an edge viwi,j . Thus, it
is bipartite. Similarly, the torso at each other node of T is an edge, and hence is bipartite as well.
Moreover, each adhesion contains at most two vertices of β′(x0) and one vertex of β′(xi,j). Hence,
(T, α′, β′) is indeed a q-torso-B-tree decomposition of K ′′

t , for q ≥ 2, and has width one. Therefore,
(q,B)⋆-btw(K ′′

t) ≤ 1.
Hence, q(-torso)-B-treewidth is not closed under odd-minor containment and the gap between a

graph and an odd-minor of this graph can be arbitrarily large.

As mentioned in Section 9.1, one of the main difficulties for doing dynamic programming on
(rooted) bipartite tree decompositions is the lack of a way to upper-bound the number of children of
each node of the decomposition. As shown in the next lemma, the notion of “nice tree decomposition”
is not generalizable to bipartite tree decompositions.

9.4. General dynamic programming to obtain FPT-algorithms 204

Lemma 9.3.5. For any t ∈ N, there exists a graph G such that btw(G) = 1 and any bipartite tree
decomposition of G whose nodes all have at most t neighbors has width at least t− 1.

Proof. Let G be the graph obtained from Kt,t by gluing a new pendant triangle Hv to each vertex
v of Kt,t (that is, v is identified with one vertex of its pendant triangle). Let T be the star K1,2t,
with vertex set {t0} ∪ {tv | v ∈ V (Kt,t)}. Let α(t0) = ∅, β(t0) = V (Kt,t), and for every v ∈ V (Kt,t),
α(tv) = {v} and β(tv) = V (Hv) \ {v}. It can be easily verified that T = (T, α, β) is a bipartite
tree decomposition of G of width one. Given that G is not bipartite, Observation 9.3.1 implies that
btw(G) = 1. Note that node t0 has 2t neighbors. For any bipartition (A,B) of V (Kt,t) such that
A,B ̸= ∅, we have |E(A,B)| ≥ t. Hence, for any bipartite tree decomposition T ′ of G such that
V (Kt,t) is not totally contained in one bag, there is an adhesion of two bags of size at least t, so
the width of T ′ is at least t− 1. If V (Kt,t) is fully contained in one bag, however, the only way to
reduce the number of children to k, for some integer k, is to add 2t − k of the pendant triangles
inside the same bag. But then this bag has odd cycle transversal number at least 2t − k, so the
obtained bipartite tree decomposition has width at least 2t− k. Hence, if we want that k ≤ t, then
the corresponding width is at least 2t− k ≥ t.

9.4 General dynamic programming to obtain FPT-algorithms

In this section, we introduce a framework for obtaining FPT-algorithms for problems parameterized
by the width of a given bipartite tree decomposition of the input graph. In Subsection 9.4.1 we define
several gluing operations on boundaried graphs that are needed for our scheme. In Subsection 9.4.2
we introduce the main technical notion of a nice problem and the necessary background, and in
Subsection 9.4.3 we provide dynamic programming algorithms for nice problems.

9.4.1 Gluing boundaried graphs

Let us define ways to glue boundaried graphs that will be used in this chapter.

1

2

3

1

2
3

4

G1 G2

G1 ⊕G2 G1 ⊞G2

1

2
3

4

G1 ▷G2

Figure 9.3: Examples of use of the operations ⊕, ⊞, and ▷.

Just for this chapter, we redefine the ⊕ operation as follows. Given two boundaried graphs
G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2), we define G1 ⊕G2 as the unboundaried graph obtained
if we take the disjoint union of G1 and G2 and, for every i ∈ ρ1(B1) ∩ ρ2(B2), we identify vertices
ρ−1
1 (i) and ρ−1

2 (i). Note that we do not ask G1 and G2 to be compatible (for this chapter). If

9.4. General dynamic programming to obtain FPT-algorithms 205

two vertices are adjacent in at least one boundary, then there are adjacent in G1 ⊕G2. If v is the
result of the identification of v1 := ρ−1

1 (i) and v2 := ρ−1
2 (i) then we say that v is the heir of vi from

Gi, i ∈ [2]. If v is either a vertex in B1 where ρ1(v) ̸∈ ρ1(B1) ∩ ρ2(B2) or a vertex in B2 where
ρ2(v) ̸∈ ρ1(B1) ∩ ρ2(B2), then v is also a (non-identified) vertex of G1 ⊕G2 and is an heir of itself
(from G1 or G2 respectively). For i ∈ [2], and given an edge vu in G1 ⊕G2, we say that vu is the
heir of an edge v′u′ from Gi if v′ is the heir of v from Gi, u′ is the heir of u from Gi, and v′u′ is an
edge of Gi. If x′ is an heir of x from G = (G,B, ρ) in G′, then we write x = heirG,G′(x′). Given
B′ ⊆ B, we write heirG,G′(B′) =

⋃
v∈B′ heirG,G′(x′).

We also define G1 ⊞ G2 as the boundaried graph (G1 ⊕G2, B, ρ), where B is the set of all
heirs from G1 and G2 and ρ : B → N is the union of ρ1 and ρ2 after identification. Note that in
circumstances where ⊞ is repetitively applied, the heir relation is maintained due to its transitivity.

Moreover, we define G1 ▷G2 as the unboundaried graph G obtained from G1 ⊕G2 by removing
all heirs from G2 that are not heirs from G1 and all heirs of edges from G2 that are not heirs of
edges from G1. Informally, G1 ▷G2 is obtained from G1 ⊕G2 by removing vertices and edges of
G[B2] that are not in G[B1]. Note that ▷ is not commutative. See Figure 9.3 for an illustration of
the operations ⊕, ⊞, and ▷.

9.4.2 Nice problems

All algorithms we give for problems on graphs of bounded btw follow the same strategy. To avoid
unnecessary repetition, we introduce a framework that captures the features that the problems have
in common with respect to their algorithms using bipartite tree decompositions. Naturally, the
algorithms use dynamic programming along a rooted bipartite tree decomposition. However, as the
bags in the decomposition can now be large, we cannot apply brute-force approaches to define table
entries as we can, for instance, on standard tree decompositions when dealing with treewidth.

Suppose we are at a node t with children t1, . . . , td. Since the size of α(t) is bounded by the
width, we can store all possible ways in which solutions interact with α(t). Moreover, since each
adhesion has at most one vertex from β(t), the size of each adhesion is still bounded in terms of
the bipartite treewidth. Therefore, we can store one table entry for each way in which a solution
can interact with the adhesion δt of t and its parent. However, since the size of β(t) is unbounded,
there can now be an exponential (in n) number of choices of table entries that are “compatible” with
the choice X made for δt, so we cannot simply brute-force them to determine the optimum value
corresponding to X . To overcome this, we apply the following strategy: First, since the size of α(t)
is bounded in terms of the bipartite treewidth, we guess which choice A of the interaction of the
solution with α(t) ∪ δt that extends X leads to the optimum partial solution. For each i ∈ [d], there
may be a vertex vti ∈ δti ∩ β(t) whose interaction with the partial solution remained undecided. We
replace, for each i ∈ [d], the subgraph Gti − δti with a simply structured subgraph that simulates
the behaviour of the table at ti when it comes to the decision of how vti interacts with the solution,
under the choice of A for α(t) ∪ δt. The crux is that the resulting graph will have an odd cycle
transversal that is bounded in terms of the size of α(t), so we can apply known FPT-algorithms
parameterized by odd cycle transversal to determine the value of the table entry. These notions can
be formalized not only for bipartite treewidth, but for any 1-H-treewidth, so we present them in
full generality here. We also depart from using tree decompositions explicitly, and state them in an
equivalent manner in the language of boundaried graphs.

First, let us formalize the family of problems we consider which we refer to as optimization
problems. Here, solutions correspond in some sense to partitions of the vertex set, and we want to
optimize some property of such a partition. For instance, if we consider Odd Cycle Transversal,
then this partition has three parts, one for the vertices in the solution, and one part for each part of

9.4. General dynamic programming to obtain FPT-algorithms 206

the bipartition of the vertex set of the graph obtained by removing the solution vertices, and we
want to minimize the size of the first part of the partition. (It will become clear later why we keep
one separate part for each part of the bipartition.) In Maximum Cut, the partition simply points to
which side of the cut each vertex is on, and we want to maximize the number of edges going across.

A p-partition-evaluation function on graphs is a function f that receives as input a graph G
along with a p-partition P of its vertices and outputs a non-negative integer. Given such a function
f and some choice opt ∈ {max,min} we define the associated graph parameter pf,opt where, for
every graph G,

pf,opt(G) = opt{f(G,P) | P is a p-partition of V (G)}.

An optimization problem is a problem that can be expressed as follows.

Input: A graph G.
Task: Compute pf,opt(G).

To represent the case when we made some choices for the (partial) solution to an optimization
problem, such as A above, we consider annotated versions of such problems. They extend the
function pf,opt so to receive as input, apart from a graph, a set of annotated sets in the form of a
partition X ∈ Pp(X) of some X ⊆ V (G). More formally, the annotated extension of pf,opt is the
parameter p̂f,opt such that

p̂f,opt(G,X) = opt{f(G,P) | P is a p-partition of V (G) with X ⊆ P}.

Observe that pf,opt(G) = p̂f,opt(G, ∅p), for every graph G. The problem Π′ is a p-annotated extension
of the optimization problem Π if Π can be expressed by some p-partition-evaluation function f and
some choice opt ∈ {max,min}, and if Π′ can be expressed as follows.

Input: A graph G and X ∈ Pp(X) for some X ⊆ V (G).
Task: Compute p̂f,opt(G,X).

We also say that Π′ is a p-annotated problem.
Let us turn to the main technical tool introduced in this section that formalizes the above idea,

namely the nice reduction. First, we may assume that the vertices of G are labeled injectively via σ.
Then, each graph Gti , for i ∈ [d], naturally corresponds to a boundaried graph Gi = (Gti , δti , σ|δti);
from now on let Xi = δti . The part of Gt that will be modified can be viewed as a boundaried graph
G which is essentially obtained as ⊞i∈[d]Gi. However, as we want to fix a choice of how the partial
solution interacts with δt, we include these corresponding vertices in G as well, modeled as a trivial
boundaried graph X, making G = X⊞ (⊞i∈[d]Gi).

Denote the boundary of G by X. The set X is partitioned into (A,B), corresponding to
(X ∩ (α(t)∪ δ(t)), X ∩ (β(t) \ δ(t))), and the fact that the adhesion between ti and t had at most one
vertex in common with β(t) now materializes as the fact that for each i ∈ [d], G has at most one
vertex outside of A that is an heir of a vertex in Gi. Fixing a choice for α(t) ∪ δt now corresponds
to choosing a partition A of the set A. As we assume that all table entries at the children have been
computed, we assume knowledge of all values p̂f,opt(Gti ,Xi), for all i ∈ [d] and Xi ∈ Pp(Xi). This
finishes the motivation of the input of a nice reduction.

Given the pair (G,A), it outputs a tuple (G′ = (G′, X ′, ρ′),A′, s′), with the following desired
properties. G′ can be constructed by gluing d′ boundaried graphs plus one trivial one (for some

9.4. General dynamic programming to obtain FPT-algorithms 207

d′ ∈ N), similarly to G. A′ is a p-partition of a set A′ ⊆ V (G′) whose size is at most the size of A
plus a constant. No matter what the structure of the graph of the vertices in (α ∪ β)(t) looked like
(remember, so far we carved out only the adhesions), the solutions are preserved, up to an offset of
s′. This is modeled by saying that for each boundaried graph F (which corresponds to the remainder
of the bag at t) compatible with G, p̂f,opt(G⊕ F,A) = p̂f,opt(G

′ ▷ F,A′) + s′. The reason why we
use the ▷-operator in the right-hand side of the equation is the gadgeteering happening in the later
sections. To achieve the “solution-preservation”, we might have to add or remove vertices, or change
adjacencies between vertices in Xi.

The last condition corresponds to our aim that if the bag at t induces a graph of small oct
(now, a small modulator to a graph class H), then the entire graph resulting from the operation
(G′ ▷ F) should have a small modulator to H (namely A′). All remaining conditions are related to
the efficiency of the nice reduction.

X
G

G1
G2

Gd

Gi

Figure 9.4: Illustration of G = X⊞ (⊞i∈[d]Gi).

Nice problem and nice reduction. Let p ∈ N, let H be a graph class, and let Π be a p-
annotated problem corresponding to some choice of a p-partition-evaluation function f and some
opt ∈ {max,min}. We say that Π is a H-nice problem if there exists an algorithm that receives as
input

• a boundaried graph G = (G,X, ρ),

• a trivial boundaried graph X = (G[X], X, ρX) and a collection {Gi | i ∈ [d]} of boundaried
graphs with Gi = (Gi, Xi, ρi) for i ∈ [d], such that d ∈ N and G = X ⊞ (⊞i∈[d]Gi) (see
Figure 9.4),

• a partition (A,B) of X such that for all i ∈ [d], |heirGi,G(Xi) \A| ≤ 1,

• some A ∈ Pp(A), and

• for every i ∈ [d] and each Xi ∈ Pp(Xi), the value p̂f,opt(Gi,Xi),

and outputs, in time O(|A| · d), a tuple (G′ = (G′, X ′, ρ′),A′, s′), called H-nice reduction of the pair
(G,A) with respect to Π, such that the following hold (see Figure 9.5 for an illustration).

• There are sets A′ ⊆ V (G′) and A′ ∈ Pp(A′) with |A′| = |A|+O(1).

• There is a trivial boundaried graph X′ = (G[X ′], X ′, ρX′) and a collection {G′
i = (G′

i, X
′
i, ρ

′
i) |

i ∈ [d′]}, where d′ ∈ N, of boundaried graphs such that G′ = X′ ⊞ (⊞i∈[d′]G
′
i) and |V (G′)| ≤

|X|+O(|B|), |E(G′)| ≤ |E(G[X])|+O(|B|).

• For any boundaried graph F compatible with G, it holds that

p̂f,opt(G⊕ F,A) = p̂f,opt(G
′ ▷ F,A′) + s′.

9.4. General dynamic programming to obtain FPT-algorithms 208

G1 G2

X1 X2

X∗

A

A

AB

B

B

F

G′
1

G′
2

X ′
1 X ′

2

X∗′A′

A′
F

A′A′

X ′
1

X ′
2 A′

Figure 9.5: Illustration of the setting of the nice problem and reduction. The shaded area on the left
is G where X = X1 ∪X2 ∪X⋆, and the shaded area on the right is G′ where X ′ = X ′

1 ∪X ′
2 ∪X⋆′.

• For any boundaried graph F = (F,XF , ρF) compatible with G, if F̄ − AF ∈ H, where
F̄ = (F⊕G)[heirF,G⊕F(V (F))] and AF = heirG,G⊕F(A), then (G′ ▷ F)−A′ ∈ H.

All the definitions of this section are naturally generalizable to graphs with weights on the
vertices and/or edges. Given such a weight function w, we extend f(G,P), pfopt(G), p̂fopt(G,X),
(G,A), and (G′,A′, s′) to f(G,P, w), pfopt(G,w), p̂fopt(G,X , w), (G,A, w), and (G′,A′, s′, w′),
respectively.

9.4.3 General dynamic programming scheme

We now have all the ingredients for our general dynamic programming scheme on bipartite tree
decompositions. We essentially prove that if a problem Π has an annotated extension that is B-nice
and solvable in FPT-time parameterized by oct, then Π is solvable in FPT-time parameterized by
btw. This actually holds for more general H.

Theorem 9.4.1. Let p ∈ N. Let H be a graph class. Let Π be an optimization problem. Let Π′ be a
problem that is:

• a p-annotated extension of Π corresponding to some choice of p-partition-evaluation function g
and some opt ∈ {max,min},

• H-nice, and

• solvable, given instances (G,X) such that G − ∪X ∈ H, in time f(|∪X |) · nc ·md, for some
c, d ∈ N.

Then, there is an algorithm that, given a graph G and a 1-H-tree decomposition of G of width k,
computes pf,opt(G) in time O(pk · f(k +O(1)) · (k · n)c ·md) (or O(pk · f(k +O(1)) · (m+ k2 · n)d)
if c = 0).

Proof. Let Alg be the algorithm that solves instances (G,X) such that G − ∪X ∈ H in time
f(| ∪ X |) · nc ·md.

Let (T, α, β, r) be a rooted 1-H-tree decomposition of G of width at most k. Let σ : V (G)→ N
be an injective function. For t ∈ V (T), we set the following:

Gt = (Gt, δt, σ|δt), Xt = α(t) ∪ δt ∪
⋃

t′∈Chr(t)

δt′ ,

Xt = (G[Xt], Xt, σ|Xt), Ht = Xt ⊞ (⊞t′∈Chr(t)Gt′),

At = α(t) ∪ δt, and Bt = Xt \At = Xt ∩ β(t) \ δt.

9.4. General dynamic programming to obtain FPT-algorithms 209

Let also Ft be such that Gt = Ft ⊕Ht. Note that |bd(Gt′) \At| ≤ 1 for t′ ∈ Chr(t).
We proceed in a bottom-up manner to compute sXt := p̂g,opt(Gt,X), for each t ∈ V (T), for each

X ∈ Pp(δt). Hence, given that δr = ∅, it implies that s∅r = pg,opt(G).
We fix t ∈ V (T). By induction, for each t′ ∈ Chr(t) and for each Xt′ ∈ Pp(δt′), we compute the

value sXt′
t′ . Let X ∈ Pp(δt), let Q be the set of all A ∈ Pp(At) such that A ∩ δt = X , and let A ∈ Q.

Since Π′ is H-nice, there is an H-nice reduction (HA,A′, sA) of (Ht,A) with respect to Π′. Hence,
p̂g,opt(Gt,A) = p̂g,opt(HA ▷ Ft,A′) + sA. Let us compute p̂g,opt(HA ▷ Ft,A′).

By definition of anH-reduction, (HA▷Ft)−(∪A′) ∈ H. Hence, we can compute p̂g,opt(HA▷Ft,A′),
and thus p̂g,opt(Gt,A), using Alg on the instance (HA ▷ Ft,A′). Finally, sXt = optA∈Qp̂g,opt(Gt,A).

It remains to calculate the complexity. Throughout, we make use of the fact that p is a
fixed constant. We can assume that T has at most n nodes: for any pair of nodes t and t′ with
(α ∪ β)(t) ⊆ (α ∪ β)(t′), we can contract the edge tt′ of T to a new vertex t′′ with α(t′′) = α(t′)
and β(t′′) = β(t′). This defines a valid 1-H-tree decomposition of the same width. For any leaf
t of T , there is a vertex u ∈ V (G) that only belongs to the bag of t. From this observation,
we can inductively associate each node of T to a distinct vertex of G. Hence, if ct = |Chr(t)|,
then we have

∑
t∈V (T) ct ≤ n. Let also nt = |(α ∪ β)(t)| and mt = |E(G[(α ∪ β)(t)])|. Note that

|At| = |α(t)| + |δt ∩ β(t)| ≤ k + 1 and that |Bt| = |
⋃

t′∈V (T) δt′ ∩ β(t)| ≤ ct, so |Xt| ≤ k + 1 + ct.
Moreover, the properties of the tree decompositions imply that the vertices in β(t) \Xt are only
present in node t. Then,

∑
t∈V (T) nt =

∑
t∈V (T)(|Xt|+ |β(t) \Xt|) = O(k · n). Also, let m̄t be the

number of edges only present in the bag of node t. The edges that are present in several bags are
those in the adhesion of t and its neighbors. t is adjacent to its |ct| children and its parent, and an
adhesion has size at most k + 1. Thus,

∑
t∈V (T)mt ≤

∑
t∈V (T)(m̄t + k2(1 + ct)) = O(m+ k2 · n).

There are p|At| ≤ pk+1 = O(pk) partitions of Pp(At). For each of them, we compute in
time O(k · ct) an H-nice reduction (HA,A′, sA) with | ∪ A′| = |At| + O(1) = k + O(1) and
with O(|Bt|) = O(ct) additional vertices and edges. We thus solve Π′ on (HA ▷ Ft,A′) in time
f(k +O(1)) · O((nt + ct)

c · (mt + ct)
d). Hence, the running time is O(pk · f(k +O(1)) · (k · n)c ·md)

(or O(pk · f(k +O(1)) · (m+ k2 · n)d) if c = 0).

9.4.4 Generalizations

For the sake of simplicity, we assumed in Theorem 9.4.1 that the problem Π under consideration
takes as input just a graph. However, a similar statement still holds if we add labels/weights on the
vertices/edges of the input graph. This is in particular the case for Weighted Independent Set
(Subsection 9.5.2) and Maximum Weighted Cut (Subsection 9.5.4) where the vertices or edges
are weighted. Furthermore, while we omit the proof here, with some minor changes to the definition
of a nice problem, a similar statement would also hold for q(-torso)-H-treewidth.

Moreover, again for the sake of simplicity, we assumed that Π′ is solvable in FPT-time, while
other complexities such as XP-time could be considered. Similarly, in the definition of the nice
reduction, the contraints |A′| = |A|+O(1), |V (G′)| ≤ |X|+O(|B|), |E(G′)| ≤ |E(G[X])|+O(|B|)
can be modified. In those cases, the dynamic programming algorithm still holds, but the running
time of Theorem 9.4.1 changes.

To give a precise running time for Kt-Subgraph-Cover (Subsection 9.5.1), Weighted
Independent Set (Subsection 9.5.2), and Maximum Weighted Cut (Subsection 9.5.4) be-
low, let us observe that, if Π′ is solvable in time f(| ∪ X |) · (n′)c · (m′)d, where G′ = G − ∪X ,
n′ = |V (G′)|, and m′ = |E(G′)|, then the running time of Theorem 9.4.1 is better. Indeed,
in the proof of the complexity of Theorem 9.4.1, we now solve Π′ on (HA ▷ F,A′) in time
f(k + O(1)) · O((n′t + ct)

c · (m′
t + ct)

d), where n′t = |β(t)| and m′
t = |E(G[β(t)])|. We have

9.5. Applications 210

∑
t∈V (T) n

′
t =

∑
t∈V (T)(|B|+ |β(t)∩ δt|+ |β(t) \X|) = O(n) and

∑
t∈V (T)m

′
t ≤ m. Hence, the total

running time is O(pk · (k · n+ f(k +O(1)) · nc ·md)).

9.5 Applications

We now apply the above framework to give FPT-algorithms for several problems parameterized
by bipartite treewidth, that is, 1-B-treewidth where B is the class of bipartite graphs. Thanks
to Theorem 9.4.1, this now reverts to showing that the problem under consideration has a B-nice
annotated extension that is solvable in FPT-time when parameterized by oct. Several of the presented
results actually hold for other graph classes H, not necessarily only bipartite graphs.

More particularly, we study Kt-Subgraph-Cover, Weighted Vertex Cover, Odd Cycle
Transversal, and Maximum Weighted Cut in Subsection 9.5.1, Subsection 9.5.2, Subsec-
tion 9.5.3, and Subsection 9.5.4, respectively. Given that Maximum Weighted Cut is not a graph
modification problem, we decided to not include the entire proof of the results here, and we refer
the reader to [171] for the full proof. Finally, in Subsection 9.5.5, we discuss the hardness of vertex
deletion problems parameterized by btw.

All of the problems of this section have the following property, that seems critical to show that a
problem is H-nice.

Gluing property. Let Π be a p-annotated problem corresponding to some choice of p-partition-
evaluation function f and some opt ∈ {max,min}. We say that Π has the gluing property if, given two
compatible boundaried graphs F = (F,X, ρ) and G = (G,X, ρ), X ∈ Pp(X), and P ∈ Pp(V (F⊕G))
such that X ⊆ P , then p̂f,opt(F⊕G,X) = f(F⊕G,P) if and only if p̂f,opt(F,X) = f(F,P ∩ V (F))
and p̂f,opt(G,X) = f(G,P ∩ V (G)), where F and G are the underlying graphs of F and G (see
Figure 9.6).

F GX

Figure 9.6: If a problem Π has the gluing property, then a solution is optimal on F⊕G if and only
if its restriction to F and its restriction to G are both optimal.

For the sake of simplicity, with a slight abuse of notation, we identify in this section a vertex
with its heir.

Let Π′ be an annotated extension of some problem Π. Given an instance (G = X⊞(⊞i∈[d]Gi), (A,B),A)
for a B-nice reduction with respect to Π′, we know that the boundary of each Gi contains at most
one vertex of B, and hence which is not annotated. To show that Π′ is B-nice, we thus essentially
need to show how to reduce a graph F⊕G to a graph F ′ when the boundary of F and G is totally
annotated (and that Π′ has the gluing property), and when the boundary of F and G has a single
vertex v that is not annotated. To show that Π is FPT parameterized by btw, it then suffices to
prove that Π′ is FPT parameterized by oct on instances where a minimal odd cycle transversal is
annotated.

9.5. Applications 211

9.5.1 Kt-Subgraph-Cover

Let H be a graph class. Recall that the problem Vertex Deletion to H is defined as follows.

Input: A graph G (and a weight function w : V (G)→ N).
Question: Find the set S ⊆ V (G) of minimum size (resp. weight) such that G−S ∈ H.

(Weighted) Vertex Deletion to H

Given a graph H, if H is the class of graphs that do not contain H as a subgraph (resp. a
minor/odd-minor/induced subgraph), then the corresponding problem is calledH-Subgraph-Cover
(resp. H-Minor-Cover/H-Odd-Minor-Cover/H-Induced-Subgraph-Cover).

Let H be a graph and w : V (G)→ N be a weight function (assigning one to every vertex in the
unweighted case). We define fH as the 2-partition-evaluation function where, for every graph G, for
every (R,S) ∈ P2(V (G)),

fH(G, (R,S)) =

{
+∞ if H is a subgraph of G− S,
w(S) otherwise.

Seen as an optimization problem, (Weighted) H-Subgraph-Cover is the problem of comput-
ing pfH ,min(G). We call its annotated extension (Weighted) Annotated H-Subgraph-Cover.
In other words, (Weighted) Annotated H-Subgraph-Cover is defined as follows.

Input: A graph G, two disjoint sets R,S ⊆ V (G) (and a weight function
w : V (G)→ N).

Question: Find, if it exists, the minimum size (resp. weight) of a set S⋆ ⊆ V (G) such
that R ∩ S⋆ = ∅, S ⊆ S⋆, and G− S⋆ does not contain H as a subgraph

(Weighted) Annotated H-Subgraph-Cover

Given a graph G and a set X ⊆ V (G), note that X is a vertex cover if and only if V (G) \X is
an independent set. Hence, the size/weight of a minimum vertex cover is equal to the size/weight of
a maximum independent set. Thus, seen as optimization problems, (Weighted) Vertex Cover
and (Weighted) Independent Set are equivalent problems.

In order to prove that (Weighted) Annotated Kt-Subgraph-Cover is a nice problem, we
first prove that (Weighted) Annotated Kt-Subgraph-Cover has the gluing property.

Lemma 9.5.1 (Gluing property). (Weighted) Annotated Kt-Subgraph-Cover has the gluing
property. More precisely, given two boundaried graphs F = (F,BF , ρF) and G = (G,BG, ρG),
a weight function w : V (F ⊕ G) → N, a set X ⊆ V (F ⊕ G) such that BF ∩ BG ⊆ X, and
X = (R,S) ∈ P2(X), we have

p̂fKt ,min(F⊕G,X , w) = p̂fKt ,min(F,X ∩ V (F), w) + p̂fKt ,min(G,X ∩ V (G), w)− w̄,

where w̄ = w(S ∩BF ∩BG).

Proof. Observe that Kt is a subgraph of F⊕G if and only if Kt is a subgraph of F or of G.
Let P = (R⋆, S⋆) ∈ P2(V (F⊕G)) be such that X ⊆ P and p̂fKt ,min(F⊕G,X , w) = fKT

(F⊕
G,P, w). Then Kt is neither a subgraph of F − (S⋆ ∩ V (F)) nor of G− (S⋆ ∩ V (G)). Therefore,

p̂fKT
,min(F⊕G,X , w) = w(S⋆)

= w(S⋆ ∩ V (F)) + w(S⋆ ∩ V (G))− w(S⋆ ∩BF ∩BG)

≥ p̂fKt ,min(F,X ∩ V (F), w) + p̂fKt ,min(G,X ∩ V (G), w)− w̄.

9.5. Applications 212

Reciprocally, let PH = (RH , SH) ∈ P2(V (H)) be such that X ∩V (H) ⊆ PH and p̂fKt ,min(H,X ∩
V (H)) = fKt(H,PH) for H ∈ {F,G}. Then Kt is not a subgraph of (F⊕G)− (SF ∪ SG), so

p̂fKt ,min(F⊕G,X , w) ≤ w(SF ∪ SG)
= w(SF) + w(SG)− w̄
= p̂fKt ,min(F,X ∩ V (F), w) + p̂fKt ,min(G,X ∩ V (G), w)− w̄.

The main obstacle to find an FPT-algorithm parameterized by (1,H)-tw for (Weighted)
Annotated H-Subgraph-Cover, for H that is not a clique, is the fact that the problem does not
have the gluing property.

Lemma 9.5.2. If H is not a complete graph, then (Weighted) Annotated H-Subgraph-Cover
does not have the gluing property.

Proof. Since H is not a clique, there are two vertices u, v ∈ V (H) that are not adjacent. Let
V ′ = V (H) \ {u, v} and let σ : V ′ → N be an injective function. Let F = (H − u, V ′, σ) and
G = (H − v, V ′, σ). Then F⊕G is isomorphic to H. Let X = (V ′, ∅) and P = (H − u, {u}) ⊇ X .
Then we have p̂fH ,min(F ⊕G,X) = fH(F ⊕G,P) = 1. However, p̂fH ,min(G,X ∩ V (G)) = 0 <
fH(G,P ∩ V (G)) = 1.

We now show how to reduce a graph F⊕G when the boundary of F and G has a single vertex v
that is not annotated. Essentially, given an annotation (R,S), we compare the size s+ of an optimal
solution when v is added to S and the size s− of an optimal solution when v is added to R. If
s+ ≤ s−, then it is always better too add v to S, so we do so and delete V (G) \ V (F) from F⊕G.
Otherwise, we still delete V (G) \ V (F) from F ⊕G, but there is no need to annotate v, whose
addition to S or not will be determined by its behaviour in F . See Figure 9.7 for an illustration.

F G

X

R

S

v

F

R

S

v

F

R

S

v

if s+ ≤ s−

if s− < s+

Figure 9.7: Illustration of the gadgetization for Kt-Subgraph-Cover.

Lemma 9.5.3 (Gadgetization). Let F = (F,BF , ρF) and G = (G,BG, ρG) be two boundaried graphs.
Let X ⊆ V (F⊕G) be such that BF∩BG ⊆ X. Let also v ∈ BF∩BG and let X = (R,S) ∈ P2(X\{v}).
We define X+ = (R,S ∪ {v}) and X− = (R ∪ {v}, S). Furthermore, for a ∈ {+,−}, we set
sa = p̂fKt ,min(G,X a ∩ V (G)), and we set s̄ = |S ∩BF ∩BG|. Then, for any t ∈ N,

p̂fKt ,min(F⊕G,X) =

{
s+ + p̂fKt ,min(F,X+ ∩ V (F))− s̄− 1 if s+ ≤ s−,
s− + p̂fKt ,min(F,X ∩ V (F))− s̄ otherwise.

9.5. Applications 213

Proof. For H ∈ {F,G} and for a ∈ {+,−}, let Sa
H ⊆ V (H) be such that X a ∩ V (H) ⊆ (V (H) \

Sa
H , S

a
H) and p̂fKt ,min(H,X a∩V (H)) = fKt(H, (V (H)\Sa

H , S
a
H)) = |Sa

H |. We deduce that s+ = |S+
G |

and s− = |S−
G |. Let us note similarly t+ = |S+

F | and t− = |S−
F |.

Note that S+
F ∩S

+
G = (S∩BF ∩BG)∪{v} and S−

F ∩S
−
G = S∩BF ∩BG. Hence, using Lemma 9.5.1,

we have that

p̂fKt ,min(F⊕G,X) = min{p̂fKt ,min(F⊕G,X+), p̂fKt ,min(F⊕G,X−)}
= min{t+ + s+ − 1, t− + s−} − s̄.

Note that we always have s+ ≤ s− + 1 since G− (S−
G ∪ {v}) does not contain Kt as a subgraph,

and thus |S−
G ∪ {v}| ≥ pfKt ,min(G,X+ ∩ V (G)). Similarly, t+ ≤ t− + 1.

Thus, if s+ ≤ s−, then t++s+−1 ≤ t−+s+ ≤ t−+s−. Given that t+ = p̂fKt ,min(F,X+∩V (F)),
it follows that

p̂fKt ,min(F⊕G,X) = p̂fKt ,min(F,X+ ∩ V (F)) + s+ − s̄− 1.

And if s− < s+, then s+ = s−+1, so min{t++s+−1, t−+s−} = min{t+, t−}+s− = p̂fKt ,min(F,X ∩
V (F)) + s−. It follows that

p̂fKt ,min(F⊕G,X) = p̂fKt ,min(F,X ∩ V (F)) + s− − s̄.

Contrary to Lemma 9.5.1, observe that Lemma 9.5.3 only holds in the unweighted case. Indeed,
in the weighted case, we now have s+ ≤ s− +w(v), and thus, when s+ ∈ [s− + 1, s− +w(v)− 1], we
do not know what happens.

Using Lemma 9.5.1 and Lemma 9.5.3, we can now prove that Annotated Kt-Subgraph-Cover
is H-nice. Essentially, given an instance (G = X⊞ (⊞i∈[d]Gi), (A,B), (R,S)), we reduce G to X and
further remove some vertices of B that can be optimally added to S, and show that the resulting
boundaried graph is equivalent to G modulo some constant s.

Lemma 9.5.4 (Nice problem). Let H be a hereditary graph class. Let t ∈ N. Annotated
Kt-Subgraph-Cover is H-nice.

Proof. Let G = (G,X, ρ) be a boundaried graph, let X = (G[X], X, ρX) be a trivial boundaried
graph and let {Gi = (Gi, Xi, ρi) | i ∈ [d]} be a collection of boundaried graphs, such that G =
X ⊞ (⊞i∈[d]Gi), let (A,B) be a partition of X such that for all i ∈ [d], |Xi \ A| ≤ 1, and let
A = (R,S) ∈ P2(A). Suppose that we know, for every i ∈ [d] and each Xi ∈ P2(Xi), the value
p̂fKt ,min(Gi,Xi).

Let (H0, S0, s0) = (G, S, 0). For i going from 1 up to d, we construct (Hi, Si, si) from
(Hi−1, Si−1, si−1) such that for any boundaried graph F compatible with G,

p̂fKt ,min(G⊕ F,A) = p̂fKt ,min(Hi ⊕ F,Ai) + si,

where Ai = (R,Si). This is obviously true for i = 0.
Let i ∈ [d]. Let Hi be the boundaried graph such that Hi−1 = Hi ⊞Gi. See Figure 9.8 for an

illustration. By induction, p̂fKt ,min(G⊕ F,A) = p̂fKt ,min(Hi−1 ⊕ F,Ai−1) + si−1.
Suppose first that Xi ⊆ R ∪ Si−1. Let Pi = (Ri, Si) ∈ P2(X) be such that Ai−1 ⊆ Pi and

p̂fKt ,min(Hi−1 ⊕ F,Ai−1) = p̂fKt ,min(Hi−1 ⊕ F,Pi). Let F be the underlying graph of F. According

9.5. Applications 214

F

X

G

G1
G2

Gd

Gi

F

X

Gd

Gi

Hi−1

Figure 9.8: Illustration of G and Hi−1 in the proof of Lemma 9.5.4.

to Lemma 9.5.1,

p̂fKt ,min(Hi−1 ⊕ F,Pi) = p̂fKt ,min(F,Pi) + p̂fKt ,min(Hi−1,Pi)− |X ∩ Si|
= p̂fKt ,min(F,Pi) + p̂fKt ,min(Hi,Pi)
+ p̂fKt ,min(Gi,Pi ∩Xi)− |Xi ∩ Si| − |X ∩ Si|

= p̂fKt ,min(Hi ⊕ F,Pi) + p̂fKt ,min(Gi,Ai−1 ∩Xi)− |Si−1 ∩Xi|.

Since this is the case for all such Pi, it implies that

p̂fKt ,min(Hi−1 ⊕ F,Ai−1) = p̂fKt ,min(Hi ⊕ F,Ai−1) + p̂fKt ,min(Gi,Ai−1 ∩Xi)− |Si−1 ∩Xi|.

Therefore,
p̂fKt ,min(G⊕ F,A) = p̂fKt ,min(Hi ⊕ F,Ai) + si,

where Ai = Ai−1 and si = si−1 + p̂fKt ,min(Gi,Ai−1 ∩Xi)− |Si−1 ∩Xi|.
Otherwise, there is vi ∈ V (Gi−1) such that Xi\(R∪Si−1) = {vi}. Let X+

i = (R,Si−1∪{vi})∩Xi

and X−
i = (R ∪ {vi}, Si−1) ∩ Xi. Let Pi = (Ri, Si) ∈ P2(X \ {vi}) be such that Ai−1 ⊆ Pi and

p̂fKt ,min(Hi−1 ⊕ F,Ai−1) = p̂fKt ,min(Hi−1 ⊕ F,Pi). Note that

Hi−1 ⊕ F = (Hi ⊞Gi)⊕ F = (Hi ⊞ F)⊕Gi.

For a ∈ {+,−}, let sai = pfKt ,min(G,X a
i). Then, using Lemma 9.5.3, we have the following case

distinction.

p̂fKt ,min(Hi−1 ⊕ F,Pi) = p̂fKt ,min((Hi ⊞ F)⊕Gi ⊕ F,Pi)

=

{
s+i + p̂fKt ,min(Hi ⊕ F, (Ri, Si ∪ {vi}))− |Si−1 ∩Xi| − 1 if s+i ≤ s

−
i

s−i + p̂fKt ,min(Hi ⊕ F,Pi)− |Si−1 ∩Xi| otherwise.

Since this is the case for every such Pi, by setting (Hi, Si, si) = (Hi, Si−1 ∪ {vi}, si−1 + s+ − |Si−1 ∩
Xi| − 1) if s+ ≤ s− and (Hi, Si, si) = (Hi, Si−1, si−1 + s− − |Si−1 ∩Xi|) otherwise, we have that

p̂fKt ,min(G⊕ F,A) = p̂fKt ,min(Hi ⊕ F,Ai) + si.

The boundaried graph Hd obtained at the end is isomorphic to X. Let SB = Sd \ S ⊆ B.
Observe that

p̂fKt ,min(Hd ⊕ F,Ad) = p̂fKt ,min((Hd ⊕ F)− SB,Ad \ SB) + |SB|
= p̂fKt ,min((Hd − SB) ▷ F,A) + |SB|

9.5. Applications 215

Hence,
p̂fKt ,min(G⊕ F,A) = p̂fKt ,min((X− SB) ▷ F,A) + |SB|+ sd.

Let H = X− SB. Note that |V (H)| ≤ |X| and |E(H)| ≤ E(G[X]), where H is the underlying
graph of H. Given that SB ⊆ B ⊆ X, it implies that H ▷ F is isomorphic to F − SB. Thus, since
H is hereditary, if F − A belongs to H, then so does (H ▷ F)− A. Hence, (X− SB,A, |SB|+ sd)
follows every conditions so that it is an H-nice reduction of (G,A) with respect to Annotated
Kt-Subgraph-Cover.

At each step i, we compute |Si−1 ∩ Xi|, and thus si, in time O(|A|) (since p̂fKt ,min(Gi,Xi) is
supposed to be known). Hi and Si are then constructed in time O(1). Hence, the computation takes
time O(|A| · d), and thus, Annotated Kt-Subgraph-Cover is H-nice.

We now solve Annotated Kt-Subgraph-Cover for t ≥ 3 parameterized by oct. Note that
Vertex Cover can be solved on bipartite graphs in time O(m

√
n) using a maximum matching

algorithm [231] due to Kőnig’s theorem [87]. Moreover, Weighted Vertex Cover can be solved
on bipartite graphs in time O(m · n) using a flow algorithm [198, 246]. Indeed, let G = (A,B)
be a bipartite graph and w : V (G) → N be a weight function. We construct a flow network N
by connecting a source s to each vertex in A and a sink t to each vertex in B. We give infinite
capacity to the original edges of G, and capacity w(v) to each edge connecting a vertex v and a
terminal vertex. Every s− t cut in N corresponds to exactly one vertex cover and every vertex cover
corresponds to an s− t cut. Thus a minimum cut of N gives a minimum weight vertex cover of G.

Lemma 9.5.5. Let t ∈ N≥3. There is an algorithm that, given a graph G and two disjoint sets
R,S ⊆ V (G) such that G′ = G− (R ∪ S) is bipartite, solves Annotated Kt-Subgraph-Cover
(resp. Weighted Annotated Kt-Subgraph-Cover) on (G,R, S) in time O(kt ·(n′+m′)+m′√n′)
(resp. O(kt · (n′ +m′) +m′ · n′)), where k = |R|, n′ = |V (G′)|, and m′ = |E(G′)|.

Proof. Observe that we can assume that S = ∅, since S⋆ is an optimal solution for (G,R, S) if and
only if S⋆\S is an optimal solution for (G−S,R, ∅). Thus, G−R is bipartite, so for any occurrence of
Kt contained in G (as a subgraph), at most two of its vertices belong to G−R. Hence, enumerating
the occurrences of Kt takes time O(kt + kt−1 · n′ + kt−2 ·m′). If G[R] contains an occurrence of Kt,
then Annotated Kt-Subgraph-Cover has no solution. Let us thus assume that G[R] contains no
Kt. For each occurrences of Kt in G that contains t− 1 vertices of R and one vertex v ∈ V (G) \R,
we add v to S⋆ and remove v from G, since v has to be taken in the solution. Hence, all that remains
are occurrences of Kt with t − 2 vertices in R and the two others in G − R. Let H be the graph
induced by the edges of the occurrences of Kt in G with both endpoints in G−R. Each edge of H
intersects any solution S̄ on G for Annotated Kt-Subgraph-Cover. Hence, S̄ is the union of S⋆

and a minimum (weighted) vertex cover C of H. Thus, C can be computed in time O(m′√n′) (resp.
O(m′ · n′)). The running time of the algorithm is hence O(kt + kt−1 · n′ + kt−2 ·m′ +m′√n′) (resp.
O(kt + kt−1 · n′ + kt−2 ·m′ +m′ · n′)).

We apply Lemma 9.5.4 and Lemma 9.5.5 to the dynamic programming algorithm of Theorem 9.4.1
to obtain the following result.

Corollary 9.5.6. Let t ∈ N≥3. Given a graph G and a bipartite tree decomposition of G of width k,
there is an algorithm that solves Kt-Subgraph-Cover on G in time O(2k · (kt · (n+m) +m

√
n)).

We find a better running time when t = 2, i.e., for Vertex Cover/ Independent Set.

Observation 9.5.7. Let H be a hereditary graph class such that (Weighted) Vertex Cover can
be solved on instances (G,w) where G ∈ H in time O(nc ·md) for some c, d ∈ N. Then (Weighted)

9.5. Applications 216

Annotated Vertex Cover is solvable on instance (G,R, S,w) such that G′ = G− (R ∪ S) ∈ H
in time O(k · (k + n′) + n′c ·m′d), where n′ = |V (G′)|, m′ = |E(G′)|, and k = |R|.

Proof. Let G be a graph, w be a weight function, and R,S ⊆ V (G) be two disjoint sets such that
G − (R ∪ S) ∈ H. If R is not an independent set, then (G,R, S,w) has no solution. Hence, we
assume that R is an independent set. Then S⋆ ⊆ V (G) is a solution of Weighted Annotated
Vertex Cover on (G,R, S,w) if and only if S⋆ = SB ∪ S ∪ NG(R) where SB is a solution of
Weighted Vertex Cover on (G− (R∪ S), w). Checking that R is an independent set takes time
O(k2) and then finding NG(R) takes time O(k · n′), hence the result.

We apply Lemma 9.5.4 and Observation 9.5.7 to the dynamic programming algorithm of Theo-
rem 9.4.1 to obtain the following result.

Corollary 9.5.8. Let H be a hereditary graph class. Suppose that Vertex Cover /Independent
Set can be solved on H in time O(nc ·md). Then, given a graph G and a 1-H-tree decomposition of
G of width k, there is an algorithm that solves Vertex Cover/Independent Set on G in time
O(2k · (k · (k + n) + nc ·md)).

As a corollary of Corollary 9.5.8, we obtain the following result concerning bipartite treewidth.

Corollary 9.5.9. Given a graph G and a bipartite tree decomposition of G of width k, there is an
algorithm that solves Vertex Cover/Independent Set on G in time O(2k · (k · (k+n) +m

√
n)).

9.5.2 Weighted Vertex Cover/Weighted Independent Set

Given that Lemma 9.5.3 only holds for Kt-Subgraph-Cover in the unweighted case, we propose
here an analogous result that holds in the weighted case, when we restrict ourselves to t = 2, i.e.,
Weighted Vertex Cover. We already know that Weighted Vertex Cover has the gluing
property (Lemma 9.5.1). We now show how to reduce a graph F ⊕G to a graph F ′ when the
boundary of F and G has a single vertex v that is not annotated. Recall that this reduction was
sketched in Section 9.1, and see Figure 9.9 for an illustration.

F G

X

R

S

v

F

R

S

v v−

w′(v) = s+ − w̄ w′(v−) = s− − w̄

w̄

Figure 9.9: Illustration of the gadgetization for Weighted Vertex Cover.

Lemma 9.5.10 (Gadgetization). Let F = (F,BF , ρF) and G = (G,BG, ρG) be two bounderied
graphs. Let w : V (F⊕G)→ N be a weight function, let X ⊆ V (F⊕G) be such that BF ∩BG ⊆ X, let
v ∈ BF ∩BG, and let X = (R,S) ∈ P2(X\{v}). We define X+ = (R,S∪{v}) and X− = (R∪{v}, S).
Furthermore, for a ∈ {+,−}, we set sa = p̂fKt ,min(G,X a∩V (G), w). We also set w̄ = w(S∩BF∩BG),
G′ = (G′, {v}, ρ|{v}), where G′ is an edge vv− for some new vertex v−, and w′ : V (F ⊕G′) → N
such that w′(v) = s+ − w̄, w′(v−) = s− − w̄, and w′(x) = w(x) otherwise. Then

p̂fK2,min(F⊕G,X , w) = p̂fK2,min(F⊕G′,X , w′).

9.5. Applications 217

Proof. For a ∈ {+,−}, let ta = p̂fKt ,min(F,X a ∩ V (F), w).
Note that

s′− := p̂fK2
,min(G

′,X− ∩ V (G′), w′) = p̂fK2
,min(G

′, ({v}, ∅), w′)

= w′(v−)

= s− − w̄,
s′+ := p̂fK2

,min(G
′,X+ ∩ V (G′), w′) = p̂fK2

,min(G
′, (∅, {v}), w′)

= w′(v)

= s+ − w̄,
t′− := p̂fK2

,min(F,X− ∩ V (F), w′) = t−, and

t′+ := p̂fK2
,min(F,X+ ∩ V (F), w′) = t+ + w′(v)− w(v).

Hence, using Lemma 9.5.1, we have that

p̂fK2
,min(F⊕G,X , w)

= min{p̂fK2
,min(F⊕G,X+, w), p̂fK2

,min(F⊕G,X−, w)}
= min{t+ + s+ − w(v), t− + s−} − w̄
= min{t+ + s′+ − w(v), t− + s′−}
= min{t′+ + s′+ − w′(v), t′− + s′−}
= min{p̂fK2

,min(F⊕G′,X+, w′), p̂fK2
,min(F⊕G′,X−, w′)}

= p̂fK2
,min(F⊕G′,X , w′).

Using Lemma 9.5.1 and Lemma 9.5.10, we can now prove that Weighted Annotated Vertex
Cover is H-nice. Essentially, given an instance (G = X⊞ (⊞i∈[d]Gi), (A,B), (R,S), w), we reduce
G to X where we glue an edge to some vertices in B. We then show that if the appropriate weight
is given to each new vertex, then the resulting boundaried graph is equivalent to G modulo some
constant s.

Lemma 9.5.11 (Nice problem). Let H be a graph class that is closed under 1-clique-sums and
contains edges. Then Weighted Annotated Vertex Cover is H-nice.

Proof. Let G = (G,X, ρ) be a boundaried graph, let w : V (G) → N be a weight function, let
X = (G[X], X, ρX) be a trivial boundaried graph and let {Gi = (Gi, Xi, ρi) | i ∈ [d]} be a collection
of boundaried graphs, such that G = X⊞ (⊞i∈[d]Gi), let (A,B) be a partition of X such that for all
i ∈ [d], |Xi \A| ≤ 1, and let A = (R,S) ∈ P2(A). Suppose that we know, for every i ∈ [d] and each
Xi ∈ P2(Xi), the value p̂fKt ,min(Gi,Xi, w).

Let v1, . . . , v|B| be the vertices of B. For i ∈ [|B|], let Ii = {j ∈ [d] | Xj \ A = {vi}}. Let
I0 = {j ∈ [d] | Xj ⊆ A}. Obviously, (Ii)i∈[0,|B|] is a partition of [d]. Let G′

i = ⊞j∈IiGj . See
Figure 9.10 for an illustration.

Let (H−1, w−1, s−1) = (G, w, 0). For i going from 0 up to |B|], we will construct (Hi, wi, si) from
(Hi−1, wi−1, si−1) such that wi|V (F)\{vj |j≤i} = w|V (F)\{vj |j≤i} and wi|V (G′

j)
= w|V (G′

j)
, for j > i, and

for any boundaried graph F with underlying graph F and compatible with G,

p̂fK2
,min(G⊕ F,A, w) = p̂fK2

,min(Hi ⊕ F,A, wi) + si.

9.5. Applications 218

B

X

A

vi Xj , j ∈ Ii

G′
i

Xj , j ∈ I0

G′
0

Figure 9.10: Illustration of G′
i in the proof of Lemma 9.5.11.

This is obviously true for i = −1.
Let i ∈ [0, |B|]. Let H′

i be the boundaried graph with underlying graph H ′
i such that Hi−1 =

H′
i ⊞G′

i. By induction, we have

p̂fK2
,min(G⊕ F,A, w) = p̂fK2

,min(Hi−1 ⊕ F,A, wi−1) + si−1.

Suppose first that i = 0. Let P0 = (R0, S0) ∈ P2(X) be such that A ⊆ P0 and p̂fK2
,min(G ⊕

F,A, w) = p̂fK2
,min(G⊕ F,P0, w). According to Lemma 9.5.1,

p̂fK2
,min(G⊕ F,P0, w) = p̂fK2

,min(F,P0, w) + p̂fK2
,min(G,P0, w)− w(X ∩ S0)

= p̂fK2
,min(F,P0, w)− w(X ∩ S0) + p̂fK2

,min(H
′
0,P0, w)

+
∑
j∈I0

(p̂fK2
,min(Gj ,P0 ∩Xj , w)− w(S0 ∩Xj))

= p̂fK2
,min(H

′
0 ⊕ F,P0, w) +

∑
j∈I0

(p̂fK2
,min(Gj ,A ∩Xj , w)− w(S ∩Xj)).

Since this is the case for all such P0, it implies that

p̂fK2
,min(G⊕ F,A, w) = p̂fK2

,min(H
′
0 ⊕ F,A, w) +

∑
j∈I0

(p̂fK2
,min(Gj ,A ∩Xj , w)− w(S ∩Xj)).

Therefore, if H0 = H′
0, w0 = w and

s0 =
∑
j∈I0

(p̂fK2
,min(Gj ,A ∩Xj , w)− w(S ∩Xj)),

then
p̂fK2

,min(G⊕ F,A, w) = p̂fK2
,min(H0 ⊕ F,A, w0) + s0.

Otherwise, i ∈ [|B|] and Xj \ A = {vi} for each j ∈ Ii. Let X ′
i =

⋃
j∈Ii Xj . Let X+

i =

(R,S ∪{vi})∩X ′
i and X−

i = (R∪{vi}, S)∩X ′
i. Let H′′

i = (H ′′
i , {vi}, ρ|{vi}) be the boundaried graph

where H ′′
i is an edge viv−i for some new vertex v−i . Let Hi = H′

i ⊞H′′
i . Let s+i = p̂fKt ,min(G

′
i,X

+
i , w)

and s−i = p̂fKt ,min(G
′
i,X

−
i , w). By Lemma 9.5.1,

s+i =
∑
j∈Ii

(p̂fKt ,min(Gj ,X+
i ∩Xj , w)− w(S ∩Xj)− w(vi)) + w(S ∩X ′

i) + w(vi),

9.5. Applications 219

and
s−i =

∑
j∈Ii

(p̂fKt ,min(Gj ,X−
i ∩Xj , w)− w(S ∩Xj)) + w(S ∩X ′

i).

Since the p̂fKt ,min(Gj ,X a
i ∩Xj , w) are given, s+i and s−i can be computed in time O(|A| · |Ii|). Let

wi : V (F⊕H′′
i)→ N be such that wi(vi) = s+i − w(S ∩BF ∩BG), wi(v

−
i) = s−i − w(S ∩BF ∩BG),

and wi(x) = w(x) otherwise. Let Pi = (Ri, Si) ⊆ P2(X \ {vi}) be such that A ⊆ Pi and
p̂fK2

,min(Hi−1 ⊕ F,A, wi−1) = p̂fK2
,min(Hi−1 ⊕ F,Pi, wi−1). Then, using Lemma 9.5.10,

p̂fK2
,min(Hi−1 ⊕ F,Pi, wi−1) = p̂fK2

,min((H
′
i ⊞ F)⊕G′

i,Pi, wi−1)

= p̂fK2
,min((H

′
i ⊞ F)⊕H′′

i ,Pi, wi)

= p̂fK2
,min(Hi ⊕ F,Pi, wi)

Since this is the case for all such Pi, it implies that

p̂fK2
,min(Hi−1 ⊕ F,A, wi−1) = p̂fK2

,min(Hi ⊕ F,A, wi).

Therefore, given si = si−1,

p̂fK2
,min(G⊕ F,A, w) = p̂fK2

,min(Hi ⊕ F,A, wi) + si.

Observe that H|B| = X⊞(⊞i∈[|B|]H
′′
i) and H|B|⊕F = F⊕(⊞i∈[|B|]H

′′
i). Suppose that F −A ∈ H.

Given that H is closed under 1-clique-sums and contains edges, that each H ′′
i is an edge, and

that |bd(H′′
i)| = 1, it follows that (H|B| ⊕ F) − A ∈ H. Moreover, |V (H|B|)| = |X| + |B|, and

|E(H|B|)| = |E(G[X])|+ |B|. Hence, (H|B|,A, s|B|, w|B|) is an H-nice reduction of (G,A, w) with
respect to Weighted Annotated Vertex Cover.

At each step i, si is computable in time O(|A| · |Ii|), and Hi and wi are computable in time O(1).
Hence, the computation takes time O(|A| · d). Therefore, Weighted Annotated Vertex Cover
is H-nice.

We apply Lemma 9.5.11 and Observation 9.5.7 to the dynamic programming algorithm of
Theorem 9.4.1 to obtain the following result.

Corollary 9.5.12. Let H be a graph class that is closed under 1-clique-sum and contains edges.
Suppose that Weighted Vertex Cover can be solved on instances (G,w) where G ∈ H in time
O(nc ·md). Then, given a graph G, a 1-H-tree decomposition of G of width k, and a weight function
w, there is an algorithm that solves Weighted Vertex Cover/Weighted Independent Set
on (G,w) in time O(2k · (k · (k + n) + nc ·md)).

Given that the class B of bipartite graphs is closed under 1-clique-sums, that P2 ∈ B, and that
Weighted Vertex Cover can be solved on bipartite graphs in time O(m ·n) [198,246], we obtain
the following result concerning bipartite treewidth using Corollary 9.5.12.

Corollary 9.5.13. Given a graph G, a bipartite tree decomposition of G of width k, and a weight
function w, there is an algorithm that solves Weighted Vertex Cover/Weighted Independent
Set on (G,w) in time O(2k · (k · (k + n) + n ·m)).

9.5. Applications 220

9.5.3 Odd Cycle Transversal

Let H be a graph. We define foct as the 3-partition-evaluation function where, for every graph G
and for every (S,X1, X2) ∈ P3(V (G)),

foct(G, (S,X1, X2)) =

{
|S| if G− S ∈ B,with bipartition (X1, X2),

+∞ otherwise.

Hence, seen as an optimization problem, Odd Cycle Transversal is the problem of computing
pfoct,min(G). We call its annotated extension Annotated Odd Cycle Transversal. In other
words, Annotated Odd Cycle Transversal is defined as follows.

Input: A graph G, three disjoint sets S,X1, X2 ⊆ V (G) (and a weight function
w : V (G)→ N).

Question: Find, if it exists, a set S⋆ of minimum size (resp. weight) such that S ⊆ S⋆,
(X1 ∪X2) ∩ S⋆ = ∅, and G− S⋆ is bipartite with X1 and X2 on different
sides of the bipartition.

(Weighted) Annotated Odd Cycle Transversal

We first prove that (Weighted) Annotated Odd Cycle Transversal has the gluing
property.

Lemma 9.5.14 (Gluing property). (Weighted) Annotated Odd Cycle Transversal has the
gluing property. More precisely, given two boundaried graphs F = (F,BF , ρF) and G = (G,BG, ρG),
a function w : V (F⊕G)→ N, a set X ⊆ V (F⊕G) such that BF ∩BG ⊆ X, and X = (S,X1, X2) ∈
P3(X), we have

p̂foct,min(F⊕G,X , w) = p̂foct,min(F,X ∩ V (F), w) + p̂foct,min(G,X ∩ V (G), w)− w̄,

where w̄ = w(S ∩BF ∩BG).

Proof. Let P = (S⋆, X⋆
1 , X

⋆
2) ∈ P3(V (F ⊕G)) be such that X ⊆ P and p̂foct,min(F ⊕G,X , w) =

foct(F⊕G,P, w). Then, for H ∈ {F,G}, H − (S⋆ ∩ V (H)) is bipartite, witnessed by the 2-partition
(X⋆

1 ∩ V (H), X⋆
2 ∩ V (H)). Therefore,

p̂foct,min(F⊕G,X , w) = w(S⋆)

= w(S⋆ ∩ V (F)) + w(S⋆ ∩ V (G))− w(S⋆ ∩BF ∩BG)

≥ p̂foct,min(F,X ∩ V (F), w) + p̂foct,min(G,X ∩ V (G), w)− w̄.

Reciprocally, let PH = (SH , X
H
1 , X

H
2) ∈ P3(V (H)) be such that X ∩ V (H) ⊆ PH and

p̂foct,min(H,X ∩ V (H), w) = foct(H,PH , w) for H ∈ {F,G}. Since PF ∩BF ∩BG = PG ∩BF ∩BG,
it follows that XF

1 ∪XG
1 and XF

2 ∪XG
2 are two independent sets of (F⊕G)− (SF ∪SG). Therefore,

(F⊕G)− (SF ∪ SG) is a bipartite graph witnessed by (XF
1 ∪XG

1 , X
F
2 ∪XG

2). Thus,

p̂foct,min(F⊕G,X , w) ≤ w(SF ∪ SG)
= w(SF) + w(SG)− w̄
= p̂foct,min(F,X ∩ V (F), w) + p̂foct,min(G,X ∩ V (G), w)− w̄.

9.5. Applications 221

F G

X

S

v

X1 X2

v1 v2

F

S

v

X1 X2

v1 v2

F

S

v

X1 X2

v1 v2

F

S

v

X1 X2

v1 v2

F

S

v

X1 X2

v1 v2

if sS ≤ s1, s2 if s1 = s2 < sS if s1 < sS , s2 if s2 < sS , s1

Figure 9.11: Illustration of the gadgetization for Odd Cycle Transversal.

We now show how to reduce a graph F⊕G to a graph F ′ when the boundary of F and G has a
single vertex v that is not annotated. See Figure 9.11 for an illustration. Similarly to Lemma 9.5.3,
the proof of Lemma 9.5.15 only holds in the unweighted case.

Lemma 9.5.15 (Gadgetization). Let F = (F,BF , ρF) and G = (G,BG, ρG) be two boundaried
graphs. Let X ⊆ V (F ⊕ G) be such that BF ∩ BG ⊆ X. Let also v ∈ BF ∩ BG, let X =
(S,X1, X2) ∈ P3(X \ {v}) with X1, X2 ̸= ∅, and let v1 ∈ X1 and v2 ∈ X2. We set XS = (S ∪
{v}, X1, X2), X1 = (S,X1 ∪ {v}, X2), and X2 = (S,X1, X2 ∪ {v}). We also set, for a ∈ {S, 1, 2},
sa = p̂foct,min(G,Xa ∩ V (G)), and we set s̄ = |S ∩ BF ∩ BG|. For i ∈ [2], we note Fi the graph
obtained from F by adding the edge vvi. Then we have the following case distinction.

p̂foct,min(F⊕G,X) =


sS + p̂foct,min(F,XS ∩ V (F))− s̄− 1 if sS ≤ s1, s2,
s1 + p̂foct,min(F,X ∩ V (F))− s̄ if s1 = s2 < sS ,

s1 + p̂foct,min(F2,X ∩ V (F))− s̄ if s1 < sS , s2,

s2 + p̂foct,min(F1,X ∩ V (F))− s̄ otherwise.

Proof. For H ∈ {F,G} and a ∈ {S, 1, 2}, let Pa
H = (Sa

H , X
a
1,H , X

a
2,H) be a partition of V (H) such

that Xa ∩ V (H) ⊆ Pa
H and p̂foct,min(H,Xa ∩ V (H)) = foct(H,Pa

H) = |Sa
H |. We therefore have

sa = |Sa
G|. Let us similarly define ta = |Sa

F | for a ∈ {S, 1, 2}.
Note that SS

F ∩ SS
G = (S ∩BF ∩BG) ∪ {v} and for a ∈ {1, 2}, Sa

F ∩ Sa
G = S ∩BF ∩BG. Hence,

using Lemma 9.5.1, we have that

p̂foct,min(F⊕G,X) = min{p̂foct,min(F⊕G,Xa) | a ∈ {S, 1, 2}}
= min{tS + sS − 1, t1 + s1, t2 + s2} − s̄.

Note that sS ≤ s1 +1, since G− (S1
G ∪ {v}) is bipartite, witnessed by the 2-partition (X1 \ {v}, X2),

and thus |S1
G ∪ {v}| ≥ p̂foct,min(G,XS ∩ V (G)). Similarly, sS ≤ s2 + 1, tS ≤ t1 + 1, and tS ≤ t2 + 1.

Hence, if sS ≤ s1, s2, then min{tS + sS − 1, t1 + s1, t2 + s2} = tS + sS − 1, so

p̂foct,min(F⊕G,X) = sS + tS − s̄− 1.

If s1 = s2 < sS , then s1 = s2 = sS−1. Thus, min{tS + sS−1, t1+ s1, t2+ s2} = min{tS , t1, t2}+
s1 = p̂foct,min(F,X ∩ V (F)) + s1, so

p̂foct,min(F⊕G,X) = s1 + p̂foct,min(F,X ∩ V (F))− s̄.

9.5. Applications 222

If s1 < sS , s2, then s1 + 1 = sS ≤ s2. We have t2 + s2 ≥ tS + s2 ≥ tS + sS − 1. Thus, min{tS +
sS−1, t1+s1, t2+s2} = min{tS , t1}+s1 = s1+min{p̂foct,min(F,XS∩V (F)), p̂foct,min(F,X1∩V (F))}.
Hence, we just need to ensure that v cannot be added to X2, which is done by adding an edge
between v and v2 ∈ X2. Therefore,

p̂foct,min(F⊕G,X) = s1 + p̂foct,min(F2,X ∩ V (F))− s̄.

Otherwise, s2 < sS , s1 By symmetry, we similarly obtain

p̂foct,min(F⊕G,X) = s2 + p̂foct,min(F1,X ∩ V (F))− s̄.

Using Lemma 9.5.14 and Lemma 9.5.15, we can now prove that Annotated Odd Cycle
Transversal is H-nice. Essentially, given an instance (G = X⊞ (⊞i∈[d]Gi), (A,B),A), we reduce
G to X where we add two new vertices u1 and u2 in A and add edges between ui and some vertices
in B, for i ∈ [2], and show that the resulting boundaried graph is equivalent to G modulo some
constant s.

Lemma 9.5.16 (Nice problem). Let H be a hereditary graph class. Annotated Odd Cycle
Transversal is H-nice.

Proof. Let G = (G,X, ρ) be a boundaried graph, let X = (G[X], X, ρX) be a trivial boundaried
graph and let {Gi = (Gi, Xi, ρi) | i ∈ [d]} be a collection of boundaried graphs, such that G =
X ⊞ (⊞i∈[d]Gi), let (A,B) be a partition of X such that for all i ∈ [d], |Xi \ A| ≤ 1, and let
A = (S,X1, X2) ∈ P3(A). Suppose that we know, for every i ∈ [d] and each Xi ∈ P3(Xi), the value
p̂foct,min(Gi,Xi).

Let G′ and X′ be the boundaried graphs obtained from G and X respectively, by adding two new
isolated vertices u1 and u2 in the boundary (with unused labels). Let A′ = (S,X1∪{u1}, X2∪{u2}).
This operation is done to ensure that X ′

i = Xi ∪ {ui} is non-empty for i ∈ [2]. Obviously,
p̂foct,min(G⊕ F,A) = p̂foct,min(G

′ ⊕ F,A′).
Let v1, . . . , v|B| be the vertices of B. For i ∈ [|B|], let Ii = {j ∈ [d] | Xj \ A = {vi}}. Let

I0 = {j ∈ [d] | Xj ⊆ A}. Obviously, (Ii)i∈[0,|B|] is a partition of [d].
Let (H−1, S−1, s−1, E−1) = (G′, S, 0, ∅). For i going from 0 up to |B|, we construct (Hi, Si−1, si, Ei)

from (Hi−1, Si, si−1, Ei−1) such that for any boundaried graph F with underlying graph F and
compatible with G,

p̂foct,min(G⊕ F,A) = p̂foct,min(Hi ⊕ Fi,Ai) + si,

where Fi is the boundaried graph obtained from F by adding the edges in Ei and Ai = (Si, X
1 ∪

{u1}, X2 ∪ {u2}). This is obviously true for i = −1.
Let i ∈ [0, |B|]. By induction, we have

p̂foct,min(G⊕ F,A) = p̂foct,min(Hi−1 ⊕ Fi−1,Ai−1) + si−1.

Let G′
i = ⊞j∈IiGj . Let H′

i be the boundaried graph with underlying graph H ′
i such that Hi−1 =

H′
i ⊞G′

i.

9.5. Applications 223

Suppose first that i = 0. Let P0 = (S0, X0
1 , X

0
2) ∈ P3(X ∪ {u1, u2}) be such that A′ ⊆ P0 and

p̂foct,min(G
′ ⊕ F,A′) = p̂foct,min(G

′ ⊕ F,P0). According to Lemma 9.5.14,

p̂foct,min(G
′ ⊕ F,P0) = p̂foct,min(F,P0) + p̂foct,min(G

′,P0)− |S0 ∩X|
= p̂foct,min(F,P0)− |S0 ∩X|+ p̂foct,min(H

′
0,P0)

+
∑
j∈I0

(p̂foct,min(Gj ,P0 ∩Xj)− |S0 ∩Xj |)

= p̂foct,min(H
′
0 ⊕ F,P0) +

∑
j∈I0

(p̂foct,min(Gj ,P0 ∩Xj)− |S ∩Xj |),

because S0 \ S ⊆ B and Xj ∩B = ∅.

Since this is the case for all such P0, it implies that

p̂foct,min(G
′ ⊕ F,A′) = p̂foct,min(H

′
0 ⊕ F,A′) +

∑
j∈I0

(p̂foct,min(Gj ,P0 ∩Xj)− |S ∩Xj |).

Therefore, if H0 = H′
0, S0 = S, s0 =

∑
j∈I0(p̂foct,min(Gj ,P0 ∩Xj)− |S ∩Xj |), and E0 = ∅, then

p̂foct,min(G⊕ F,A) = p̂foct,min(H0 ⊕ F0,A0) + s0.

Otherwise, i ∈ [|B|] and Xj \ A = {vi} for each j ∈ Ii. Let X ′
i =

⋃
j∈Ii Xj . Let X S

i =

(Si−1 ∪ {vi}, X1 ∪ {u1}, X2 ∪ {u2}), X 1
i = (Si−1, X

1 ∪ {u1, vi}, X2 ∪ {u2}), and X 2
i = (Si−1, X

1 ∪
{u1}, X2 ∪ {u2, vi}). For a ∈ {S, 1, 2}, let sai = p̂foct,min(G

′
i,X a

i ∩X ′
i). By Lemma 9.5.14,

sSi =
∑
j∈Ii

(p̂foct,min(Gj ,X S
i ∩Xj)− |Si−1 ∩Xj | − 1) + |Si−1 ∩X ′

i|+ 1

and, for a ∈ {1, 2},

sai =
∑
j∈Ii

(p̂foct,min(Gj ,X a
i ∩Xj)− |Si−1 ∩Xj |) + |Si−1 ∩X ′

i|.

Therefore, sai can be computed for a ∈ {S, 1, 2} in time O(|A| · |Ii|). For a ∈ {1, 2}, let Ha
i and

Fa
i be the boundaried graphs obtained from H′

i and Fi−1, respectively, by adding the edge viua.
Let Pi = (Si, Xi

1, X
i
2) ∈ P3(X ∪ {u1, u2} \ {vi}) be such that Ai−1 ⊆ Pi and p̂foct,min(Hi−1 ⊕

Fi−1,Ai−1) = p̂foct,min(Hi−1 ⊕ Fi−1,Pi). Let PS
i = (Si ∪ {vi}, Xi

1, X
i
2), P1

i = (Si, Xi
1 ∪ {vi}, Xi

2),
and P2

i = (Si, Xi
1, X

i
2 ∪ {vi}). Note that for a ∈ {S, 1, 2}, we have sai = p̂foct,min(G

′
i,Pa

i ∩X ′
i). Then,

using Lemma 9.5.15,

p̂foct,min(Hi−1 ⊕ Fi−1,Pi) = p̂foct,min((H
′
i ⊞ Fi−1)⊕G′

i,Pi)

=


sS + p̂foct,min(H

′
i ⊕ Fi−1,PS

i)− s̄− 1 if sSi ≤ s1i , s2i ,
s1 + p̂foct,min(H

′
i ⊕ Fi−1,Pi)− s̄ if s1i = s2i < sSi ,

s1 + p̂foct,min(H
2
i ⊕ F2

i ,Pi)− s̄ if s1i < sSi , s
2
i , and

s2 + p̂foct,min(H
1
i ⊕ F1

i ,Pi)− s̄ otherwise.

Since this is the case for any such Pi, we have that

p̂foct,min(G⊕ F,A) = p̂foct,min(Hi−1 ⊕ Fi−1,Ai−1) + si−1

= p̂foct,min(Hi ⊕ Fi,Ai) + si,

9.5. Applications 224

where

(Hi, Si, si, Ei) =


(H′

i, Si−1 ∪ {v}, si−1 + sS − s̄− 1, Ei−1) if sSi ≤ s1i , s2i ,
(H′

i, Si−1, si−1 + s1 − s̄, Ei−1) if s1i = s2i < sSi ,

(H2
i , Si−1, si−1 + s1 − s̄, Ei−1 ∪ {viu2}) if s1i < sSi , s

2
i ,

(H1
i , Si−1, si−1 + s2 − s̄, Ei−1 ∪ {viu1}) otherwise.

Let SB = S|B| \S ⊆ B. Let HB = H|B|−SB . We have (H|B|⊕F|B|)−SB = (H|B|⊕F)−SB =
(H|B| − SB) ▷ F = HB ▷ F. Observe that

p̂foct,min(H|B| ⊕ F|B|,A|B|) = p̂foct,min((H|B| ⊕ F|B|)− SB,A|B| \ SB) + |SB|
= p̂foct,min(HB ▷ F,A′) + |SB|.

Hence,
p̂foct,min(G⊕ F,A) = p̂foct,min(HB ▷ F,A′) + |SB|+ s|B|.

Observe that HB is isomorphic to the boundaried graph obtained from X by adding two new
vertices and the at most |B| edges in E|B|, and removing the vertices in SB . Hence, |V (HB)| ≤ |X|+2
and |E(HB)| ≤ |E(G[X])|+ |B|. Moreover, |∪A′| = |∪A|+ 2. Suppose that F −A ∈ H. Observe
that, since the edges in E|B| all have one endpoint in {u1, u2}, (HB ▷ F) − (∪A) − {u1, u2} is
isomorphic to F −A−SB . Since H is hereditary, (HB ▷F)− (∪A′) ∈ H. Thus, (HB,A′, |SB|+ s|B|)
is an H-nice reduction of (G,A) with respect to Annotated Odd Cycle Transversal.

At each step i, (Hi, Si, si, Ei) is computable in time O(|A| · |Ii|), so the computation takes time
O(|A| · d). Hence, Annotated Odd Cycle Transversal is H-nice.

In the next lemma, we adapt the seminal proof of Reed, Smith and Vetta [254] that uses iterative
compression to solve Annotated Odd Cycle Transversal in FPT-time parameterized by oct.

Given a graph G and two sets A,B ⊆ V (G), an (A,B)-cut is a set X ⊆ V (G) such that there
are no paths from a vertex in A to a vertex in B in V (G) \X.

Lemma 9.5.17. There is an algorithm that, given a graph G, (a weight function w : V (G)→ N,)
and three disjoint sets S,A,B ⊆ V (G), such that G− (S ∪A ∪B) is bipartite, solves Annotated
Odd Cycle Transversal (resp. Weighted Annotated Odd Cycle Transversal) on
(G,S,A,B) in time O((n+ k) · (m+ k2)), where k = |A ∪B|.

Proof. We can assume that S = ∅, given that S⋆ is an optimal solution for (G,S,A,B) if and only
if S⋆ \ S is an optimal solution for (G− S, ∅, A,B).

Let G+ be the graph obtained from G by joining each a ∈ A with each b ∈ B. Let X = A ∪B.
Let (S1, S2) be a partition witnessing the bipartiteness of G − X = G+ − X. We construct
an auxiliary bipartite graph G′ from G+ as follows. The vertex set of the auxiliary graph is
V ′ = V (G) \X ∪ {x1, x2 | x ∈ X}. We maintain a one-to-one correspondence between the edges of
G+ and the edges of G′ by the following scheme:

• for each edge e of G+ −X, there is a corresponding edge in G′ with the same endpoints,

• for each edge e ∈ E(G+) joining a vertex y ∈ Si to a vertex x ∈ X, the corresponding edge in
G′ joins y to x3−i, and

• for each edge e ∈ E(G+) joining two vertices a ∈ A and b ∈ B, the corresponding edge of G′

joins a1 to b2.

9.5. Applications 225

For i ∈ {1, 2}, let Xi = {xi | x ∈ X}, Ai = {ai | a ∈ A}, Bi = {bi | b ∈ B}. Note that G′ is a
bipartite graph, witnessed by the partition (S1 ∪X1, S2 ∪X2). Let Y1 = A1 ∪B2 and Y2 = A2 ∪B1.
Note also that there is no edge joining Y1 and Y2, so there exists a (Y1, Y2)-cut in G′ that is actually
contained in V (G+) \X, and hence V (G) \X. Let us show that S⋆ ⊆ V (G) \X is a (Y1, Y2)-cut in
G′ if and only if S⋆ is an odd cycle transversal of G with A on one side of the bipartition and B on
the other one.

Claim 9.5.18. If S⋆ ⊆ V (G) \X is a cutset separating Y1 from Y2 in G′, then S⋆ is an odd cycle
transversal of G with A on one side of the bipartition and B on the other one.

Proof of claim. Let C be an odd cycle of G+. Suppose towards a contradiction that C ∩ S⋆ = ∅.
G+ −X is bipartite, so C intersects X. Moreover, we assumed G+[X] to be bipartite since A and
B are two disjoint independent sets, so C intersects V (G+) \X. Hence, if we divide C into paths
whose endpoints are in X and whose internal vertices are in V (G+) \X, each such path in G′ has
either both endpoints in Y1 or both endpoints in Y2, since it is not intersected by the cutset S⋆.
More specifically, each such path in G′ has either both endpoints in Ai, or both endpoints in Bi,
or one in Ai and one in B3−i, for i ∈ {1, 2}. A path with both endpoints in Ai or Bi is even, since
the internal vertices are alternatively vertices of Si and S3−i, with the first and the last in S3−i. A
path with one endpoint in Ai and one in B3−i is odd by a similar reasoning, but the number of such
paths must be even in order to have a cycle. Therefore, the cycle C is even. Hence the contradiction.
So S⋆ is an odd cycle transversal of G+. Given that we added in G+ all edges between A and B
and that A,B ⊆ V (G+) \ S⋆, A and B belong to different sides of the bipartition. An odd cycle of
G is also an odd cycle of G+, so S⋆ is also an odd cycle transversal of G, with A and B on different
sides of the bipartition. ⋄

Claim 9.5.19. If S⋆ ⊆ V (G) \X is an odd cycle transversal of G with A and B on different sides
of the bipartition, then S⋆ is a cutset separating Y1 from Y2 in G′.

Proof of claim. Suppose towards a contradiction that there is a path P between Y1 and Y2 that does
not intersect S⋆. Choose P of minimum length. Hence, the internal vertices of P belong to G−X.
The endpoints u and v of P are such that, either u ∈ Ai and v ∈ A3−i, or u ∈ Bi and v ∈ B3−i, or
u ∈ Ai and v ∈ Bi, or u ∈ Bi and v ∈ Ai, for i ∈ {1, 2}. By symmetry, we can assume without loss
of generality that u ∈ A1 and v ∈ A2 or v ∈ B1. If v ∈ A2, then P is an odd path since G−X is
bipartite. However, since G− S⋆ is bipartite, with A on one side of the bipartition, P is an even
path. If v ∈ B1, then P is an even path since G−X is bipartite. However, since G− S⋆ is bipartite,
with A and B on different sides of the bipartition, P is an odd path. Hence the contradiction. ⋄

The graph G′ has n′ = n+ |X| vertices and at most m′ = m+ |X|2/4 edges. Finding a vertex-cut
S⋆ ⊆ V (G) \X separating Y1 form Y2 in G′ of minimum weight can be reduced to the problem of
finding a minimum (weighted) edge-cut. To do so, we transform G′ into an arc-weighted directed
graph G′′, by first replacing every edge by two parallel arcs in opposite directions, and then replacing
every vertex v of G′ − Y1 − Y2 by an arc (vin, vout), such that the arcs incoming (resp. outgoing) to
v are now incoming to vin (resp. outgoing of vout). We give weight w(v) to (vin, vout), and weight
w(V (G))+1 to the other arcs. Then, computing a minimum (weighted) vertex-cut in G′ is equivalent
to computing a minimum (weighted) edge-cut in G′′, which can be done in time O(n′ ·m′) [198,246].
Hence, the running time of the algorithm is O((n+ |X|) · (m+ |X|2)).

We apply Lemma 9.5.16 and Lemma 9.5.17 to the dynamic programming algorithm of Theo-
rem 9.4.1 to obtain the following result.

9.5. Applications 226

Corollary 9.5.20. Given a graph G and a bipartite tree decomposition of G of width k, there is an
algorithm that solves Odd Cycle Transversal on G in time O(3k · k · n · (m+ k2)).

9.5.4 Maximum Weighted Cut

Our dynamic programming scheme also works for problems other than graph modification problems
such as the Maximum Weighted Cut problem which is defined as follows. For this part, we only
give clues about the proof and we refer the reader to [171] for the complete proof.

Input: A graph G and a weight function w : E(G)→ N.
Task: Find an edge cut of maximum weight.

Maximum Weighted Cut

Let H be a graph. We define fcut as the 2-partition-evaluation function where, for every graph
G with edge weight w and for every P = (X1, X2) ∈ P2(V (G)),

fcut(G,P) = w(P) = w(E(X1, X2)).

Hence, Maximum Weighted Cut is the problem of computing pfcut,max(G). We call its
annotated extension Annotated Maximum Weighted Cut. In other words, Annotated
Maximum Weighted Cut is defined as follows.

Input: A graph G, a weight function w : E(G) → N, and two disjoint sets
X1, X2 ⊆ V (G).

Task: Find an edge cut of maximum weight such that the vertices in X1 belongs
to one side of the cut, and the vertices in X2 belong to the other side.

Annotated Maximum Weighted Cut

We can prove that Annotated Maximum Weighted Cut has the gluing property.

Lemma 9.5.21 (Gluing property). Annotated Maximum Weighted Cut has the gluing property.
More precisely, given two boundaried graphs F = (F,BF , ρF) and G = (G,BG, ρG), a weight function
w : E(F⊕G)→ N, a set X ⊆ V (F⊕G) such that BF ∩BG ⊆ X, and X = (X1, X2) ∈ P2(X), if
we set w̄ = w(X ∩BF ∩BG), then we have

p̂fcut,max(F⊕G,X , w) = p̂fcut,max(F,X ∩ V (F), w) + p̂fcut,max(G,X ∩ V (G), w)− w̄.

We can also reduce a graph F⊕G to a graph F ′ when the boundary of F and G has a single
vertex v that is not annotated. See Figure 9.12 for an illustration.

F G

X
v

X1 X2

v1 v2

F

v

X1 X2

v1 v2

w̄

g2 − w̄ g1 − w̄

Figure 9.12: Illustration of the gadgetization for Weighted Max Cut.

9.5. Applications 227

Lemma 9.5.22 (Gadgetization). Let F = (F,BF , ρF) and G = (G,BG, ρG) be two boundaried
graphs. Let w : E(F⊕G)→ N be a weight function and let X ⊆ V (F⊕G) be such that BF ∩BG ⊆ X.
Let also v ∈ BF ∩BG and let X = (X1, X2) ∈ P2(X\{v}). Suppose that there is v1 ∈ X1 and v2 ∈ X2

adjacent to v with w(vv1) = w(vv2) = 0. We set X 1 = (X1 ∪ {v}, X2) and X 2 = (X1, X2 ∪ {v}).
We also set, for a ∈ [2], ga = p̂fcut,max(G,X a ∩ V (G), w), we set w̄ = w(X ∩BF ∩BG), and we set
w′ : E(F)→ N such that w′(vv1) = g2 − w̄, w′(vv2) = g1 − w̄, and w′(e) = w(e) otherwise. Then

p̂fcut,max(F⊕G,X , w) = p̂fcut,max(F,X , w′).

Using Lemma 9.5.21 and Lemma 9.5.22, we can deduce that Annotated Maximum Weighted
Cut is H-nice. Essentially, given an instance (G = X⊞ (⊞i∈[d]Gi), (A,B),A, w), we reduce G to X
where we add two new vertices in A and add all edges between these new vertices and the vertices
in B. We then show that if the appropriate weight is given to each new edge, then the resulting
boundaried graph is an equivalent instance to G modulo some constant s.

Lemma 9.5.23 (Nice problem). Let H be a graph class. Annotated Maximum Weighted Cut
is H-nice.

Maximum Weighted Cut is an NP-hard problem [181]. However, there exists a polynomial-
time algorithm when restricted to some graph classes. In particular, Grötschel and Pulleyblank [156]
proved that Maximum Weighted Cut is solvable in polynomial-time on weakly bipartite graphs,
and Guenin [158] proved that weakly bipartite graphs are exactly K5-odd-minor-free graphs, which
gives the following result.

Proposition 9.5.24 ([156,158]). There is a constant c ∈ N and an algorithm that solves Maximum
Weighted Cut on K5-odd-minor-free graphs in time O(nc).

Moreover, we observe the following.

Lemma 9.5.25. A graph G such that oct(G) ≤ 2 does not contain K5 as an odd-minor.

Proof. Suppose that G contains K5 as an odd-minor and let η be an odd K5-expansion of G. Let
u, v ∈ V (G) be such that G′ = G \ {u, v} is bipartite. Given that η has at least three nodes that do
not intersect {u, v}, it implies that K3 is an odd-minor of G′, contradicting its bipartiteness.

Combining Proposition 9.5.24 and Lemma 9.5.25, we have that Annotated Maximum Weighted
Cut is FPT parameterized by oct.

Lemma 9.5.26. There is an algorithm that, given a graph G, a weight function w : E(G) → N,
and two disjoint sets X1, X2 ⊆ V (G), such that G′ = G \ (X1 ∪X2) is bipartite, solves Annotated
Maximum Weighted Cut on (G,X1, X2, w) in time O(k · n′ + n′c), where k = |X1 ∪ X2|,
n′ = |V (G′)|, and c is the constant of Proposition 9.5.24.

Proof. Let G′′ be the graph obtained from G by identifying all vertices in X1 (resp. X2) to a new
vertex x1 (resp. x2). Let w′ : V (G′′) → N be such that w′(x1x2) =

∑
e∈E(G)w(e) + 1, w′(xiu) =∑

x∈Xi
w(xu) for i ∈ [2] and u ∈ NG(Xi), and w′(e) = w(e) otherwise. Let (X⋆

1 , X
⋆
2) ∈ P2(V (G))

be such that (X1, X2) ⊆ (X⋆
1 , X

⋆
2). For i ∈ [2], let X ′

i = X⋆
i \Xi. Then

w(X⋆
1 , X

⋆
2) = w(X1, X2) + w(X ′

1, X
′
2) +

∑
xy∈E(X1,X′

2)

w(xy) +
∑

xy∈E(X′
1,X2)

w(xy)

= w(X1, X2) + w′(X ′
1, X

′
2) +

∑
u∈X2∩NG(X1)

w′(x1u) +
∑

u∈X1∩NG(X2)

w′(x2u)

= w′(X ′
1 ∪ {x1}, X ′

2 ∪ {x2}) + w(X1, X2)− w′(x1x2)

9.5. Applications 228

Let w̄ be the constant w(X1, X2)− w′(x1x2). Hence,

fcut(G, (X
⋆
1 , X

⋆
2)) = fcut(G

′′, (X ′
1 ∪ {x1}, X ′

2 ∪ {x2})) + w̄,

and so p̂fcut,max(G, (X1, X2)) = p̂fcut,max(G
′′, ({x1}, {x2})) + w̄. Moreover, given that the weight of

the edge x1x2 is larger than the sum of all other weights, x1 and x2 are never on the same side of a
maximum cut in G′′. Hence, p̂fcut,max(G

′′, ({x1}, {x2})) = pfcut,max(G
′′), and therefore,

p̂fcut,max(G, (X1, X2)) = pfcut,max(G
′′) + w̄.

Constructing G′′ takes time O(k · n) and computing w̄ takes time O(k2). Since oct(G′′) = 2,
according to Proposition 9.5.24 and Lemma 9.5.25, an optimal solution to Maximum Weighted
Cut on G′′ can be found in time O(n′c), and thus, an optimal solution to Annotated Maximum
Weighted Cut on (G,X1, X2) can be found in time O(k · (k + n′) + n′c).

We can finally apply Lemma 9.5.23 and Lemma 9.5.26 to the dynamic programming algorithm
of Theorem 9.4.1 to obtain the following result.

Theorem 9.5.27. Given a graph G and a bipartite tree decomposition of G of width k, there is an
algorithm that solves Maximum Weighted Cut on G in time O(2k · (k · (k + n) + nc)), where c is
the constant of Proposition 9.5.24.

9.5.5 Hardness of covering problems

For any graph G, it holds that btw(G) ≤ oct(G). Thus, for a problem Π to be efficiently solvable on
graphs of bounded btw, Π needs to be efficiently solvable on graphs of bounded oct, and first and
foremost on bipartite graphs. Unfortunately, many problems are NP-complete on bipartite graphs
(or on graphs of small oct), and hence para-NP-complete parameterized by btw.

Vertex Deletion to H is known to be NP-complete on general graphs for every non-trivial
graph class H [216]. However, for some graph classes H, it might change when we restricte the input
graph to be bipartite. Yannakakis [314] characterizes hereditary graph classes H for which Vertex
Deletion to H on bipartite graphs is polynomial-time solvable and those for which Vertex
Deletion to H remains NP-complete.

A problem Π is said to be trivial on a graph class H if the solution to Π is the same for every graph
G ∈ H. Otherwise, Π is called nontrivial on H. Given a graph G, let ν(G) = |{NG(v) | v ∈ V (G)}|.
Given a graph class H, let ν(H) = sup{ν(G) | G ∈ H}.
Proposition 9.5.28 ([314]). Let H be a hereditary graph class such that Vertex Deletion to H
is nontrivial on bipartite graphs.

• If ν(H) = +∞, then Vertex Deletion to H is NP-complete on bipartite graphs.

• If ν(H) < +∞, then Vertex Deletion to H is polynomial time-solvable on bipartite graphs.

Hence, here is a non-exhaustive list of problems that are NP-complete on bipartite graphs:
Vertex Deletion to H where H is a minor-closed graph class that contains edges (and hence
Feedback Vertex Set, Vertex Planarization, H-Minor-Cover for H containing P3 as a
subgraph), H-Subgraph-Cover, H-Induced-Subgraph-Cover, and H-Odd-Minor-Cover
for H bipartite graph containing P3 as a (necessarily induced) subgraph, Vertex Deletion to
graphs of degree at most p for p ≥ 1, Vertex Deletion to graphs of girth at least
p for p ≥ 6 (note that the smallest non-trivial lower bound on the length of a cycle in a bipartite
graph is six, or equivalently five).

As a consequence of the above results, all the above problems, when parameterized by bipartite
treewidth, are para-NP-complete.

CHAPTER 10

H-planarity and beyond

Contents
10.1 The algorithms . 231

10.1.1 The algorithms . 231
10.1.2 Outline of our technique of H-planarity (and H-planar treewidth) 233
10.1.3 Changes for H-planar treedepth . 237

10.2 The FPT algorithm for H(k)-Planarity . 238
10.2.1 Flat walls . 238
10.2.2 An obstruction to H(k)-Planarity . 239
10.2.3 H-compatible sphere decompositions . 240
10.2.4 Comparing sphere decompositions . 242
10.2.5 Combining sphere decompositions . 245
10.2.6 Proof of Theorem 10.1.4 . 248

10.3 Planar elimination distance . 249
10.3.1 Finding a big leaf in H . 249
10.3.2 The algorithm . 251

10.4 H-planar treewidth . 254
10.4.1 Expression as a sphere decomposition . 254
10.4.2 The algorithm . 258

10.5 Applications . 259
10.5.1 Colourings . 261
10.5.2 Counting perfect matchings . 262
10.5.3 EPTAS for Independent Set . 265

10.6 Necessity of conditions . 267

In this chapter, we prove the results presented in Section 2.6, that are restated here for convenience.

229

230

Theorem 2.6.1. Let H be a graph class that is hereditary, CMSO-definable, and decidable in
time O(nc) for some constant c. Then, there is an algorithm solving H-Planarity in time
O(n4 + nc log n).

Theorem 2.6.2. Let H be a hereditary and CMSO-definable graph class that is closed under disjoint
union. Suppose that there is an FPT-algorithm solving Vertex Deletion to H parameterized by
the solution size k in time Ok(n

c). Then there is an FPT-algorithm that, given a graph G and k ∈ N,
decides whether G has H-planar treedepth at most k in time Ok(n

4 + nc log n).

Theorem 2.6.3. Let H be a hereditary and CMSO-definable graph class that is closed under disjoint
union. Suppose that there is an FPT-algorithm solving Vertex Deletion to H parameterized by
the solution size k in time Ok(n

c). Then there is an FPT-algorithm that, given a graph G and k ∈ N,
decides whether G has H-planar treewidth at most k in time Ok(n

4 + nc log n).

The outline of the algorithms is presented in Section 10.1, while Theorem 2.6.1, Theorem 2.6.2,
and Theorem 2.6.3 are presented in Section 10.2, Section 10.3, and Section 7.6, respectively. Several
applications are proposed in Section 10.5. Finally, the necessity of some of the conditions on the
target class are discussed in Section 10.6.

Some conventions. In this chapter, we only consider sphere decompositions that are vortex-free.
Therefore, for convenience, we use the shortcut sphere decompositions and renditions to denote
vortex-free sphere decompositions and vortex-free renditions in the sphere, respectively. Also, in this
chapter, the class of planar graphs is denoted by P.

Let us begin with some definitions.

Planar treewidth. The planar treewidth of a graph G, denoted by ptw(G), is the minimum k
such that there exists a tree decomposition of G such that each bag either has size at most k + 1 or
has a planar torso.

Planar treedepth. Recall from Section 1.5 that the treedepth of a graph G, denoted by td(G), is
zero if G is the empty graph, and one plus the minimum treedepth of the graph obtained by removing
one vertex from each connected component of G otherwise. The planar treedepth of G, denoted by
ptw(G), is defined as the treedepth, but where we remove a planar modulator from each connected
component of G instead of a vertex. Recall that the formal definition is given in Section 2.6. The
fact that ptd(G) ≤ k is certified by a sequence X1, . . . , Xk of successive planar modulators that need
to be removed. We refer to such a sequence as a certifying elimination sequence (see Figure 2.3).

G ▷H-modulators. Let H and G be graph classes. We define G ▷H to be the class of graphs G
who contains a vertex subset X ⊆ V (G), called G ▷H-modulator, such that torso(G,X) ∈ G and, for
each C ∈ cc(G−X), C ∈ H. Thus, P ▷H is the class of H-planar graphs. Note that the operator ▷
is associative, i.e. F ▷ (G ▷H) = (F ▷ G) ▷H. For k ∈ N≥1, we set Gk+1 = G ▷ Gk, where G1 = G. In
particular, Pk is the class of graphs of planar treedepth at most k and Pk ▷H is the class of graphs
with H-planar treedepth at most k.

Note that, given k ∈ N, if Gk is class of graphs with treewidth (resp. treedepth / size / planar
treewidth / planar treedepth) at most k, then Gk ▷H is the class of graphs with H-treewidth (resp.
elimination distance to H / H-deletion1 / H-planar treewidth / H-planar treedepth) at most k. The
class of graphs with planar treewidth at most k will be denoted by PTk.

1If H is closed under disjoint union.

10.1. The algorithms 231

Counting Monadic Second-Order Logic. Recall that CMSO logic is defined in Section 1.6.
Planarity and connectivity are expressible in CMSO logic, see e.g. [68, Subsection 1.3.1]. Additionaly,
torso(G,X) is the graph with vertex set X, and edge set the pairs (u, v) ∈ X2 such that either
uv ∈ E(G) or u and v are connected in G− (X \ {u, v}), which is also easily expressible in CMSO
logic. Therefore, we observe the following.

Observation 10.0.1. If H is a CMSO-definable graph class, then H-Planarity is expressible in
CMSO logic.

10.1 The algorithms

In Subsection 10.1.1, we prove Theorem 2.6.1, Theorem 2.6.2, and Theorem 2.6.3, assuming some
results that will be proved later in the chapter but that we sketch in Subsection 10.1.2 (for H-planar
and H-planar treewidth) and Subsection 10.1.3 (for H-planar treedepth).

10.1.1 The algorithms

The starting point of our algorithmms is the result of Lokshtanov, Ramanujan, Saurabh, and
Zehavi [224] reducing a CMSO-definable graph problem to the same problem on unbreakable graphs.

Unbreakable graphs. Let G be a graph and let c, s ∈ N. If there exists a separation (X,Y) of
order at most c such that |X \ Y | ≥ s and |Y \X| ≥ s, called an (s, c)-witnessing separation, then G
is (s, c)-breakable. Otherwise, G is (s, c)-unbreakable.

Proposition 10.1.1 (Theorem 1, [224]). Let ψ be a CMSO sentence and let d > 4 be a positive
integer. There exists a function α : N→ N, such that, for every c ∈ N, if there exists an algorithm
that solves CMSO[ψ] on (α(c), c)-unbreakable graphs in time O(nd), then there exists an algorithm
that solves CMSO[ψ] on general graphs in time O(nd).

In our case, we have the following observation.

Observation 10.1.2. Let H and G be graph classes. If every graph in G is Kk+1-minor-free,
then, for any G ▷H-modulator X of a graph G and for any C ∈ cc(G −X), |NG(V (C))| ≤ k. In
particular, if G = P, then |NG(V (C))| ≤ 4, if G = Pk, then |NG(V (C))| ≤ 4k, and if G = PTk, then
|NG(V (C))| ≤ max{k + 1, 4}.

Let a, k ∈ N, H and G be two graph classes such that every graph in G is Kk+1-minor-free, and
G be an (a, k)-unbreakable graph. We say that a G ▷ H-modulator X of a graph G is a big-leaf
G ▷H-modulator of G is there is exists a (unique) component D ∈ cc(G−X) of size at least a, called
big leaf with respect to X.

Therefore, if we work on (α(4), 4)-unbreakable graphs, then given a planar H-modulator S of
a graph G, either S is a big-leaf planar H-modulator of G, that is, there is a unique component
C ∈ cc(G − S) such that |V (C)| ≥ α(4) and |V (G) \ V (C)| < α(4) + |NG(V (C))| or for each
C ∈ cc(G − S), |V (C)| < α(4). In this chapter, we will thus solve H-Planarity on (α(4), 4)-
unbreakable graphs, which, by applying Proposition 10.1.1, immediately implies Theorem 2.6.1.

More specifically, we will split H-Planarity into two complementary subproblems. The first
one is Big-Leaf H-Planarity, which is defined as follows.

10.1. The algorithms 232

Input: A graph G.
Question: Does G admit a planar H-modulator S such that there is D ∈ cc(G− S)

of size at least α(4)?

Big-Leaf H-Planarity

This problem is easy to solve using a brute-force method.

Lemma 10.1.3. Let H be a polynomial-time decidable graph class. Then there is an algorithm that
solves Big-Leaf H-Planarity on (α(4), 4)-unbreakable graphs in polynomial time.

Proof. We enumerate in polynomial time all separations (A,B) of G of order at most four such that
G[A \ B] is connected and |B \ A| < α(4). For each such separation (A,B), we consider all sets
S with A ∩ B ⊆ S ⊆ B (there are at most 2α(4)−1 such sets). For every S, we check whether the
torso of S is planar and that each connected component of G − S belongs to H. If there is such
a set S and that one connected component of G− S has size at least α(4), then we conclude that
G is a yes-instance of Big-Leaf H-Planarity. If for each such (A,B) and each such S, we did
not report a yes-instance, then we report a no-instance. These checks take constant time given that
|B \A| < α(4). This concludes the proof.

The second subproblem is the following.

Input: A graph G.
Question: Does G admit a planar H-modulator S such that, for each D ∈ cc(G− S),

|V (D)| < α(4)?

Small-Leaves H-Planarity

Let k ∈ N and H be a graph class. Recall that H(k) is the subclass of H containing graphs with
at most k vertices. In this setting, Small-Leaves H-Planarity is exactly H(α(4)−1)-Planarity.
More generally than Small-Leaves H-Planarity, we prove that H(k)-Planarity is solvable in
FPT-time parameterized by k in the following theorem (see Subsection 10.2.6 for the proof).

Theorem 10.1.4. Let k ∈ N and let H be a polynomial-time decidable hereditary graph class. Then
there is an algorithm that solves H(k)-Planarity in time f(k) · n(n +m) for some computable
function f .

Given that a graph G is a yes-instance of H-Planarity if and only if it is a yes-instance
of at least one of Big-Leaf H-Planarity and Small-Leaves H-Planarity, Theorem 2.6.1
immediately follows from Proposition 10.1.1, Lemma 10.1.3, and Theorem 10.1.4.

We do exactly the same for H-planar treedepth and H-planar treewidth, but here, by Ob-
servation 10.1.2, we consider (α(k′), k′)-unbreakable graphs for k′ = 4k and k′ = max{4, k + 1},
respectively, instead of k′ = 4.

In this case, similarly to Lemma 10.1.3, we prove the following.

Lemma 10.1.5. Let H be a hereditary graph class that is closed under disjoint union and such that
there is an FPT-algorithm that solves Vertex Deletion to H parameterized by the solution size h
in time f(h) · nc. Let a, k ∈ N. Let Gk be the class of graphs with planar treewidth (resp. treewidth
/ planar treedepth / treedepth) at most k. Let k′ := max{4, k + 1} (resp. k + 1 / 4k / k). Then
there is an algorithm that, given an (a, k′)-unbreakable graph G, either reports that G has no big-leaf
Gk ▷H-modulator, or outputs a Gk ▷H-modulator of G, in time f(k) · 2O((a+k)2) · log n · (nc + n+m).

10.1. The algorithms 233

The proof of Lemma 10.1.5 is based on random sampling technique from [60] (Proposition 10.3.1).
Assuming G has a big-leaf Gk ▷H-modulator X with big leaf D, we guess a set U ⊆ V (G) such
that NG(V (D)) ⊆ U and V (G) \ V (D) ⊆ V (G) \ U , and deduce X and D from this guess. See
Subsection 10.3.1 for the proof.

Meanwhile, similarly to Theorem 10.1.4, we prove the two following results, whose proofs can be
found respectively in Subsection 10.3.2 and Subsection 10.4.2.

Lemma 10.1.6. Let H be a graph class that is hereditary. Let a, k ∈ N, k′ = 4k. Then there is an
algorithm that, given an (a, k′)-unbreakable graph G, check whether G has H(a−1)-planar treedepth at
most k in time Ok,a(n · (n+m)).

Lemma 10.1.7. Let H be a graph class that is hereditary and closed under disjoint union. Let
a, k ∈ N. Then there is an algorithm that, given an (a, 3)-unbreakable graph G, check whether G has
H(a−1)-planar treewidth at most k in time Ok,a(n · (n+m)).

Therefore, Theorem 2.6.2 immediately follows from Proposition 10.1.1, Lemma 10.1.5, and
Lemma 10.1.6, and Theorem 2.6.3 immediately follows from Proposition 10.1.1, Lemma 10.1.5, and
Lemma 10.1.7.

Remark. For ease of presentation, the algorithm we proposed in Lemma 10.1.3 while simple,
does not have an optimal running time. We can actually use instead an algorithm similar to the
one of Lemma 10.1.5 that solves Big-Leaf H-Planarity in time O((nc + n+m) log n), where
Membership to H is decidable in time O(nc) for some constant c. Thus, we can also solve
H-Planarity in time O(n4 + nc log n).

10.1.2 Outline of our technique of H-planarity (and H-planar treewidth)

The proof of Theorem 10.1.4 for H-planar graphs is quite involved, and in particular, requires the
introduction of many notions. In this section, we sketch the proof, and the formal proof with all
details is deferred to Section 10.2. Also, as we will argue at the end of this part, the proof of
Lemma 10.1.7 for graphs of bounded H-planar treewidth is very similar to the one of Theorem 10.1.4.
For the sake of a good understanding, we give here informal definitions of the necessary notions.

The first step of the algorithm is to find a flat wall in G. For this, one would usually use the
classical Flat Wall theorem (see Proposition 4.6.3 and also [141,194,271,286]) that says that either
G contains a big clique as a minor, or G has bounded treewidth, or there is a set A ⊆ V (G), called
apex set, of bounded size and a wall W that is flat in G−A. However, in our case, we want W to be
flat in G with no apex set. Therefore, we use a variant of the Flat Wall theorem that is implicit
in [141, Theorem 1] and [205, Lemma 4.7]. However, we are not aware of an algorithmic statement
of this variant, and so we prove it here (see Theorem 10.2.2). We thus prove that there is a function
f and an algorithm that, given a graph G and h, r ∈ N, outputs one of the following:

• Case 1: a report that G contains an apex (h× h)-grid as a minor, or

• Case 2: a tree decomposition of G of width at most f(h) · r, or

• Case 3: a wall W of height r that is flat in G and whose compass has treewidth at most
f(h) · r.

We apply the above algorithm to the instance graph G of H(k)-Planarity for h, r = Θ(
√
k)

(precise values are given in Subsection 10.2.6) and consider three cases depending on the output in
the next step.

10.1. The algorithms 234

Case 1: If G contains the apex grid of height h as a minor, then we are able to argue that G is a
no-instance (Lemma 10.2.3). This is easy if the apex grid is a subgraph of G as for any separation of
the apex grid of order at most four, there is a nonplanar part whose size is bigger than k, for our
choice of h. We use this observation to show that the same holds if the apex grid is a minor.

Case 2: If G has a tree decomposition of bounded treewidth, then we can use Courcelle’s theorem
to solve the problem. Recall that Courcelle’s theorem (Proposition 4.3.2) says that if a problem can
be defined in CMSO logic, then it is solvable in FPT-time on graphs of bounded treewidth. In our
case, observe that, in Theorem 10.1.4, we do not ask for H to be CMSO-definable. Nevertheless,
given that there is a finite number of graphs of size at most k, H(k) is trivially CMSO-definable by
enumerating all the graphs in H(k). Then, H(k)-Planarity is easily expressible in CMSO logic
(Observation 10.0.1), hence the result.

It remains to consider the third and most complicated case.

Case 3: There is a flat wall W in G of height r whose compass G′ has treewidth upper bounded by
f(h) · r. Then we apply Courcelle’s theorem again, on G′ this time, since it has bounded treewidth.
If G′ is not H(k)-planar, then neither is G because H is hereditary, so we conclude that G is a
no-instance of H(k)-Planarity. Otherwise, G′ is H(k)-planar. Let v be a central vertex of W . Then
we prove that v is an irrelevant vertex in G, i.e. a vertex such that G and G − v are equivalent
instances of the problem. Therefore, we call our algorithm recursively on the instance G− v and
return the obtained answer.

The description of our algorithm in Case 3 is simple. However, proving its correctness is the
crucial and most technical part of this chapter which deviates significantly from other applications
of the irrelevant vertex technique. The reason for this is that the modulator is a planar graph that
might have big treewidth and might be spread “all around the input graph”, therefore it does not
satisfy any locality condition that might make possible the application of standard irrelevant-vertex
arguments (such as those crystalized in algorithmic-meta-theorems in [120,146,287]). Most of the
technical part of this chapter is devoted to dealing with this situation where the modulator is not
anymore “local”.

It is easy to see that if G has a planar H(k)-modulator, then the same holds for G′ and G− v as
H is hereditary. The difficult part is to show the opposite implication.

First, we would like to emphasize that in the standard irrelevant vertex technique of Robertson
and Seymour [271], the existence of a big flat wall W with some specified properties implies that
a central vertex is irrelevant. Here, we cannot make such a claim because the compass of W may
be nonplanar and we cannot guarantee that v does not belong to G−X for a (potential) planar
H(k)-modulator X. Therefore, we have to verify that G′ is a yes-instance before claiming that v
is irrelevant. Then we have to show that if both G′ and G− v have planar H(k)-modulators, then
G also has a planar H(k)-modulator. The main idea is to combine modulators for G′ and G − v
and construct a modulator for G. However, this is nontrivial because the choice of a connected
component C which is outside of a modulator restricts the possible choices of other such components
and this may propagate arbitrarily around a rendition. In fact, this propagation effect is used in the
proof of Theorem 10.6.1 where we show that H-Planarity is NP-complete for nonhereditary classes.
Still, for hereditary classes H, we are able to show that if both G′ and G− v are yes-instances of
H(k)-Planarity, then these instances have some particular solutions that could be glued together
to obtain a planar H(k)-modulator for G. In the remaining part of this section, we informally explain
the choice of compatible solutions.

10.1. The algorithms 235

H-compatible renditions. Let G be an H-planar graph. Let X be a planar H-modulator in G,
and Γ be a planar embedding of the torso of X. For each component D in G−X, the neighborhood
of D induces a clique of size at most four in the torso of X. Therefore, it is contained in a disk ∆D

in Γ whose boundary is the outer face of the clique, that is a cycle of size at most three. Therefore,
for each pair of such disks, either one is included in the other, or their interior is disjoint. If we
take all inclusion-wise maximal such disks, along with the rest of the embedding disjoint from
these disks, this then essentially defines the set of cells D of a rendition ρ of G. In particular, for
each cell c of ρ, the graph induced by c has a planar H-modulator Xc such that the torso of Xc

admits a planar embedding with the vertices of c̃ on the outer face. Such a rendition ρ (resp. cell
c) is said to be H-compatible, and it is direct to check that if G admits an H-compatible rendition,
then G is H-planar. This is what we prove, with additional constraints and more formally, in
Lemma 10.2.5. In particular, we talk here in terms of renditions for simplicity, while we actually
use sphere decompositions, which are similar to renditions, but defined on the sphere instead of
a disk, with no cyclic permutation Ω defining a boundary. See Figure 10.1 for an illustration and
Subsection 10.2.3 for an accurate definition.

Figure 10.1: An H-compatible cell c (in gray). The H-modulator X is the set of red and black
vertices, with the black vertices being the vertices of c̃. The blue, green, and purple balls are the
connected components obtained after removing X, and the dashed lines are used for the edges of the
torso that are not necessarily edges of the graph.

Therefore, since G′ and G− v are H(k)-planar, there are a rendition ρ′ of G′ and a rendition ρv
of G − v that are H(k)-compatible. A way to prove that G is H(k)-planar would then be to glue
these two renditions together to find an H(k)-compatible rendition ρ∗ of G. For instance, we may
take a disk ∆ in the rendition corresponding to the flat wall W with v ∈ ∆ and define ρ∗ to be
the rendition equal to ρ′ when restricted to ∆, and equal to ρv outside of ∆. A major problem in
such an approach is however that it may only work if we are able to guarantee that the cells of ρ′

and ρv are pairwise disjoint on the boundary of ∆. Given that a graph G may have many distinct
renditions, the ideal would be to manage to find a unique rendition of G that is minimal or maximal
in some sense and could then guarantee that its cells are crossed2 by no cell of another rendition of
G. Unfortunately, we do not have such a result; in fact, we have no way to “repair” these renditions
so as to achieve cell-compatibility. Instead, we prove a new property of renditions that allows us to
glue renditions together.

Well-linked and ground-maximal renditions. Recall that a rendition ρ is well-linked if every
cell c of ρ has |c̃| vertex disjoint paths to V (Ω), where c̃ is the set of vertices on the boundary of c.
A rendition ρ is more grounded than a rendition ρ′ if every cell of ρ is contained in a cell of ρ′, or

2A cell c1 of a rendition ρ1 crosses a cell c2 of a rendition ρ2 if their vertex sets have a non-empty intersection, but
that neither of them is contained in the other.

10.1. The algorithms 236

equivalently, if ρ can be obtained from ρ′ by splitting cells to ground more vertices. A rendition ρ is
ground-maximal if no rendition is more grounded than ρ. See Subsection 10.2.3 and Subsection 10.2.4
for the accurate definition of ground-maximality and well-linkedness respectively.

Let (G,Ω) be a society. What we prove is that for any ground-maximal rendition ρ1 of (G,Ω)
and for any well-linked rendition ρ2 of (G,Ω), ρ1 is always more grounded than ρ2, or, in other
words, every cell c1 of ρ1 is contained in a cell c2 of ρ2 (see Corollary 10.2.14). To prove this, we
assume towards a contradiction that either c1 and c2 cross, or that c2 is contained in c1. In both
cases, we essentially prove that we can replace c1 by the cells obtained from the restriction of ρ2 in
c1, which gives a rendition ρ∗ that is more grounded than ρ1, contradicting the ground-maximality
of ρ1. See Figure 10.2 for some illustration.

c2

c1

Figure 10.2: c2 is a cell of a well-linked rendition ρ2 (in gray). If c2 crosses a cell c1 of another (blue)
rendition ρ1, then there is a new (purple) rendition ρ∗ that is more grounded than the blue one.

Going back to G′ and G − v, given that H, and thus H(k), is hereditary, it implies that any
rendition that is more grounded than anH(k)-compatible rendition is alsoH(k)-compatible. Therefore,
we can assume ρ′ and ρv to be ground-maximal. Additionally, by definition, there is a rendition ρ of
(G′,Ω) witnessing that W is a flat wall of G, where V (Ω) is a vertex subset of the perimeter of W .
Then, by known results (Proposition 10.2.10), we can assume ρ to be well-linked.

Therefore, the cells of ρ′ and ρv are contained in cells of ρ when restricted to G′ − v. Actually, it
is a bit more complicated given that, while ρ is a rendition of the society (G′,Ω), we just know that
ρ′ and ρv are renditions of (G′,Ω′) and (G − v,Ωv) respectively, for some cyclic permutations Ω′

and Ωv that we do not know. What we actually prove, thanks to the structure of the wall, is that
the cells of ρ′ and ρv in G′ − v that are far enough from v and the perimeter of W are contained in
cells of ρ. For this, rather than Corollary 10.2.14 that says that a ground-maximal rendition of a
society is more-grounded than a well-linked rendition of the exactly same rendition, we prefer to use
an auxiliary lemma (see Lemma 10.2.13) that says that, given two renditions ρ1 and ρ2 of possibly
different societies, if a ground-maximal cell c1 of ρ1 that does not intersect V (Ω) intersects only
well-linked cells of ρ2, then c1 is contained in some cell c2 of ρ2.

Given that we found a strip around v in W where the cells of ρ′ and ρv are contained in cells of
ρ, we can pick a disk ∆, whose boundary is in this strip, that intersects ρ only on ground vertices. In
other words, the interior of each cell of ρ is either contained in ∆ or outside of ∆. But then, the same
holds for the cells of ρ′ and ρv. Therefore, we can finally correctly define the rendition ρ∗ of G that is
equal to ρ′ when restricted to ∆ and equal to ρv outside of ∆ (see Lemma 10.2.15). See Figure 10.3
for an illustration. Each cell of ρ∗ is either a cell of ρ′ or of ρv and is thus H(k)-compatible. Therefore,
ρ∗ is H(k)-compatible, and thus G is H(k)-planar. This concludes this sketch of the proof.

Interestingly, this new irrelevant vertex technique (Lemma 10.2.15) can essentially be applied to
any problem Π as long as we can prove the following:

1. there is a big enough flat wall W in the input graph G, and

10.1. The algorithms 237

v

Figure 10.3: The black circle represents the boundary of ∆, ρ is represented in blue, ρ′ in red, and
ρv in orange.

2. there is a hereditary property PΠ such that Π can be expressed as the problem of finding a
ground-maximal rendition ρ where each cell of ρ has the property PΠ.

This is actually what we do for H-planar treewidth, where, instead of asking the cells to be
H-compatible, we ask them to have another property ΠH,k (see Subsection 10.4.1).

For item 2 above, there is actually also another constraint that was hidden under the carpet for
this sketch, demanding that we should be able to choose ρ such that no cell of ρ contains W . In our
case, this is what requires us to consider an embedding on the sphere instead of a disk to wisely choose
the disks that will become H(k)-compatible cells, hence our use of sphere decompositions instead of
renditions. Additionally, we crucially use the fact that a big wall is not contained in a component of
bounded size, so the same argument would not work if we were to consider H-Planarity in general
instead of H(k)-Planarity (it could actually work as long as H is a class of bounded treewidth,
given the parametric duality between walls and treewidth).

10.1.3 Changes for H-planar treedepth

We sketch here Lemma 10.1.6, or more exactly, we explain the differences with Theorem 10.1.4.
Contrary to the H(a)-planarity case, a big apex grid is not an obstruction for a graph of bounded
H(a)-planar treedepth. Therefore, we cannot use the Flat Wall theorem variant of Theorem 10.2.2.
Instead, we use the classical Flat Wall theorem (Proposition 4.6.3). If it reports that G has bounded
treewidth, then we use Courcelle’s theorem (Proposition 4.3.2) to conclude. If we obtain that G
has a clique-minor of size a+ 4k, then this is a no-instance. So we can assume that we find a small
apex set A and a wall W that is flat in G−A and whose compass has bounded treewidth. Let A+

be the set of vertices of A with many disjoint paths to W and A− = A \ A+. Assuming G has a
certifying elimination sequence X1, . . . , Xk, what we can essentially prove is that W is mostly part of
Xi for some i ∈ [k], and that the vertices of A+ must belong to

⋃
j<iXj and can hence be somewhat

ignored. Hence, we do the following. We find a subwall W ′ of W that avoids the vertices of A−,
and thus is flat in G−A+. We divide W ′ further in enough subwalls W1, . . . ,Wr (which are flat in
G − A+) so that we are sure that one of them, say Wp, is totally contained in Xi (though we do
not know which one). Given that the compass of the walls Wℓ have bounded treewidth, we can use
Courcelle’s theorem to compute the H(a)-planar treedepth dℓ of each of them. If, for each ℓ ∈ [r],
dℓ > k, then this is a no-instance. Otherwise, we chose ℓ such that dℓ is minimum. Then, given a

10.2. The FPT algorithm for H(k)-Planarity 238

central vertex v of G− v, we report a yes-instance if and only if G− v has H-planar treedepth at
most k.

The argument for the irrelevancy of v use the core result as in the H(a)-planarity case, that is
Lemma 10.2.15. What we essentially prove is that, given a certifying elimination sequence Y1, . . . , Yk
of G − v, most of Wℓ is in Yi, and that, as such, we can replace Yi, . . . , Yk by according to the
certifying elimination sequence we found for the compass of Wℓ, to obtain a certifying elimination
sequence Y ′

1 , . . . , Y
′
k of G′.

10.2 The FPT algorithm for H(k)-Planarity

In Subsection 10.2.1, we define flat walls and introduce the Flat Wall theorem. In Subsection 10.2.2, we
provide an obstruction set to H(k)-Planarity. In Subsection 10.2.3, we observe that a yes-instance
of H(k)-Planarity is essentially a graph with a special sphere decomposition, called H(k)-compatible
sphere decomposition, and we introduce the notion of ground-maximality for sphere decompositions.
In Subsection 10.2.4, we introduce the notion of well-linkedness and prove that a ground-maximal
sphere decomposition is always more grounded than a well-linked sphere decomposition. Finally, in
Subsection 10.2.6, we combine the results of the previous subsections together to prove Theorem 10.1.4.

10.2.1 Flat walls

The Flat Wall theorem [194,271] essentially states that a graph G either contains a big clique as a
minor or has bounded treewidth, or contains a flat wall after removing some vertices. We need here
the version of the Flat Wall theorem of [286, Theorem 8].

Apex grid. The apex grid of height k is the graph Γ+
k obtained by adding a universal vertex to

the (k × k)-grid, i.e., a vertex adjacent to every vertex of Γk,k.

Proposition 10.2.1 (Lemma 3.1, [82]). Let m, k ∈ N with m ≥ k2 + 2k and let H be the (m×m)-
grid. Let X be a subset of at least k4 vertices in the central ((m − 2k) × (m − 2k))-subgrid of H.
Then there is a model of the (k × k)-grid in H in which every branch set intersects X.

The following result is a version of the Flat Wall theorem that is already somewhat known (see
for instance in the proof of [205, Lemma 4.7]). We write here an algorithmic version that has yet to
be stated, to our knowledge.

Theorem 10.2.2. There exist a function f10.2.2 : N→ N and an algorithm that, given a graph G
and k, r ∈ N with r odd, outputs one of the following in time 2Ok(r

2) · (n+m):

• a report that G contains an apex grid of height k as a minor,

• a report that tw(G) ≤ f10.2.2(k) · r, or

• a flatness pair (W,R) of G of height r whose R-compass has treewidth at most f10.2.2(k) · r.

Moreover, f10.2.2(k) = 2O(k4 log k).

Proof. Let t := k2 + 1, a := g4.6.3(t), d := k4, s := (d− 1) · (a− 1) + 1, r2 = odd(⌈
√
s · (r+ 2)⌉), and

r1 := r2 + 2k.
We apply the algorithm of Proposition 4.6.3 that, in time 2Ot(r21) · n, either reports that Kt is a

minor of G, or finds a tree decomposition of G of width at most f4.6.3(t) · r1, or finds a set A ⊆ V (G)
of size at most a, a flatness pair (W1,R1) of G− A of height r1, and a tree decomposition of the

10.2. The FPT algorithm for H(k)-Planarity 239

R1-compass of W1 of width at most f4.6.3(t) · r1. In the first case, G thus contains an apex grid of
order k as a minor, so we conclude. In the second case, we also immediately conclude. We can thus
assume that we found a flatness pair (W1,R1) of G−A. Let W2 be the central r2-subwall of W1.

Given that r2 ≥ ⌈
√
s·(r+2)⌉, we can find a collectionW ′ = {W ′

1, . . . ,W
′
s} of r-subwalls ofW2 such

that influenceR1(W
′
i) and influenceR1(W

′
j) are disjoint for distinct i, j ∈ [s′]. Then, by applying the

algorithm of Proposition 4.6.6, in time O(n+m), we find a collectionW = {(W1,R
1), . . . , (Ws,R

s)}
such that, for i ∈ [s], (Wi,R

i) is a W ′
i -tilt of (W1,R1), and the Ri-compasses of the Wis are pairwise

disjoint and have treewidth at most f4.6.3(t) · r1.
For each vertex v ∈ A, we check whether v is adjacent to vertices of the compass of d subwalls in

W. If that is the case for some v ∈ A, then observe that G contains as a minor an (r1 × r1)-grid
(obtained by contracting the intersection of horizontal and vertical paths of W1) along with a vertex
(corresponding to v) that is adjacent to d vertices of its central (r2 × r2)-subgrid (corresponding to
W2). But then, by Proposition 10.2.1, G contains an apex grid of height k as a minor, so we once
again conclude.

We can thus assume that every vertex in A is adjacent to vertices of the compass of at most d− 1
subwalls in W . Given that |W| = s and that |A| ≤ a, it implies that there is at least one wall Wi in
W whose Ri-compass is adjacent to no vertex in A. Hence the result.

10.2.2 An obstruction to H(k)-Planarity

In this section, we show that apex grids are obstructions to the existence of planar H(k)-modulators.

Lemma 10.2.3. Let H be an arbitrary graph class and let k be a positive integer. Then any graph G
containing the apex grid Γ+

k′ for k′ ≥
√
k + 4+ 2 as a minor does not admit a planar H(k)-modulator.

Proof. Let G be the class of all graphs. Because any graph class H ⊆ G, it is sufficient to show the
lemma for H = G. For this, we prove the claim for G = Γ+

k′ .

Claim 10.2.4. The apex grid Γ+
k′ does not admit a planar G(k)-modulator.

Proof of claim. The proof is by contradiction. Assume that X ⊆ V (Γ+
k′) is a planar G(k)-modulator.

Because |V (Γ+
k′)| > k + 5, it implies that X ≠ ∅, and because Γ+

k′ is not planar as k′ ≥ 3, it implies
that V (Γ+

k′) \X ̸= ∅. Let v be the apex of Γ+
k′ . Denote by B the vertices of Γk′ of degree at most

four, and set S := V (Γ+
k′) \NΓ+

k′
(B), that is S is the set of vertices of Γ+

k′ − v that do not belong
to the two outermost cycles of the grid. It is straightforward to verify that for any two distinct
nonadjacent vertices x, y ∈ S, Γ+

k′ has five internally vertex disjoint x-y-paths: four paths in Γ+
k′ − v

and one path with the middle vertex v. Therefore, for any separation (L,R) of Γ+
k′ of order at most

four with L \ R ̸= ∅ and R \ L ̸= ∅, either S ⊆ L or S ⊆ R. Furthermore, because v is universal,
v ∈ L ∩R. For each connected component C of Γ+

k′ −X, (NΓ+
k′
[V (C)], V (G) \ V (C)) is a separation

of order at most four. This implies that either S ⊆ NΓ+
k′
[V (C)] for a connected component C of

Γ+
k′ −X or S ⊆ X. However, because |S| ≥ k + 4 and v ∈ NΓ+

k′
(V (C)), in the first case, we would

have that |V (C)| > k contradicting that each connected component of Γ+
k′−X has at most k vertices.

Thus, S ⊆ X. We also have that v ∈ X. Then because k′ ≥ 5, Γ+
k′ [S] contains Γ3,3 as a subgraph

and, therefore, Γ+
k′ [S ∪ {v}] is not planar. This contradicts that the torso of X is planar and proves

the claim. ⋄

Given that G(k) is a minor-closed graph class, so is the class of G(k)-planar graphs. Therefore,
for any graph G containing Γ+

k′ as a minor, G is not a G(k)-planar graph by Claim 10.2.4. This
completes the proof.

10.2. The FPT algorithm for H(k)-Planarity 240

10.2.3 H-compatible sphere decompositions

In this subsection, we observe that the problem of H-Planarity has an equivalent definition using
sphere decompositions.

H-compatible sphere decompositions. Let H be a graph class. Let also G be a graph and
δ = (Γ,D) be a sphere decomposition of G. We say that a cell c of δ is H-compatible if there is a set
Sc ⊆ V (σ(c)) containing πδ(c̃) such that torso(σ(c), Sc) has a planar embedding with the vertices
of πδ(c̃) on the outer face and such that, for each D ∈ cc(σ(c) − Sc), D ∈ H. We say that δ is
H-compatible if every cell of δ is H-compatible. See Figure 10.1 for an illustration.

We show the following lemma.

Lemma 10.2.5. Let H be a graph class, k ∈ N, and G be a graph. Then G is H(k)-planar if and
only if G has an H(k)-compatible sphere decomposition δ. Additionally, for any r-wall W of G with
r ≥ max{

√
(k + 7)/2+2, 7}, we can choose δ such that the (r− 2)-central wall W ′ of W is grounded

in δ.

As a side note, the following proof can be easily adapted to prove that G is H-planar if and
only if G has an H-compatible sphere decomposition δ. However, in this case, the wall W may be
completely contained in a cell of δ.

Proof. Suppose that G has an H(k)-compatible sphere decomposition δ. Then, for each cell c ∈ C(δ),
there is a set Sc ⊆ V (σ(c)) containing πδ(c̃) such that torso(σ(c), Sc) has a planar embedding with
the vertices of πδ(c̃) on the outer face and such that, for each D ∈ cc(σ(c)−Sc), D ∈ H(k). Then we
immediately get that

⋃
c∈C(δ) Sc is a planar H(k)-modulator of G. This comes from the fact that the

disks in the sphere decomposition are disjoint apart from shared boundary vertices. Therefore, we
can take the planar embeddings of the torsos of the individual cells that have the size-3 boundaries on
the outer face, mirror them as needed to get the ordering along the boundary to match the ordering
in the sphere decomposition, and then to use the cell-torso drawings into the sphere decomposition
to get a complete drawing of the entire torso on the sphere, which is a planar drawing.

Suppose now that G is H(k)-planar. Let S be a planar H(k)-modulator in G. Let V ′ ⊆ V (W ′) be
set of 3-branch vertices of W that are vertices of W ′. |V ′| = 2(r − 2)2 − 2 ≥ k + 5. We first make
the following observation.

Claim 10.2.6. For any separation (A,B) of order at most three in G, the graph induced by one of
A and B, say B, contains no cycle of W ′, and B \A contains at most one vertex of V ′.

Let δ = (Γ,D) be a sphere embedding of torso(G,S). Note that, for a sphere embedding, the set
of its nodes contains all vertices of the drawing, since each disk of the sphere embedding surrounds a
single edge and therefore no vertex of the drawing lies in the interior of any disk. For each δ-aligned
disk ∆, let Z∆ := {C ∈ cc(G− S) | NG(V (C)) ⊆ πδ(N(δ) ∩∆)}. Let also V (Z∆) :=

⋃
C∈Z∆

V (C)
be the set of vertices of components in Z∆.

Claim 10.2.7. Let D ∈ cc(G− S). There is a δ-aligned disk ∆D such that

• the vertices of NG(V (D)) are in the disk ∆D, i.e. NG(V (D)) ⊆ πδ(N(δ)∩∆D), with all but at
most one (in the case |NG(V (D))| ≤ 4) being exactly the vertices of the boundary of ∆D, i.e.
there is a set XD ⊆ NG(V (D)) of size min{|NG(V (D))|, 3} such that XD = πδ(bd(∆D)∩N(δ)),
and

• the graph induced by BD := V (innerδ(∆D)) ∪ V (Z∆) contains no cycle of W ′.

10.2. The FPT algorithm for H(k)-Planarity 241

Proof of claim. Let YD := {C ∈ cc(G− S) | NG(V (C)) ⊆ NG(V (D))} and V (YD) :=
⋃

C∈YD
V (C)

be the set of vertices of components in YD. We consider three cases depending on the size of
NG(V (D)).

Case 1: |NG(V (D))| ≤ 2. We set ∆D to be

• the empty disk if NG(V (D)) = ∅
• π−1

δ (v) if NG(V (D)) = {v}
• the closure of the cell c ∈ C(δ) such that σ(c) is the edge induced by u, v in torso(G,S) if
NG(V (D)) = {u, v}.

Case 2: |NG(V (D))| = 3. Informally, the triangle induced by NG(V (D)) in torso(G,S) defines
two disks ∆1 and ∆2 in δ. We need to show that one of them is the desired disk, that does not
contain a cycle of W ′.

Let T be the cycle in the embedding δ induced by NG(V (D)). S2\T is the union of two open disks
whose closure is respectively called ∆1 and ∆2. For i ∈ [2], let Ai := V (innerδ(∆i))∪V (Z∆i)\V (YD).
Then (A1, A2) is a separation of G− V (YD) with A1 ∩A2 = NG(V (D)). By Claim 10.2.6, the graph
induced by one side of the separation, say A2 contains no cycle of W ′. We set ∆D to be a δ-aligned
disk containing ∆1.

It remains to prove that G[BD] contains no cycle of W ′, where BD := V (innerδ(∆D))∪V (Z∆) =
A2 ∪ V (YD). (A1, BD) is a separation of G with A1 ∩BD = NG(V (D)), so by Claim 10.2.6, one of
A1 and BD induce a graph containing no cycle of W ′. Assume towards a contradiction that G[A1]
contains no cycle of W ′. Note that, given that r−2 ≥ 5, W ′ contains a set C of pairwise disjoint cycles
with |C| ≥ 4. Given that |A1∩A2| = |NG(V (D))| = 3, at most three cycles of C intersects NG(V (D))
and G[A1 ∪A2] contains at most one cycle of C. Therefore, YD contains at least one cycle of C. Let
C ∈ YD by a component containing such a cycle. We have that (V (C) ∪NG(V (C)), V (G) \ V (C))
is a separation of order at most three so, given that C contains a cycle of W ′, by Claim 10.2.6, C
contains at least |V ′| − 4 > k vertices of V ′. This contradicts the fact that |V (C)| ≥ k.

Case 3: |NG(V (D))| = 4. Let {vi | i ∈ [4]} be the vertices inNG(V (D)) andXi := NG(V (D))\{vi}.
For i ∈ [4], we define ∆i similarly to ∆D in the previous case. Then Xi = πδ(bd(∆D) ∩N(δ)) and
the graph induced by Bi := V (innerδ(∆i)) ∪ V (Z∆i) contains no cycle of W ′. However, it might be
the case that vi /∈ πδ(N(δ) ∩∆i).

If vi /∈ πδ(N(δ) ∩∆i) for all i ∈ [4], then the interior of the ∆i are pairwise disjoint. Moreover,⋃
i∈[4]Bi = V (G),

⋂
i∈[4]Bi = V (YD) ∪NG(V (D)), and NG(V (YD)) ⊆ NG(V (D)). As shown in the

previous case, G[Bi] contains no cycle of W ′ for i ∈ [4]. This implies that, for any cycle of W ′, there
are distinct i, j ∈ [4] such that the cycle has a vertex in Bi \ Bj and Bj \ Bi, and thus intersects
NG(V (D)) twice. However, W ′ has at least three pairwise disjoint cycles, a contradiction to the
fact that |NG(V (D))| = 4. Therefore, there is i ∈ [4] such that vi ∈ πδ(N(δ) ∩∆i). We then set
∆D := ∆i. This completes the case analysis and the proof of the claim. ⋄

Note that, if NG(V (D)) = NG(V (D′)), then we can assume that ∆D = ∆D′ . Let D∗ be the
inclusion-wise maximal elements of D ∪ {∆D | D ∈ cc(G− S)}. By maximality of D∗ and planarity
of torso(G,S), any two distinct ∆D,∆D′ ∈ D∗ may only intersect on their boundary. For each
C ∈ cc(G− S), we draw C in a ∆D ∈ D such that V (C) ⊆ BD, and add the appropriate edges with
πδ(N(δ) ∩ bd(∆D)). We similarly draw the edges of G[S] to obtain a drawing Γ∗ of G.

10.2. The FPT algorithm for H(k)-Planarity 242

For each cell c of δ∗ = (Γ∗,D∗), there is D ∈ cc(G− S) such that σδ∗(c) contains no cycle of W ′,
since σδ∗(c) is a subgraph ofG[BD], soW ′ is grounded in δ∗. Moreover, Sc := V (σ(c))∩V (torso(G,S))
certifies that c is H(k)-compatible.

Moreover, if H is a hereditary graph class, then we can “ground” an H-compatible sphere
decomposition as much as possible. This is what we prove in Lemma 10.2.8 after defining the relevant
definitions.

Containment of cells. Let δ = (Γ,D) and δ′ = (Γ′,D′) be two sphere decompositions of G. Let
c ∈ C(δ) and c′ ∈ C(δ′) be two cells. We say that c is contained in c′ if V (σ(c)) ⊆ V (σδ′(c

′)). We
say that c and c′ are equivalent if c is contained in c′ and c′ is contained in c.

Ground-maximal sphere decompositions. Let δ = (Γ,D) and δ′ = (Γ′,D′) be two sphere
decompositions of G. We say that δ is more grounded than δ′ (and that δ′ is less grounded than
δ) if each cell c ∈ C(δ) is contained in a cell c′ ∈ C(δ′), and in case c and c′ are equivalent, if
πδ′(c̃

′) ⊆ πδ(c̃). We say that δ is ground-maximal if no other sphere decomposition of G is more
grounded than δ. We say that a cell c ∈ C(δ) is ground-maximal if, for any sphere decomposition
δ′ = (Γ′,D′) that is more grounded than δ and for any cell c′ ∈ C(δ′) that is contained in c,
V (σ(c)) = V (σδ′(c

′)) and πδ′(c̃′) = πδ(c̃).

Lemma 10.2.8. Let H be a hereditary graph class and G be a graph. Let δ be a sphere decomposition
of G that is H-compatible. Then any sphere decomposition of G that is more grounded than δ is also
H-compatible.

Proof. Let δ′ = (Γ′,D′) be a sphere decomposition that is more grounded than δ = (Γ,D). Let
c′ ∈ C(δ′). Let us show that c′ is H-compatible. Given that δ′ is more grounded than δ, there is a
cell c ∈ C(δ) such that V (σδ′(c

′)) ⊆ V (σ(c)).
Let U = V (σ(c)) \ V (σδ′(c

′)). Given that c is H-compatible, there is a set Sc ⊆ V (σ(c))
containing πδ(c̃) such that torso(σ(c), Sc) has a planar embedding with the vertices of πδ(c̃) on the
outer face and such that, for each D ∈ cc(σ(c)− Sc), D ∈ H. Let Sc′ := Sc \ U . By heredity of H,
each connected component C of σ(c)− Sc − U = σδ′(c

′)− Sc′ belong to H. Additionally, we have
torso(σδ′(c

′), Sc′) = torso(σ(c)−U, Sc \U) = torso(σ(c), SC)−U , so torso(σδ′(c
′), Sc′) is planar. The

result follows.

Combining Lemma 10.2.5 and Lemma 10.2.8, we obtain the following result.

Corollary 10.2.9. Let H be a hereditary graph class, k ∈ N, G be a graph, and W be an r-wall in G
with r ≥ max{

√
(k + 7)/2 + 2, 7}. A graph G is H(k)-planar if and only if G has a ground-maximal

H(k)-compatible sphere decomposition δ. Additionally, we can choose δ such that the (r − 2)-central
wall of W is grounded in δ.

10.2.4 Comparing sphere decompositions

In this subsection, we essentially want to prove that, given two sphere decompositions δ1 and δ2 on
the same graph, if δ1 is ground-maximal and δ2 is well-linked, then δ1 is always more grounded than
δ2 (see Corollary 10.2.14).

10.2. The FPT algorithm for H(k)-Planarity 243

Well-linkedness. Let ρ = (Γ,D) be a rendition of (G,Ω). We say that a cell c ∈ C(δ) is well-linked
if there are |c̃| vertex-disjoint paths from πδ(c̃) to V (Ω). We say that δ is well-linked if every cell
c ∈ C(δ) is well-linked.

The following result is a corollary of [286].

Proposition 10.2.10 (Lemma 3, [286]). If a society (G,Ω) has a rendition, then (G,Ω) has a
well-linked rendition.

Intersection and crossing of cells. Let δ = (Γ,D) and δ′ = (Γ′,D′) be two sphere decompositions
of a graph G. Let c ∈ C(δ) and c′ ∈ C(δ′) be two cells. We say that c and c′ intersect if
(V (σ(c))∩ V (σδ′(c

′))) \ (πδ(c̃)∩ πδ′(c̃′)) ̸= ∅. We say that c and c′ cross if c and c′ intersect but that
neither of them is contained in the other.

Our goal in this subsection is to prove that if c is a ground-maximal cell in some sphere
decomposition δ and that c′ is some well-linked cell in some rendition δ′, such that c and c′ intersect,
then c is contained in c′ (see Lemma 10.2.13). We first define a splitting operation on a sphere
decomposition that will be extensively used in this subsection.

Splitting a cell. Let δ = (Γ,D) and δ′ = (Γ′,D′) be two sphere decompositions of a graph G.
Let c ∈ C(δ) be a cell and v ∈ V (σ(c)) be a vertex such that at least two connected components of
σ(c)− v contains a vertex of πδ(c̃). Such a vertex v is called a cut-vertex of c in δ. We say that δ∗ is
obtained from δ by splitting c at v if δ′ can be constructed from δ − (V (σ(c)) \ πδ(c̃)) = (Γ′,D′) as
follows.

Let C1 be a disjoint union of components of σ(c)−v such that C1 and C2 := σ(c)−v−V (C1) are
both non-empty. Let A1 = V (C1) ∪ {v} and A2 = V (σ(c)) \ V (C1). For i ∈ [2], let Bi = Ai ∩ πδ(c̃).
Note that 1 ≤ |Bi| ≤ 2.

We setN(δ∗) = N(δ′)∪{x} for some arbitrary point x contained in c. We setD∗ = D′∪{∆c1 ,∆c2},
where c1, c2 ⊆ c be two new cells such that c̃1 = {x} ∪ π−1

δ (B1) and c̃2 = {x} ∪ π−1
δ (B2). Then Γ∗ is

obtained from Γ′ by arbitrarily drawing G[Ai] in ci, for i ∈ [2]. See Figure 10.4 for an illustration.

v
c1

c2

c

Figure 10.4: The blue sphere decomposition is obtained from the gray one by splitting c at v.

Observe that δ′ is well-defined and that it is more grounded than δ. Thus, c is not ground-maximal.
In the following lemma, we prove that if two cells c and c′ cross and that c′ has exactly one

vertex of its boundary in c, then c is not ground-maximal.

Lemma 10.2.11. Let δ = (Γ,D) and δ′ = (Γ′,D′) be two sphere decompositions of a graph G. Let
c ∈ C(δ) and c′ ∈ C(δ′) be two cells that cross and suppose that v ∈ V (G) is the unique vertex of
πδ′(c̃

′) in σ(c)− πδ(c̃). Then v is a cut-vertex of c in δ, and therefore, c is not ground-maximal.

10.2. The FPT algorithm for H(k)-Planarity 244

Proof. Let A = πδ(c̃) \ V (σδ′(c
′)) ̸= ∅ and A′ = πδ(c̃) ∩ V (σδ′(c

′)) ̸= ∅. Let P be an (A−A′)-path
in V (σ(c)) (it exists by the connectivity of σ(c)). Given that one endpoint of P is in V (σδ′(c

′))
and that the other is not, it implies that P intersects πδ′(c̃′). Given that v is the unique vertex of
πδ′(c̃

′) in V (σ(c)), it implies that v ∈ V (P) for all (A−A′)-paths P . We conclude that at least two
connected components of σ(c)− v ocontains a vertex of πδ(c̃), and thus, v is a cut-vertex of c.

We now prove that a ground-maximal cell and a well-linked cell cannot cross.

Lemma 10.2.12. Let (G,Ω) be a society. Let δ be a sphere decomposition of G and let δ′ be a
rendition of (G,Ω). Let c ∈ C(δ) be a ground-maximal cell such that V (Ω) ∩ (V (σ(c)) \ πδ(c̃)) = ∅
and c′ ∈ C(δ′) be a well-linked cell. Then c and c′ do not cross.

Proof. Assume towards a contradiction that c and c′ cross. Therefore, by connectivity of σ(c) and
σδ′(c

′), there is at least one vertex of πδ(c̃) in V (σδ′(c
′))\πδ′(c̃′) and at least one in V (σ(c))\V (σδ′(c

′)).
Similarly, there is at least one vertex of πδ′(c̃′) in V (σ(c))\πδ(c̃) and at least one in V (σδ′(c

′))\V (σ(c)).
Given that |c̃| ≤ 3 and |c̃′| ≤ 3, we can distinguish two cases:

• Case 1: there is exactly one vertex of πδ′(c̃′) in σ(c)− πδ(c̃) (Figure 10.5).

• Case 2: there are exactly two vertices of πδ′(c̃′) in σ(c)− πδ(c̃) (Figure 10.6).

Assume first that Case 1 happens. Let v be the unique vertex of πδ′(c̃′) in σ(c) − πδ(c̃). By

c′

c

Figure 10.5: Case 1 of Lemma 10.2.12.

Lemma 10.2.11, v is a cut-vertex of c in δ, and therefore c is not ground-maximal. Hence, Case 1
does not apply by maximality of c.

Assume that Case 2 applies. Let a1 and a2 be the vertices of πδ′(c̃′) in σ(c) − πδ(c̃). Let

c′

c

a1

a2

b1

b2

b3

Figure 10.6: Case 2 of Lemma 10.2.12.

B = πδ(c̃) \ V (σδ′(c
′)) and B′ = πδ(c̃) ∩ V (σδ′(c

′)). Remember that 1 ≤ |B|, |B′| ≤ 2. Given
that c′ is well-linked, there are two vertex-disjoint paths P1 and P2 in G − V (σ(c′)), the first
one from a1 to V (Ω) and the other from a2 to V (Ω). Given that a1, a2 ∈ V (σ(c)) and that
V (Ω) ∩ (V (σ(c)) \ πδ(c̃)) = ∅, it implies that P1 and P2 intersect B, say in b1 and b2 respectively.
Given that B = {b1, b2}, we thus have |B′| = 1. By Lemma 10.2.11, the unique vertex b3 in B′ is a
cut-vertex for c′ in δ′. Given that every edge of G is contained in a cell of δ′, for i ∈ [2], there is a
cell ci ∈ C(δ′) containing the edge b′ibi where b′i is the neighbor of bi in V (Pi) ∩ V (σ(c)).

Observe that c1 and c2 are distinct cells since otherwise we would have |πδ′(c̃1)| ≥ |πδ′(c̃1)∩V (P1)|+
|πδ′(c̃1) ∩ V (P2)| ≥ 4. Therefore, for i ∈ [2], either V (σδ′(ci)) ⊆ V (σ(c)), or by Lemma 10.2.11, bi

10.2. The FPT algorithm for H(k)-Planarity 245

is a cut-vertex for ci in δ′. Let δ′′ be the rendition obtained from δ′ by splitting c′ at b3, c1 at b1,
and c2 at b2 (only if those are cut-vertices for the last two cases). Note that δ′′ is more grounded
that δ′ and that no cell c′′ ∈ C(δ′′) crosses c. Let C := {c′′ ∈ C(δ′′) | c′′ contained in c} and ∆′′ be
a δ′′-aligned disk containing exactly the cells of C. Up to homeomorphism, we may assume that
∆′′ = ∆c and that πδ′′(v) = πδ(v) for all v ∈ bd(∆′′)∩N(δ′′) = bd(∆c)∩N(δ). Then we define δ∗ to
be the sphere decomposition of G that is equal to δ′′ when restricted to c, and equal to δ otherwise.
δ∗ is more grounded than δ, and, in particular, c is not ground-maximal. Hence, Case 2 does not
apply by maximality of c. This contradiction concludes the proof.

Lemma 10.2.13. Let (G,Ω) be a graph. Let δ = (Γ,D) be a sphere decomposition of G and let
δ′ = (Γ′,D′) be a rendition of (G,Ω). Let c ∈ C(δ) be a ground-maximal cell such that V (Ω) ∩
(V (σ(c)) \ πδ(c̃)) = ∅. Suppose that every cell c′ ∈ C(δ′) that intersects c is well-linked. Then c is
contained in a cell c′ ∈ C(δ′).

Proof. By Lemma 10.2.12, no well-linked cell c′ ∈ C(δ′) crosses c. Hence, every cell c′ ∈ C(δ′)
that intersects c is either contained in c or contains c. If c is contained in c′, we can immediately
conclude, so let us assume that every cell c′ ∈ C(δ′) that intersects c is contained in c. We define
δ∗ = (Γ∗,D∗) to be the rendition of (G,Ω) that is equal to δ′ when restricted to c, and equal to
δ otherwise, similarly to δ∗ in the Case 2 of Lemma 10.2.12 Thus, δ∗ is more grounded than δ.
Hence, given that c is ground-maximal, we conclude that, for any c∗ ∈ C(δ∗) contained in c, we
have V (σ(c)) = V (σδ∗(c

∗)). But, for any c∗ ∈ C(δ∗) contained in c, there is c′ ∈ C(δ′) such that
V (σδ∗(c

∗)) = V (σδ′(c
′)). Therefore, c is contained in a cell c′ ∈ C(δ′).

Given that, if δ is a rendition of a society (G,Ω), then V (Ω) ⊆ πδ(N(δ)), and thus V (Ω) ∩
(V (σ(c))\πδ(c̃)) = ∅ for any cells in δ, we immediately get the following corollary from Lemma 10.2.13.

Corollary 10.2.14. Let G be a connected graph. Let δ be a ground-maximal rendition of (G,Ω)
and let δ′ be a well-linked rendition of (G,Ω). Then δ is more grounded than δ′.

10.2.5 Combining sphere decompositions

To prove Theorem 10.1.4, as well as Lemma 10.1.6 and Lemma 10.1.7 later, the main ingredient is
the following result that says that, given a ground-maximal sphere decomposition of the compass of
some flat wall W of G and given a ground-maximal sphere decomposition of G− Y , where Y is a
central part of W , these two sphere decompositions can be glued to obtain a sphere decomposition
of G.

Lemma 10.2.15. Let k, r, q ∈ N with r, q odd and r ≥ q + 10. Let G be a graph, (W,R =
(A,B, P,C, δ)) be a flatness pair of G of height r, G′ be the R-compass of W , and Y be the vertex
set of the R(q)-compass of a W (q)-tilt (W̃ (q),R(q)) of (W,R). Suppose also that:

• δ = (Γ,D) is a well-linked rendition of (G′,Ω), where Ω is the cyclic ordering of the vertices of
A ∩B as they appear in D(W), and

• there are two ground-maximal sphere decompositions δ′ = (Γ′,D′) and δY = (ΓY ,DY) of G′

and G− Y , respectively, such that the (r − 2)-central wall W ′ of W is grounded in both δ′ and
δY .

Let T be the track of third layer C3 of W with respect to δ. Then πδ(T) ⊆ N(δ′) ∩N(δY).
Consequently, there is a ground-maximal sphere decomposition δ∗ of G such that each cell of δ∗

is either a cell of δ′ or a cell of δY , and more specifically:

10.2. The FPT algorithm for H(k)-Planarity 246

• T is the track of C3 with respect to δ∗,

• the restriction of δ∗ to the closed disk delimited by T containing Y (resp. not containing Y)
is, up to homeomorphism, the restriction of δ′ (resp. δY) to the closed disk delimited by T
containing Y (resp. not containing Y).

Y

δ′

δY

T

δ

Figure 10.7: The black circle represents T , δ is represented in blue, δ′ in red, and δY in orange. δ∗ is
obtained by combining δ′ inside of T and δY outside of T .

Proof. Let Ci be the i-th layer of W for i ∈ [(r − 1)/2] (so C1 is the perimeter of W). Let T be the
track of C3 in δ. Informally, we want to prove that near T , the cells of δ′ and δY are contained in
cells of δ. Hence, we may replace δ by δ′ in the disk bounded by T containing v, and we may replace
δ by δY in the disk bounded by T not containing v. See Figure 10.7 for an illustration.

To prove that each cell c of δ′ near T is contained in a cell of δ, we want to apply Lemma 10.2.13.
To do so, we need to check that the interior of c does not contain any vertex of V (Ω). Here, "near"
T means intersecting T in at least two points, that is |V (σδ′(c))∩ πδ(T)| ≥ 2. This is what we prove
in Claim 10.2.16. We also prove it for δY at the same time.

Claim 10.2.16. Let δ1 ∈ {δ′, δY }. For each cell c1 ∈ C(δ1) such that |V (σδ1(c1)) ∩ πδ(T)| ≥ 2, it
holds that V (Ω) ∩ V (σδ1(c1)) = ∅.

Proof of claim. Let c1 ∈ C(δ1) be such that V (σδ1(c1))∩ πδ(T) ̸= ∅. If V (Ω)∩ V (σδ1(c1)) ̸= ∅, then
σδ1(c1) contains vertices of both C1 and C3, and thus also of C2. Given that W ′ is grounded in δ1,
it holds that σδ1(c1) does not contain C2 nor C3. Therefore, πδ(c̃1) contains two vertices of C2. But
given that C2 and C3 are vertex disjoint and that πδ(c̃1) contains two vertices of πδ(T) ⊆ v(C3),
this implies that |c̃1| ≥ 4, a contradiction. Therefore, V (Ω) ∩ V (σδ1(c1)) = ∅. This completes the
proof. ⋄

Therefore, given that δ and δ′ are sphere decomposition of the same graph G′, we prove using
Lemma 10.2.13 that any cell of δ′ intersecting T in at least two point is contained in a cell of δ.

Claim 10.2.17. For any c′ ∈ C(δ′) such that |V (σδ′(c
′)) ∩ πδ(T)| ≥ 2, there is a cell c ∈ C(δ) such

that c′ is contained in c.

Proof of claim. Given that δ is well-linked, that δ′ is ground-maximal, and that V (Ω)∩V (σδ′(c
′)) = ∅

by Claim 10.2.16, the proof immediately follows from Lemma 10.2.13. ⋄

10.2. The FPT algorithm for H(k)-Planarity 247

For δY however, using Lemma 10.2.13 is not that easy. Indeed, δ and δY are not sphere
decompositions of the same graph, given that one is a sphere decomposition of G′ and the other of
G− Y . Therefore, we need to consider the restrictions δ̃ and δ̃Y of δ and δY to G′ − Y and to apply
Lemma 10.2.13 to these sphere decompositions. To do so, we need to check that a cell cY of δY near
T is still a cell of δ̃Y , that is ground-maximal, and that a cell c of δ intersecting cY is still a cell of δ̃,
that is well-linked. Let us first prove that the vertices of Y are not vertices of σ(c), and thus that c
is still a cell of δ̃.

Claim 10.2.18. Let cY ∈ C(δY) be such that |V (σδY (cY)) ∩ πδ(T)| ≥ 2. Then, for any c ∈ C(δ)
that intersect cY , Y ∩ V (σ(c)) = ∅.

Proof of claim. Suppose towards a contradiction that Y ∩ V (σ(c)) ̸= ∅. The perimeter of W (q) is Cj

for j = (r − q)/2 + 1. Given that r ≥ q + 10, this implies that j ≥ 6. Hence, by definition of a tilt
of a flatness pair, we conclude that Y ∩ V (C5) = ∅. Then, by connectivity, either σ(c) or σδY (cY)
intersects C4 and C5. Given that W ′ is grounded in both δ and δY , neither C5 nor C4 is totally
contained in σ(c) or σδY (cY).

Given that |πδY (c̃Y) ∩ πδ(T)| ≥ 2 and that |πδY (c̃Y)| ≤ 3, C4 cannot intersect πδY (c̃Y) in two
vertices. Therefore, πδ(c) must intersect both C4 and C5. Hence |c̃| ≥ 4, a contradiction proving the
claim. ⋄

Let us now prove that any cell of δY intersecting T in at least two points is contained in a cell of
δ.

Claim 10.2.19. For any cY ∈ C(δY) such that |V (σδY (cY)) ∩ πδ(T)| ≥ 2, there is a cell c ∈ C(δ)
such that cY is contained in c.

Proof of claim. Let δ̃ = (Γ̃, D̃) and δ̃Y = (Γ̃Y , D̃Y) be the restrictions of δ and δY , respectively, to
G′′ := G′ − Y , i.e., δ̃ = δ − Y and δ̃Y = δY − (V (G) \ V (G′)).

Let c ∈ C(δ) be a cell that intersects cY . By Claim 10.2.18, Y ∩ V (σ(c)) = ∅, so c ∈ C(δ̃). Let
us show that c is still well-linked in δ̃. Given that c is well-linked in δ, there are three vertex-disjoint
paths from πδ(c̃) to V (Ω). Even if one of them contains a vertex of Y , we can reroute the paths
using the wall so that they avoid Y . Hence, c is still well-linked after removing v.

Also, by Claim 10.2.16, V (Ω)∩V (σδY (cY)) = ∅, so cY ∈ C(δ̃Y). Therefore, cY is ground-maximal
in δ̃Y . Indeed, otherwise, there is a sphere decomposition δ̃′Y of G′′ that is more grounded than δ̃Y
such that, for any cell c′Y in δ̃′Y , c′Y is either contained in cY , or is equal to another cell of δ̃Y . But
then we can easily add Y back to obtain a sphere decomposition δ′Y that is more grounded than δY ,
contradicting the maximality of δY .

Hence, the proof follows from Lemma 10.2.13 applied on (G′′,Ω). This completes the proof of
the claim. ⋄

Given that the cells of δ′ and δY near T are contained in cells of δ, it implies that no cell of δ′

nor δY intersects T . This is what we prove in Claim 10.2.20.

Claim 10.2.20. πδ(T) ⊆ N(δ′) ∩N(δY).

Proof of claim. Let δ1 ∈ {δ′, δY }. Suppose towards a contradiction that πδ(T) \N(δ1) ̸= ∅. Then
there is a cell c1 ∈ C(δ1) and a vertex x ∈ πδ(T) such that x ∈ V (σδ1(c1)) \ πδ1(c̃1). Therefore,
|V (σδY (cY)) ∩ πδ(T)| ≥ 2. Hence, by one of Claim 10.2.17 and Claim 10.2.19, there exists a cell
c ∈ C(δ) such that c1 is contained in c. However, given that T is a track in δ, this implies that
x /∈ V (σδ(c)) \ πδ(c̃) ⊇ V (σδ1(c1)) \ πδ1(c̃1), a contradiction proving the claim. ⋄

10.2. The FPT algorithm for H(k)-Planarity 248

Therefore, there exists a δ′-aligned disk ∆′ such that innerδ(C3) = innerδ′(∆
′), and a δY -aligned

disk ∆v such that innerδ(C3) − v = outerδY (∆v). S2 − T is composed of two open disks. Up
to homeomorphism, we may assume that the closures of these disks are ∆v and ∆′, respectively.
Hence, we can define δ∗ = (Γ∗,D∗) such that D∗ := {∆c ∈ D′ | c ⊆ ∆′} ∪ {∆c ∈ Dv | c ⊆ ∆v} and
Γ∗ = (Γ′∩∆′)∪(Γv∩∆v). Each cell c∗ of δ∗ is either a cell of δ′ or of δY , and is thus ground-maximal,
hence the result.

A direct corollary is that, if the compass of some flat wall W of G is H(k)-planar and that G− v
is H(k)-planar, where v is the cental vertex of W , then G is H(k)-planar.

Corollary 10.2.21. Let H be a hereditary graph class. Let k, q, r ∈ N with q, r odd and r ≥
max{

√
(k + 7)/2 + 2, q + 10}. Let G be a graph, (W,R = (A,B, P,C, ρ)) be a flatness pair of G

of height r, G′ be the R-compass of W , and Y be the vertex set of the R(q)-compass of a W (q)-tilt
(W̃ (q),R(q)) of (W,R). Then G is a yes-instance of H(k)-Planarity if and only if G′ and G− Y
are both yes-instances of H(k)-Planarity.

Proof. Obviously, if one of G′ and G− Y is not H(k)-planar, then neither is G by heredity of the
H(k)-planarity. Let us suppose that both G′ and G − Y are H(k)-planar. We want to prove that
G is H(k)-planar. For this, we find a well-linked rendition δ of (G′,Ω) and ground-maximal sphere
decompositions δ′ of G′ and δY of G− Y .

Let Ci be the i-th layer of W for i ∈ [(r−1)/2] (so C1 is the perimeter of W). Let Ω be the cyclic
ordering of the vertices of A ∩ B as they appear in C1. Hence, ρ is a rendition of (G′ = G[B],Ω).
Then, by Proposition 10.2.10, (G′,Ω) has a well-linked rendition δ.

By Corollary 10.2.9, given that r ≥ max{
√
(k + 7)/2+2, 7}, there are two ground-maximal H(k)-

compatible sphere decompositions δ′ = (Γ′,D′) and δY = (ΓY ,DY) of G′ and G− Y , respectively,
such that the (r − 2)-central wall W ′ of W is grounded in both δ′ and δY .

Then, by Lemma 10.2.15, given that r ≥ q + 10, there exists a ground-maximal sphere decompo-
sition δ∗ of G such that each cell δ∗ is either a cell of δ′ or a cell of δY , and is thus H(k)-compatible.
Thus, by Lemma 10.2.5, G is H(k)-planar.

If we take q = 3, then we get the following.

Corollary 10.2.22. Let H be a hereditary graph class. Let k, r ∈ N with r ≥ max{
√
(k + 7)/2 +

2, 13}. Let G be a graph, (W,R = (X,Y, P,C, ρ)) be a flatness pair of G of height r, G′ be the
R-compass of W , and v be a central vertex of W . Then G is a yes-instance of H(k)-Planarity if
and only if G′ and G− v are both yes-instances of H(k)-Planarity.

10.2.6 Proof of Theorem 10.1.4

We can finally prove Theorem 10.1.4.

Theorem 10.1.4. Let k ∈ N and let H be a polynomial-time decidable hereditary graph class. Then
there is an algorithm that solves H(k)-Planarity in time f(k) · n(n +m) for some computable
function f .

Proof. We apply Theorem 10.2.2 toG, with k′ = ⌈
√
k + 4⌉+2 and r = max{odd(

√
(k + 7)/2+2), 13}.

It runs in time Ok(n+m).
If G has treewidth at most f10.2.2(k′) · r, then we apply Proposition 4.3.2 to G in time Ok(n) and

solve the problem. We can do so because the graphs in H(k) have a bounded size, so H(k) is a finite
graph class, hence trivially CMSO-definable. Therefore, by Observation 10.0.1, H(k)-Planarity is
expressible in CMSO logic.

10.3. Planar elimination distance 249

If G contains an apex grid of height k′ as a minor, then by Lemma 10.2.3, we obtain that G has
no planar H(k)-modulator and report a no-instance.

Hence, we can assume that there is a flatness pair (W,R) of height r in G whose R-compass G′

has treewidth at most f10.2.2(k′) · r. Let v be a central vertex of W . We apply Proposition 4.3.2 to
G′ in time Ok(n) and we recursively apply our algorithm to G− v. If the outcome is a no-instance
for one of them, then this is also a no-instance for G. Otherwise, the outcome is a yes-instance for
both. Then, by Corollary 10.2.22, we can return a yes-instance.

The running time of the algorithm is T (n) = Ok(n+m) + T (n− 1) = Ok(n(n+m)).

Note that the running time of Proposition 4.6.3, and thus Theorem 10.2.2 can be modified so
that the dependence on t (resp. k) and r is explicit. Therefore, the only reason we cannot give an
explicit dependence on k here is Courcelle’s theorem.

10.3 Planar elimination distance

In this section, we prove Lemma 10.1.5 in Subsection 10.3.1, and Lemma 10.1.6 in Subsection 10.3.2,
after having given a necessary auxiliary result in Subsection 7.4.1.

10.3.1 Finding a big leaf in H

In this section, we prove Lemma 10.1.5.

The algorithm uses the following result.

Proposition 10.3.1 ([60]). Given a set V of size n and a, b ∈ [0, n], one can construct in time
2O(min{a,b} log(a+b)) · n log n a family Fa,b of at most 2O(min{a,b} log(a+b)) · log n subsets of V such that
the following holds: for any disjoint sets A,B ⊆ U with |A| ≤ a and |B| ≤ b, there exists a set
R ∈ F such that A ⊆ R and B ∩R = ∅.

Proof of Lemma 10.1.5. The algorithm goes as follows. We construct the family Fa,k′ of Propo-
sition 10.3.1 in time 2O(k log(a+k)) · n log n. For each U ∈ F , we do the following. We construct
CU := {C ∈ cc(G− U) | C /∈ H} in time O(nc + n+m) and set ZU :=

⋃
C∈CU V (C). If |AU | ≤ k′,

where AU := NG(ZU), then let CU ∈ cc(G − AU) be the unique component of size at least a, if
it exists. We compute, if it exists, a minimum solution SU of Vertex Deletion to H for the
instance (CU , k

′ − |AU |) in time k′ · f(k′) · nc. For each subset YU ⊆ V (G) \NG[V (CU)] (which has
size at most a− 1), we set XU := YU ∪AU ∪ SU . We check whether torso(G,XU) ∈ Gk (in time at
most 2(a+k)2 + n+m) and G−XU ∈ H (in time time O(nc)). If that is the case, we return the set
XU . If, for every U ∈ F , we did not return anything, then we return a no-instance.

Running time. Given that |Fa,k′ | ≤ 2O(k log(a+k)) · log n, the algorithm takes time f(k) ·2O((a+k)2) ·
log n · (nc + n+m).

Correctness. Obviously, if the algorithm outputs a set XU , then it is a Gk ▷H-modulator of G. It
remains to show that if G admits a big-leaf Gk ▷H-modulator, then the algorithm indeed output
some set XU . Assume that G admits a big-leaf Gk ▷H-modulator X with big leaf D.

We set L := NG[V (D)], R := V (G) \V (D), A := L∩R = NG(V (D)), and B := R \L = V (G)−
NG[V (D)]. By Observation 10.1.2, we have |NG(V (D))| ≤ k′. Therefore, (L,R) is a separation ofG of
order at most k′. Moreover, G is (a, k′)-unbreakable, so given that |L\R| = |V (D)| ≥ a, we conclude
that |B| ≤ a− 1. Therefore, by Proposition 10.3.1, we can construct in time 2O(k log(a+k)) · n log n a

10.3. Planar elimination distance 250

family F of at most 2O(k log(a+k)) · log n subsets of V (G) such that there exists U ∈ F with A ⊆ U
and B ∩ U = ∅.

D ∈ H

A
B

H

H

H

H

H

U

/∈ H
ZU

AU

Figure 10.8: Illustration for the correctness of Lemma 10.1.5. CU is the union of the red and the
blue part.

By heredity of H, for each C ∈ CU , C is not a subgraph of D. Therefore, V (C) ⊆ B, and
thus NG(V (C)) ⊆ A. Hence, ZU ⊆ B and AU ⊆ A. In particular, |ZU | ≤ |B| < a. Moreover,
V (D) ⊆ V (G) \AU , so, given that G is (a, k′)-unbreakable, the component CU ⊆ cc(G−AU) such
that V (D) ⊆ V (CU) is the unique component of size at least a, and |V (G) \NG[V (CU)]| < a. Given
that, for each C ∈ cc(G− U) \ CU , C ∈ H, and that H is closed under disjoint union, we conclude
that A \AU is a solution of Vertex Deletion to H for the instance (CU , k

′ − |AU |). Therefore,
the algorithm should find a minimum solution SU of Vertex Deletion to H for the instance
(CU , k

′ − |AU |).
We set YU := X \NG[V (CU)]. It remains to prove that XU := YU ∪AU ∪SU is a Gk ▷H-modulator

of G. For each C ∈ cc(G−XU), we have either C ∈ cc(G−X), or V (C) ⊆ V (CU). In the first case,
it immediately implies that C ∈ H. In the second case, it implies NG(V (C)) ⊆ AU ∪ SU . Hence,
given that CU ∈ cc(G−AU) and that SU is a solution of Vertex Deletion to H for the instance
(CU , k

′ − |AU |), we also conclude that CU ∈ H. It remains to prove that torso(G,XU) ∈ Gk. We
only write the proof for planar treedepth and planar treewidth, as the proof is simpler for treedepth
and treewidth.

Claim 10.3.2. If Gk is the class of graphs of planar treedepth at most k, then torso(G,XU) ∈ Gk.

Proof of claim. Given that X is a Gk ▷H-modulator of G, there is a certifying elimination sequence
X1, . . . , Xk. We need to prove that torso(G,XU) ∈ Gk, or, equivalently, that there is a certifying
elimination sequence X ′

1, . . . , X
′
k whose union is XU . Remember that A′ := A \AU is a solution of

Vertex Deletion to H for the instance (CU , k
′−|AU |). By minimality of SU , we have |SU | ≤ |A′|,

so there is an injective function τ from SU to A′. We define the partition (X ′
1, . . . , X

′
k) of XU

such that, for i ∈ [k], X ′
i = Xi \ A′ ∪ τ−1(A′ ∩ Xi) (remember that Xi \ A′ ⊆ Y ∪ AU and that

τ−1(A′ ∩Xi) ⊆ SU). We define G′
1 = G and G′

i+1 = G′
i −X ′

i for i ∈ [k]. It remains to prove that
torso(G′

i, X
′
i) is planar, for i ∈ [k]. Given that |A∩Xi| ≤ 4, we conclude that (AU∪SU)∩X ′

i induces at
most a K4 in torso(G′

i, X
′
i). Moreover, NG(A

′) ⊆ AU , and thus Ntorso(G′
i,X

′
i)
(SU ∩X ′

i) ⊆ AU ∩X ′
i, so

torso(G′
i, X

′
i) is indeed planar. Therefore, X ′

1, . . . , X
′
k is indeed a certifying elimination sequence. ⋄

Claim 10.3.3. If Gk is the class of graphs of planar treewidth at most k, then torso(G,XU) ∈ Gk.

Proof of claim. Let (T, β) be a tree decomposition of torso(G,X) of planar width at most k. Given
that A = NG(V (D)) induces a clique in torso(G,X), there is t ∈ V (T) such that A ⊆ β(t). Let
A′ = A \AU . Let (T, β′) be the tree decomposition of torso(G,XU) such that β′(t) = β(t) \A′ ∪ SU
and β′(t′) = β(t′) \A′ for t′ ∈ V (T) \ {t}. If β(t) has size at most k, then so does β′(t) given that

10.3. Planar elimination distance 251

|SU | ≤ |A′|. If β(t) has a planar torso, then |AU ∪ SU | ≤ |A| ≤ 4, and Ntorso(G,XU)(SU) ⊆ AU , so
the torso of β′(t) is also planar. Therefore, (T, β′) has planar width at most k, hence the result. ⋄

10.3.2 The algorithm

We can now prove Lemma 10.1.6.

Proof of Lemma 10.1.6. We set α =
√
a+ 3+ 2, d = α4, s′ = a+ 4k− 3, s = (d− 1) · g4.6.3(k′) + s′,

z = max{
√
(a+ 4k − 2)/2+ 6, 11}, r3 = f7.4.2(4(k− 1), z, 3), r2 = ⌈

√
s · (r3 + 1)⌉, and r1 = r2 + 2α.

The algorithm goes as follows. If k = 0, then it reduces to checking whether G ∈ H(a−1), which can
be done in time Oa(1) given that H(a−1) is finite. If k = 1, then it reduces to checking whether G is
H(a−1)-planar. Therefore, we can apply Theorem 10.1.4 in time Oa(n · (n+m)) and conclude. Hence,
we now assume that k ≥ 2. We apply the algorithm of Proposition 4.6.3 with input (G, k′ + a, r1),
which runs in time Ok,a(n).

If Kk′+a is a minor of G, then we report a no-instance. We can do so because the graphs of planar
treedepth at most k are K4k+1-minor-free, and thus so is the torso of any Pk ▷H(a−1)-modulator of
G, and the graphs in H(a−1) have at most a − 1 vertices. Hence, if G has H-planar treedepth at
most k, then G is Kk′+a-minor-free.

If G has treewidth at most f4.6.3(k′+a) · r1, then we apply Proposition 4.3.2 to G in time Ok,a(n)
and solve the problem. We can do so because H(a−1)-planarity is expressible in CMSO logic, and
therefore, by induction, having H(a−1)-planar treedepth at most k is also expressible in CMSO logic.

Hence, we can assume that there is a set A ⊆ V (G) of size at most g4.6.3(k′) and a flatness pair
(W1,R1) of G− A of height r1 such that CompassR1

(W1) has treewidth at most f4.6.3(k′ + a) · r1.
Let W2 be the central r2-subwall of W1.

Given that r2 ≥ ⌈
√
s · (r3 + 1)⌉, we can find a collection W ′ = {W ′1

3 , . . . ,W
′s
3 } of r3-subwalls

of W2 such that the sets influenceRi(Wi) are pairwise disjoint. Then, by applying the algorithm of
Proposition 4.6.6, in time O(n+m), we find a collection W = {W 1

3 , . . . ,W
s
3 } such that, for i ∈ [s],

(W i
3,R

i
3) is a W ′i

3 -tilt of (W1,R1), and the graphs CompassRi
3
(W i

3) are pairwise disjoint and have
treewidth at most f4.6.3(t) · r1.

Let A− denote the set of vertices of A that are adjacent to vertices in the compass of at most
d− 1 walls of W, and let A+ := A \A−. A− can be constructed in time Ok(n). If |A+| ≥ 4k, then
return a no-instance, as justified later in Claim 10.3.6. Then, given that s ≥ (d− 1) · |A|+ s′, by
the pigeonhole principle, there is I ⊆ [s] of size s′ such that no vertex of A− is adjacent to the
Ri

3-compass of W i
3 for i ∈ I. Therefore, (W i

3,R
i′
3) is a flatness pair of G−A+ for i ∈ I, where Ri′

3 is
the 5-tuple obtained from Ri

3 by adding A− to its first coordinate.
For i ∈ I, let Fi denote the Ri′

3 -compass of W i
3. Given that Fi has treewidth at most f4.6.3(t) · r1,

we apply Proposition 4.3.2 to compute in time Ok,a(n) the minimum di ≤ k, if it exists, such that
Fi is (Pdi−1 ▷H)(a−1)-planar. If, for all i ∈ I, such a di does not exist, then we report a no-instance
as justified later in Claim 10.3.5. Otherwise, there is p ∈ I such that dp is minimum.

Let v be a central vertex of W p
3 . We apply recursively our algorithm to G − v and return a

yes-instance if and only if it returns a yes-instance.

Correctness. We now prove the correctness of the algorithm. Suppose that G − v has H(a−1)-
planar treedepth at most k. Let us prove that it implies that G has H(a−1)-planar treedepth at most
k. Let X1, . . . , Xk be a certifying elimination sequence of G and let Gi := Gi−1 −Xi for i ∈ [k],
where G0 := G− v.

10.3. Planar elimination distance 252

Let j := max{i ∈ [0, k] | ∃Ci ∈ cc(Gi), |V (Ci)| ≥ a}. Given that G0 = G − v contains as a
connected subgraph the graph W1−v of size more that a, we conclude that there is C0 ∈ cc(G0) such
that |V (C0)| ≥ a, so j is well-defined. Let Cj ∈ cc(Gj) be such that |V (Cj)| ≥ a. See Figure 10.9
for an illustration. Given that, for each C ∈ cc(Gk), C ∈ H(a−1), and thus |V (C)| < a, we conclude
that j < k.

Claim 10.3.4. |V (G− v) \ V (Cj)| ≤ a+ 4k − 5 and Cj is (Pk−j−1 ▷H)(a−1)-planar.

Proof of claim. Given that X1, . . . , Xk is a certifying elimination sequence of G− v, it implies that
Cj has H(a−1)-planar treedepth at most k − j and that Xj ∩ V (Cj) is a planar Pk−j−1 ▷H(a−1)-
modulator of Cj . Since G is an (a, k′)-unbreakable graph and that k′ = 4k, it implies that G− v is
(a, 4k− 1)-unbreakable. Note that (NG−v[V (Cj)], V (G− v) \ V (Cj)) is a separation of order at most
|NG−v(V (Cj))| ≤ 4j ≤ 4(k−1) < 4k−1, which implies that |V (G−v)\V (Cj)| ≤ a−1+4j ≤ a+4k−5.
By maximality of j, for each C ∈ cc(Cj − Xj+1) ⊆ cc(Gj+1), |V (C)| < a. Therefore, given that
Xj+1 ∩ V (Cj) is a planar Pk−j−1 ▷H(a−1)-modulator of Cj , it is also a planar (Pk−j−1 ▷H)(a−1)-
modulator of Cj . ⋄

The next claim justify that we can report a no-instance if, for all i ∈ I, there is no di ≤ k such
that Fi is (Pdi−1 ▷H)(a−1)-planar.

Claim 10.3.5. dp ≤ k − j.

Proof of claim. Given that, by Claim 10.3.4, |V (G− v) \V (Cj)| ≤ a+4k− 5 ≤ s′− 2, it implies, by
the pigeonhole principle, that there is q ∈ I \ {p} such that Fq is entirely contained in Cj . Hence, by
Claim 10.3.4, Fq is (Pk−j−1 ▷H)(a−1)-planar, and therefore, dq ≤ k − j. Additionally, by minimality
of dp, dq ≥ dp. Therefore, dp ≤ k − j. ⋄

We now prove that we have a no-instance when |A+| ≥ 4k.

Claim 10.3.6. A+ ⊆ NG(V (Cj)), and hence |A+| ≤ 4k − 1.

Proof of claim. Let u ∈ A+. u is adjacent to the compass of at least d ≥ α4 walls of W. These
compasses are connected and pairwise disjoint, and are contained in the central r2-subwall of
W1, where r2 = r1 − 2α. Then, observe that G contains as a minor an (r1 × r1)-grid (obtained by
contracting the intersection of horizontal and vertical paths of W1) along with a vertex (corresponding
to u) that is adjacent to d vertices of its central (r2 × r2)-subgrid (corresponding to W2). Thus, by
Proposition 10.2.1, G contains a model of an apex grid Γ+

α of height α, where the branch set of the
universal vertex is the singleton {u}. Therefore, by Lemma 10.2.3, given that α ≥

√
a+ 3 + 2, and

that Cj admits a planar (Pk−j−1 ▷H)(a−1)-modulator, we conclude that u /∈ V (Cj). Given that
|V (G− v) \V (Cj)| ≤ a+4k− 5 and that s ≥ a+4k− 4, u neighbors at least one vertex of V (Cj), so
we conclude that u ∈ NG(V (Cj)). Therefore, |A+| ≤ |NG(V (Cj))| ≤ |NG−v(V (Cj))|+1 ≤ 4k−1. ⋄

We set S := NG−v(V (Cj)), which has size at most 4(k − 1). Remember that (W p
3 ,R

p
3) is a

flatness pair of G − A+ of height r3 ≥ f7.4.2(4(k − 1), z, 3). Note also that v is contained in the
compass of every W (3)-tilt of (W p

3 ,R
p
3). By Lemma 7.4.2, there is a flatness pair (W ∗,R∗) of G−A+

that is a W̃ -tilt of (W p
3 ,R

p
3) for some z-subwall W̃ of W p

3 such that v and S ∩ V (CompassR∗(W ∗))
are contained in the compass of every W ∗(5)-tilt of (W ∗,R∗). Let Y be the vertex set of the compass
of some W ∗(5)-tilt (WY ,RY) of (W ∗,R∗).

We set G′ := CompassR∗(W ∗). Let G∗ be the graph induced by V (Cj) and Y , and let R′′ be the
5-tuple obtained from R∗ after removing V (G) \ V (Cj) from its first coordinate.

Claim 10.3.7. (W ∗,R′′) is a flatness pair of G∗ and G′ = CompassR′′(W ∗).

10.3. Planar elimination distance 253

Proof of claim. Remember that Y is the vertex set of the RY -compass of the flatness pair (WY ,RY =
(AY , Y, PY , CY , ρY)) of G − A+ and that G′ is the R∗-compass of the flatness pair (W ∗,R∗ =
(A∗, V (G′), P ∗, C∗, ρ∗)) of G−A+. Hence, (W ∗,R′′ = (A∗ ∩ V (Cj), V (G′), P ∗, C∗, ρ∗)) is a flatness
pair of G − A+ − (A∗ \ V (Cj)). Let us prove that G − A+ − (A∗ \ V (Cj)) = G∗. Given that
V (G∗) = V (Cj) ∪ Y and that Y ⊆ V (G′) \A∗, we trivially have that G∗ is an induced subgraph of
G−A+ − (A∗ \ V (Cj)).

For the other direction, it is enough to prove that V (G′) ⊆ V (Cj) ∪ Y , given that A∗ ∩ V (Cj) ⊆
V (Cj). Given that W ∗ has height z and that WY has height five, W ∗ − V (WY), and thus G′ − Y ,
contains a wall of height z−6 has a subgraph. Thus, |V (G′)\Y | ≥ 2(z−6)2−2 ≥ a+4k−4. Hence,
by Claim 10.3.4, we conclude that |(V (G′) \Y)∩V (Cj)| ≥ 1. Remember that (NG−v[V (Cj)], V (G−
v) \ V (Cj)) is a separation of G− v with separator NG−v(V (Cj)) = S. Given that S ∩ V (G′) ⊆ Y ,
it thus implies that V (G′) ∩ (V (G− v) \ V (Cj)) ⊆ Y by connectivity of the compass. Since we also
have v ∈ Y , we conclude that V (G′) ⊆ V (Cj) ∪ Y , and thus that (W ∗,R′′) is a flatness pair of
G∗. ⋄

Remember that v ∈ Y . Let us show that G∗ has H(a−1)-planar treedepth at most k − j − 1. We
will later combine this result with the fact that G − v has H(a−1)-planar treedepth at most k to
prove that G has H(a−1)-planar treedepth at most k.

X1

X2

Xj+1

Xk

· · ·

· · ·
Cj

W p
3

W ∗
Y ∋ v

H

Figure 10.9: Illustration for the correctness of Lemma 10.1.6.

Claim 10.3.8. G∗ has H(a−1)-planar treedepth at most k − j.

Proof of claim. As discussed previously, Cj is (P(k−j−1) ▷H)(a−1)-planar. Given that G∗ − Y is an
induced subgraph of Cj , it is also (P(k−j−1) ▷H)(a−1)-planar by heredity. By Claim 10.3.7, (W ∗,R′′)
is a flatness pair of G∗ and G′ = CompassR′′(W ∗). Given that (W ∗,R∗) is a W̃ -tilt of (W p

3 ,R
p
3), G

′

is an induced subgraph of Fp, and thus, by Claim 10.3.5, G′ is (P(k−j−1) ▷H)(a−1)-planar. Therefore,
by Corollary 10.2.21 applied for the graph G∗, G′, and Y , given that z ≥ max{

√
(a+ 6)/2 + 2, 11},

we conclude that G∗ is (P(k−j−1) ▷H)(a−1)-planar. In particular, it means that G∗ has H(a−1)-planar
treedepth at most k − j. ⋄

Claim 10.3.9. G has H(a−1)-planar treedepth at most k.

Proof of claim. Given that G∗ has H(a−1)-planar treedepth at most k − j, there exists a certifying
elimination sequence Y1, . . . , Yk−j . We define (X∗

1 , . . . , X
∗
k) and (G∗

0, G
∗
1, . . . , G

∗
k) as follows. For

i ∈ [j], X∗
i := Xi \ Y . For i ∈ [k− j], we set X∗

j+i := Xj+i \V (Cj)∪ Yi. Finally, we set G∗
0 := G and

10.4. H-planar treewidth 254

G∗
i := G∗

i−1−X∗
i for i ∈ [k]. We want to prove that prove that X∗

1 , . . . , X
∗
k is a certifying elimination

sequence of G, i.e. that torso(G∗
i−1, X

∗
i) is planar for i ∈ [k] and that C ∈ H(a−1) for C ∈ cc(G∗

k).
For each D ∈ cc(G∗

j), either D = G∗, or D ∈ cc(Gj − Y). Therefore, for each C ∈ cc(G∗
k),

either (a) V (C) ⊆ V (G∗), in which case C ∈ cc(G∗ −
⋃

i∈[k−j] Yi) and thus C ∈ H(a−1), given that
Y1, . . . , Yk−j is a certifying elimination sequence of G∗, or (b) there is D ∈ cc(Gj − Y) such that
V (C) ⊆ V (D), in which case C ∈ cc(Gk − Y) and thus again C ∈ H(a−1) by heredity of H(a−1).

Given that (W ∗,R∗) is a flatness pair of G−A+ and that Y is the vertex set of some W ∗(5)-tilt of
(W ∗,R∗), it implies that NG(Y) ⊆ V (G′) ∪A+. Additionally, by Claim 10.3.7, V (G′) ⊆ V (Cj) ∪ Y ,
and, by Claim 10.3.6, A+ ⊆ NG(V (Cj)), so NG(Y) ⊆ NG[V (Cj)]. So finally, given that v ∈ Y , we
conclude that NG(Y) ⊆ NG−v[V (Cj)].

For i ∈ [j], X∗
i = Xi \ Y . NG(Y) ∩ Xi already induces a clique in torso(Gi−1, Xi) because

NG−v[V (Cj)]∩Xi = NG−v(V (Cj))∩Xi induces a clique in torso(Gi−1, Xi). Therefore, torso(G∗
i−1, X

∗
i)

is a subgraph of torso(Gi−1, Xi), that is thus planar. For i ∈ [k − j], the connected components
of X∗

j+i are either connected components of Yi or connected components of Xj+i, so their torso is
planar in either case. Hence the result. ⋄

10.4 H-planar treewidth

In Subsection 10.4.1, we prove that a graph has H-planar treewidth at most k if and only if it has
ground-maximal sphere decomposition whose cells have property ΠH,k. From this, we deduce in
Subsection 10.4.2 a proof of Lemma 10.1.7.

10.4.1 Expression as a sphere decomposition

Quasi-4-connectivity. Given k ∈ N≥1, a graph G is k-connected if for all separation (L,R) of
order at most k− 1 of G, either L ⊆ R or R ⊆ L. A graph G is quasi-4-connected if it is 3-connected
and that for all separation (L,R) of order three of G, either |L \R| ≤ 1 or |R \ L| ≤ 1.

Proposition 10.4.1 ([150]). Every G has a tree decomposition (T, β) of adhesion at most three such
that, for each t ∈ V (T), torso(G, β(t)) is a minor of G that is quasi-4-connected.

Lemma 10.4.2. Let H be a graph class and k ∈ N. Let G be a graph of H-planar treewidth at
most k and X be a PTk ▷H-modulator of G. Then torso(G,X) has a tree decomposition (T, β) of
adhesion at most three such that for each t ∈ V (T), torso(G, β(t)) is a minor of torso(G,X) that is
quasi-4-connected, and either it is planar or it has treewidth at most k.

Proof. By Proposition 10.4.1, there is a tree decomposition (T, β) of torso(G,X) of adhesion at most
three such that, for each t ∈ V (T), torso(G, β(t)) is a minor of torso(G,X) that is quasi-4-connected.
Let t ∈ V (T). Given that torso(G,X) has planar treewidth at most k and that torso(G, β(t)) is a
minor of torso(G,X), it implies that torso(G, β(t)) has planar treewidth at most k. Thus, there is a
tree decomposition (T t, βt) of torso(G, β(t)) such that, for each u ∈ V (T t), torso(G, βt(u)) either is
planar or has treewidth at most k. We chose (T t, βt) to have the minimum number of nodes. This
implies in particular that, for any u, u′ ∈ V (T t), βt(u) \ βt(u′) ̸= ∅.

Suppose towards a contradiction that there are two adjacent nodes u, u′ in V (T t) and that one
of them, say u, is such that torso(G, βt(u)) is planar. Then |adh(u, u′)| ≤ 4 and, by planarity of
torso(G, βt(u)), there is Y ⊆ adh(u, u′) that is a 3-separator in torso(G, β(t)). Then, by quasi-4-
connectivity of torso(G, β(t)), |Y | = |adh(u, u′)| = 3 and either |βt(u) \ Y | = 1 or |βt(u′) \ Y | = 1.

10.4. H-planar treewidth 255

If βt(u′) \ Y = {v}, then, again by quasi-4-connectivity of torso(G, β(t)), Y induces a face of
torso(G, βt(u)), so torso(G, βt(u) ∪ {v}) is also planar, given that Nβ(t)(v) = Y . Therefore, the tree
decomposition obtained by removing u′ and adding v to βt(u) is a tree decomposition of torso(G, β(t))
such that, for each u ∈ V (T t), torso(G, βt(u)) either is planar or has treewidth at most k, and with
less nodes as (T t, βt), a contradiction.

Assume now that βt(u) \ Y = {v} and |βt(u′) \ Y | > 1. By symmetry, if torso(G, βt(u′)) is
planar, we get a contradiction, so we assume that torso(G, βt(u′)) has treewidth at most k. But then,
torso(G, βt(u′) ∪ {v}) also has treewidth at most k, so we can again construct a tree decomposition
of torso(G, β(t)) such that, for each u ∈ V (T t), torso(G, βt(u)) either is planar or has treewidth at
most k, and with less nodes as (T t, βt), a contradiction.

Therefore, for each t ∈ V (T1), either torso(G, β(t)) is planar, or torso(G, β(t)) has treewidth at
most k. Hence the result.

Property ΠH,k. Let H be a graph class and k ∈ N. Given a sphere decomposition δ of a graph
G, we say that a cell c ∈ C(δ) has the property ΠH,k if Gc has a PTk ▷H-modulator Xc such that
πδ(c̃) ⊆ Xc, where Gc is there graph obtained from σ(c) by making a clique out of πδ(c̃). We say
that δ has the property ΠH,k if each cell of δ has the property ΠH,k.

Lemma 10.4.3. Let H be a graph class and k ∈ N. Let G be a graph. Suppose that G has a sphere
decomposition δ with the property ΠH,k. Then G has H-planar treewidth at most k.

Proof. We claim that X :=
⋃

c∈C(δ)Xc is a PTk ▷H-modulator of G. Indeed, for each c ∈ C(δ),
let (Tc, βc) be a tree decomposition of torso(Gc, Xc) of planar width at most k. Since πδ(c̃) ⊆ Xc

induces a clique in Gc, there is tc ∈ V (Tc) such that πδ(c̃) ⊆ βc(tc). We define a tree decomposition
of torso(G,X) as follows. We set T to be the union of the trees Tc for c ∈ C(δ) and a new vertex t
with an edge ttc for each c ∈ C(δ). Obviously, T is a tree. We set β to be the function such that
β(t) = πδ(N(δ)) and, for c ∈ C(δ), β|V (Tc) = βc. (T, β) is a tree decomposition of torso(G,X) such
that torso(G, β(t)) is planar, by definition of a sphere decomposition. Hence the result.

Lemma 10.4.4. Let H be a hereditary graph class and let a, k, r ∈ N with r ≥ max{a+ 3, k + 1, 7}.
Let G be an (a, 3)-unbreakable graph and W be an r-wall of G. Suppose that G has H(a−1)-planar
treewidth at most k. Then G has a sphere decomposition δ with the property ΠH,k such that the
(r − 2)-central wall W ′ of W is grounded in δ and such that each cell of δ has size at most a− 1.

Proof. Let X be a PTk ▷H(a−1)-modulator of G. Let V ′ ⊆ V (W ′) be the set of 3-branch vertices of
W that are vertices of W ′.

By Lemma 10.4.2, torso(G,X) has a tree decomposition (T, β) of adhesion at most three such that
for each t ∈ V (T), either torso(G, β(t)) is planar and quasi-4-connected, or tw(torso(G, β(t))) ≤ k.
By Claim 10.2.6, for each tt′ ∈ E(T), there is one connected component D ∈ cc(G− adh(t, t′)) that
contains all but at most one vertex of V ′ \ adh(t, t′), and G− V (D) contains no cycle of W ′. Given
that G is (a, 3)-unbreakable, that |adh(t, t′)| ≤ 3 and that |V (D)| ≥ |V ′ \ adh(t, t′)| ≥ a, we conclude
that |V (G) \ V (D)| < a. Therefore, there is t ∈ V (T) such that, for each t′ ∈ V (T) adjacent to t,
the connected component Dt′ containing β(t) \ adh(t, t′) is such that G− V (Dt′) contains no cycle
of W ′ and |V (G) \ V (Dt′)| < a.

Claim 10.4.5. torso(G, β(t)) is planar.

Proof of claim. Suppose towards a contradiction that tw(torso(G, β(t))) ≤ k and let (T0, β0) be a tree
decomposition of torso(G, β(t)) of width at most k. For each tt′ ∈ E(T), there is ut′ ∈ V (T0) such
that adh(t, t′) ⊆ β0(ut′). Let F be the set of H ∈ cc(G−X) such that there is no tt′ ∈ E(T) such

10.4. H-planar treewidth 256

that V (H) ⊆ V (Dt′). Again, for each H ∈ F , there is uH ∈ V (T0) such that NG(V (H)) ⊆ β(uH).
Hence, we can define the tree decomposition (T ′, β′) of G where T ′ is obtained from T0 by adding a
vertex vt′ adjacent to ut′ for each tt′ ∈ E(T) and a vertex vH adjacent to uH for each H ∈ F , and
β′ defined by β′|V (T0) = β0, β′(vt′) = V (Dt′) ∪ adh(t, t′) for tt′ ∈ E(T), and β′(vH) = NG[V (H)]
for H ∈ F . Given that |β′(vt′)| ≤ a + 2 for tt′ ∈ E(T), that |β′(vH)| ≤ a + 3 for H ∈ F , and
that |β′(u)| ≤ k + 1 for u ∈ V (T0), it implies that G has treewidth at most max{a + 2, k}. This
contradicts the fact that tw(G) ≥ tw(W) = r ≥ 1 + max{a+ 2, k}. ⋄

We set S := β(t). Let δ = (Γ,D) be a sphere embedding of torso(G,S). Remember that (T, β)
has adhesion at most three, so, for D ∈ cc(G− S), |NG(V (D))| ≤ 3. As in Claim 10.2.7, for each
D ∈ cc(G− S), there is a δ-aligned disk ∆D such that:

• NG(V (D)) = πδ(N(δ) ∩∆D) and

• the graph induced by BD := V (innerδ(∆D) ∩ V (ZD)) contains no cycle of W ′.

Note that to prove this, we use the fact that r − 2 ≥ 5 and |V ′| ≥ 2(r − 2)2 − 2 ≥ a+ 4. Also, if
NG(V (D)) = NG(V (D′)), then we can assume that ∆D = ∆D′ .

Let D∗ be the inclusion-wise maximal elements of D ∪ {∆D | D ∈ cc(G− S)}. By maximality
of D∗ and planarity of torso(G,S), any two distinct ∆D,∆D′ ∈ D∗ may only intersect on their
boundary. For each C ∈ cc(G− S), we draw C in a ∆D ∈ D such that V (C) ⊆ BD, and add the
appropriate edges with πδ(N(δ)∩ bd(∆D)). We similarly draw the edges of G[S] to obtain a drawing
Γ∗ of G.

For each cell c of δ∗ = (Γ∗,D∗), there is D ∈ cc(G− S) such that σδ∗(c) contains no cycle of W ′,
since σδ∗(c) is a subgraph of G[BD], so W ′ is grounded in δ∗.

It remains to prove that δ∗ has property ΠH,k. Let c ∈ C(δ∗) andXc := X∩V (σδ∗(c)). Let (Tc, βc)
be the restriction of (T, β) to Xc. Either σδ∗(c) is an edge of G, or there is D ∈ cc(G− S) such that
πδ∗(c̃) = NG(V (D)). Given that (T, β) is a tree decomposition of torso(G,X) and that NG(V (D))
is a clique in torso(G,X) for D ∈ cc(G− S), we conclude that (Tc, βc) is a tree decomposition of Gc

where Gc is the graph obtained from σδ∗(c) by making a clique out of πδ∗(c̃). Additionally, given
that S ⊆ X, we have πδ∗(c̃) ⊆ Xc. Finally, by heredity, (Tc, βc) is a tree decomposition of H-planar
treewidth at most k. Hence the result.

Lemma 10.4.6. Let H be a hereditary graph class and k ∈ N. Let G be a graph. If G has a sphere
decomposition δ with the property ΠH,k that is not ground-maximal, then G has sphere decomposition
δ′ with the property ΠH,k that is strictly more grounded than δ.

Proof. Let δ = (Γ,D) be a sphere decomposition of G with the property ΠH,k that is not ground-
maximal. Hence, there is a cell c ∈ C(δ) that is not ground-maximal. Since c has the property ΠH,k,
there is a PTk ▷H-modulator Xc of torso(Gc, σ(c)) such that πδ(c̃) ⊆ Xc. By Lemma 10.4.2, there is
a tree decomposition (T, β) of torso(Gc, Xc) of adhesion at most three such that, for each t ∈ V (T),
torso(Gc, β(t)) is a minor of σ(c) that is quasi-4-connected, and either it is planar or it has treewidth
at most k. Without loss of generality, we can assume that, for each t, t′ ∈ V (T), β(t) \ β(t′) ̸= ∅.
Given that πδ(c̃) is a clique in torso(Gc, σ(c)), there is r ∈ V (T) such that πδ(c̃) ⊆ β(r). We root T
at r.

Suppose that there is a child t of r such that adh(r, t) ⊊ πδ(c̃). Let T be the set of all children
of r such that adh(r, t′) = adh(r, t). Let V ′ be the set of all vertices of G − β(r) that belong
to a bag of a subtree of T rooted at a node in T . Let δ′ be the sphere decomposition of G
obtained by removing c from δ and instead adding two cells c1 and c2 such that πδ′(c̃1) = adh(t, r),
σδ′(c1) = G[V ′ ∪ adh(r, t′)], πδ′(c̃2) = πδ(c̃), and σδ′(c1) = σδ(c) − V ′. Note that, for i ∈ [2],

10.4. H-planar treewidth 257

Xci := Xc ∩ σδ′(ci) is a PTk ▷H-modulator of torso(Gc, σδ′(ci)). Thus, δ′ is more grounded than δ
and has the property ΠH,k.

Suppose that β(r) = πδ(c̃). If there is a child t of r, then we have adh(r, t) ⊆ β(r) = πδ(c̃),
and so adh(r, t) = β(r) given that we already handled the case when adh(r, t) ⊊ πδ(c̃). Therefore,
β(r) ⊆ β(t), which contradicts the fact that β(r) \ β(t) ̸= ∅. Thus, r is the only node of T . Then c
is H-compatible, so by Lemma 10.2.8, for any sphere decomposition δ′ that is more grounded than δ,
the cells of δ′ contained in c are H-compatible and thus have property ΠH,k. So we can assume that
β(r) \ πδ(c̃) ̸= ∅.

Suppose that |c̃| ≤ 2. Let v ∈ β(r) \ πδ(c̃) be a vertex adjacent to a vertex of πδ(c̃) in
torso(Gc, β(r)). It exists given that torso(Gc, β(r)) is quasi-4-connected, and thus connected. Let δ′

be the the sphere decomposition of G obtained by adding a new point u in the boundary c̃ of c, and
setting πδ′(u) = v. We still have πδ′(c̃) ⊆ Xc, and δ′ is a sphere decomposition of G with property
ΠH,k that is more grounded than δ.

We can thus suppose that |c̃| = 3. Note that, if there is a child t of r such that πδ(c̃) = adh(r, t),
then, given that β(r) \ adh(r, t) ̸= ∅ and β(t) \ adh(r, t) ̸= ∅, it implies that c is already ground-
maximal, so we can assume that πδ(c̃) ̸= adh(r, t) for all t ∈ V (T). If torso(Gc, β(r)) is planar, given
that is is also quasi-4-connected, πδ(c̃) either induces a face of torso(Gc, β(r)), or there is a vertex
v such that (πδ(c̃) ∪ {v}, V (torso(Gc, β(r))) \ {v}) is a separation of torso(Gc, β(r)). In the second
case, then again, c is already ground-maximal. In the first case, then let δc be a sphere embedding
of torso(Gc, β(r)) whose outer face has vertex set πδ(c̃). Then the sphere decomposition obtained by
replacing c with δc still has property ΠH,k, and it is more grounded than δ.

We now suppose that torso(Gc, β(r)) has treewidth at most k. Let δ′ be a sphere decomposition of
G more grounded than δ such that each cell c′ ∈ C(δ)\{c} is equivalent to a cell of C(δ′). We choose
δ′ such that the number of ground vertices |N(δ′)| is minimum among all sphere decompositions of
G that are more grounded than δ and distinct from δ. Suppose towards a contradiction that there is
a cell c′ ∈ C(δ′) contained in c and v ∈ πδ′(c̃′) such that v /∈ β(r). Let t ∈ V (T) be the child of r
whose subtree contains a node t′ with v ∈ β(t′). Thus, adh(r, t) is a separator of size at most three
between v and πδ(c̃).

If adh(r, t) ⊆ πδ′(N(δ′)), then there is δ′-aligned disk ∆ whose boundary is adh(r, t). Let δ′′ be
the sphere decomposition of G obtained by removing the cells of δ′ in ∆ and adding instead a unique
cell with boundary adh(r, t). δ′′ is more grounded than δ and, given that adh(r, t) ̸= πδ(c̃), δ′′ is
distinct from δ, a contradiction to the minimality of δ′.

Otherwise, there is x ∈ adh(r, t) \ πδ′(N(δ′)). Given that torso(G, β(r)) is quasi-4-connected,
there are three internally vertex-disjoint paths in torso(Gc, β(r)) from x to the three vertices in πδ(c̃).
Additionally, there is a path from x to v disjoint from β(r) (aside from its endpoint x). Thus, given
that torso(G, β(r)) is a minor of σ(c), that are four internally vertex-disjoint paths in σ(c) from x to
v and the three vertices in πδ(c̃), respectively. This implies that x ∈ σδ′(c′′) for some cell c′′ with
|c̃′′| ≥ 4, a contradiction to the fact that |c̃′′| ≤ 3.

Therefore, for any c′ ∈ C(δ′), πδ′(c̃′) ⊆ β(r). Given that torso(Gc, β(r)) has treewidth at most
k, by heredity of the treewidth, we easily get that Xc′ := Xc ∩ σδ′(c′) is a PTk ▷H-modulator of
torso(Gc, σδ′(c

′)). Hence the result.

From the previous results of this section and Lemma 10.2.15, we deduce an irrelevant vertex
technique tailored for H-planar treewidth.

Lemma 10.4.7. Let H be a hereditary graph class. Let a, k, r ∈ N with odd r ≥ max{a+3, k+1, 7}.
Let G be an (a, 3)-unbreakable graph, (W,R) be a flatness pair of G of height r, G′ be the R-compass
of W , and v be a central vertex of W . Then G has H(a−1)-planar treewidth at most k if and only if
G′ and G− v both have H(a−1)-planar treewidth at most k.

10.4. H-planar treewidth 258

Proof. Obviously, if one of G′ and G − v is has H(a−1)-planar treewidth at least k + 1, then so
does G by heredity of the H(a−1)-planar treewidth. Let us suppose that both G′ and G− v have
H(a−1)-planar treewidth at most k. We want to prove that G has H(a−1)-planar treewidth at most
k. For this, we find a well-linked rendition δ of (G′,Ω) and ground-maximal sphere decompositions
δ′ of G′ and δv of G− v.

Let Ci be the i-th layer of W for i ∈ [(r − 1)/2] (so C1 is the perimeter of W). Let R =
(X,Y, P,C, δ) and Ω be the cyclic ordering of the vertices of X ∩ Y as they appear in C1. Hence,
δ = (Γ,D) is a rendition of (G′ = G[Y],Ω). By Proposition 10.2.10, we can assume δ to be
well-linked.

By Lemma 10.4.4 and Lemma 10.4.6, given that r ≥ max{a+ 3, k + 1, 7}, there are two ground-
maximal sphere decompositions δ′ = (Γ′,D′) and δv = (Γv,Dv) of G′ and G− v, respectively, that
have property ΠH,k and such that the (r − 2)-central wall W ′ of W is grounded in both δ′ and δv.

Then, by Lemma 10.2.15, there exists a ground-maximal sphere decomposition δ∗ of G such that
each cell δ∗ is either a cell of δ′ or a cell of δv, and is thus has property ΠH,k. Thus, by Lemma 10.4.3,
G has H(a−1)-planar treewidth at most k.

10.4.2 The algorithm

In this section, we prove Lemma 10.1.7.

Let us first remark that we can use Courcelle’s theorem (Proposition 4.3.2) to check whether a
graph of bounded treewidth has H-planar treewidth at most k.

Lemma 10.4.8. If H is a CMSO-definable graph class, then having H-planar treewidth at most k is
expressible in CMSO logic.

Proof. The class PTk of graphs with planar treewidth at most k is minor-closed. Therefore, by
Robertson and Seymour’s seminal result, the number of obstructions of PTk is finite.

As mentioned in Observation 10.0.1, torso(G,X) is expressible in CMSO logic. Moreover, as
proven in [68, Subsection 1.3.1], the fact that a graph H is a minor of a graph G is expressible in
CMSO logic, which implies that PTk is expressible in CMSO logic. Indeed, it suffice to check for a
graph G whether it contains or not the obstructions of PTk.

Proof of Lemma 10.1.7. We apply Theorem 10.2.2 to G, with b = ⌈
√
a+ 3⌉+2 and r = odd(max{a+

3, k + 1, 7}). It runs in time Ok,a(n+m).
If G has treewidth at most f10.2.2(b) · r, then we apply Proposition 4.3.2 to G in time Ok,a(n)

and solve the problem. We can do so because the graphs in H(a−1) have a bounded size, so H(a−1) is
a finite graph class, hence trivially CMSO-definable. Therefore, by Lemma 10.4.8, having H-planar
treewidth at most k is expressible in CMSO logic.

If G contains an apex grid of height b as a minor, then, given that b ≥
√
a+ 3+2, by Lemma 10.2.3,

we obtain that G has no planar G(a−1)-modulator, where G is the class of all graphs. Hence, by
Lemma 10.2.5, G has no sphere decomposition δ whose cells all have size at most a − 1. This
implies, by Lemma 10.4.4, that G has H(a−1)-planar treewidth at least k+ 1. Therefore, we report a
no-instance.

Hence, we can assume that there is a flatness pair (W,R) of height r in G whose R-compass G′

has treewidth at most f10.2.2(b) · r. Let v be a central vertex of W . We apply Proposition 4.3.2 to
G′ in time Ok,a(n) and we recursively apply our algorithm to G− v. If the outcome is a no-instance
for one of them, then this is also a no-instance for G. Otherwise, the outcome is a yes-instance for
both. Then, by Lemma 10.4.7, given that r ≥ max{a+ 3, k + 1, 7}, we can return a yes-instance.

The running time of the algorithm is T (n) = Ok,a(n+m) + T (n− 1) = Ok,a(n(n+m)).

10.5. Applications 259

10.5 Applications

This section contains several algorithmic applications of Theorem 2.6.1, as well as a discussion on
similar applications for Theorem 2.6.2 and Theorem 2.6.3. To combine nice algorithmic properties of
planar graphs and graphs from H, we need a variant of Theorem 2.6.1 that guarantees the existence
of a polynomial-time algorithm computing a planar H-modulator in an H-planar graph. (Let us
remind that Theorem 2.6.1 only guarantees the existence of a polynomial-time algorithm deciding
whether an input graph is H-planar.) Thus, we start with the proof of the following theorem. The
proof of the theorem combines self-reduction arguments with the hereditary properties of H.

Theorem 10.5.1. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Then there exists a polynomial-time algorithm constructing for a given H-planar graph G a
planar H-modulator.

Proof. If H is trivial in the sense that H includes every graph, then we choose a planar H-modulator
X = {∅} of G. Otherwise, because H is hereditary, there is a graph F of the minimum size such that
F /∈ H. We say that F is a minimum forbidden subgraph. Because the inclusion in H is decidable, F
can be found in constant time by brute force checking all graphs of size 1, 2, . . . where the constant
depends on H.

We consider two cases depending on whether F is connected or not.
Assume that F is connected. We pick an arbitrary vertex r ∈ V (F) and declare it to be the root

of F . We construct five copies F1, . . . , F5 of F rooted in r1, . . . , r5, respectively. Then we define
F ′ to be the graph obtained from F1, . . . , F5 by unifying their root into a single vertex r which is
defined to be the root of F ′. Our self-reduction arguments are based on the following claim.

Claim 10.5.2. Let v be a vertex of a graph G. Then G has a planar H-modulator X with v ∈ X
if and only if the graph Gv obtained from G and F ′ by unifying v and the root of F ′ has a planar
H-modulator.

Proof of claim. Suppose that X is a planar H-modulator of G with v ∈ X. Then each connected
component of Gv −X is either a connected component of G−X or a connected component of one
of the graphs F1 − r1, . . . , F5 − r5. Because Fi − ri ∈ H for i ∈ [5], we have that each connected
component of Gv −X is in H. Furthermore, the torsos of X with respect to G and Gv are the same
because the root r of F ′ is the unique vertex of F ′ in X. Therefore, X is a planar H-modulator of
Gv.

Assume that Gv has a planar H-modulator X. We show that r = v ∈ X. For the sake of
contradiction, assume that v /∈ X. Then because F1, . . . , F5 /∈ H, for each i ∈ [5], there is xi ∈ V (Fi)
distinct from ri such that xi ∈ X. We pick each xi to be a vertex in minimum distance from ri in
Fi. This means that each Fi contains a (xi, ri)-path Pi such that each vertex of Pi − xi is not in X.
Then the vertices

⋃5
i=1(V (Pi) \ {xi}) are in the same connected component of Gv −X. However,

this means that {x1, . . . , x5} is a clique of size five in the torso of X contradicting planarity. Thus,
v ∈ X. Because v ∈ X and v = r is the unique common vertex of G and F ′ in Gv, we have that
X ′ = X \ (V (F ′) \ {r}) is a planar H-modulator of Gv. This completes the proof of the claim. ⋄

By Claim 10.5.2, we can use self-reduction. First, we apply Theorem 2.6.1 to check in polynomial
time whether G is a yes-instance of H-planarity. If not, then there is no planar H-modulator.
Otherwise, denote by v1, . . . , vn the vertices of G, set G0 = G, and set X := ∅ initially. Then, for
each i := 1, . . . , n, we do the following:

• set G′ to be the graph obtained from Gi−1 and F ′ by unifying vi and r,

10.5. Applications 260

• run the algorithm for H-planarity on G′,

• if the algorithm returns a yes-answer then set Gi = G′ and X := X ∪ {vi}, and set Gi = Gi−1,
otherwise.

Claim 10.5.2 immediately implies that X is a planar H-modulator for G. Clearly, if H-planarity
can be solved in polynomial time then the above procedure is polynomial. This concludes the proof
for the case when F is connected.

Now, F is not connected. Our arguments are very similar to the connected case, and therefore,
we only sketch the proof. Again, we construct five copies F1, . . . , F5 of F . Then, we construct a new
root vertex r and make it adjacent to every vertex of the copies of F . The following observation is
in order.

Claim 10.5.3. Let v be a vertex of a graph G. Then G has a planar H-modulator X with v ∈ X
if and only if the graph Gv obtained from G and F ′ by unifying v and the root of F ′ has a planar
H-modulator.

Proof of claim. Suppose that X is a planar H-modulator of G with v ∈ X. Then each connected
component of Gv − X is either a connected component of G − X or a connected component of
one of the graphs F1, . . . , F5. Because each connected component of Fi is in H for i ∈ [5] by the
minimality of F , we have that each connected component of Gv −X is in H. Also, the torsos of
X with respect to G and Gv are the same because r is the unique vertex of F ′ in X. Thus, X is a
planar H-modulator of Gv.

Assume that Gv has a planar H-modulator X. We show that r = v ∈ X. For the sake of
contradiction, assume that v /∈ X. Then because F1, . . . , F5 /∈ H, for each i ∈ [5], there is xi ∈ Fi

distinct from ri such that xi ∈ X. Since each xi is adjacent to r /∈ X, {x1, . . . , x5} is a clique of
size five in the torso of X contradicting planarity. Thus, v ∈ X. Because v ∈ X and v = r is the
unique common vertex of G and F ′ in Gv, X ′ = X \

⋃5
i=1 V (Fi) is a planar H-modulator of Gv.

This completes the proof of the claim. ⋄

Claim 10.5.3 immediately implies that we can apply the same self-reduction procedure as for the
connected case. This concludes the proof.

We remark that similar arguments can be used to construct decompositions for graphs with
H-planar treewidth of treedepth at most k. We sketch the algorithms in the following corollaries.

Corollary 10.5.4. Let H be a hereditary, CMSO-definable, polynomial-time decidable, and closed
under disjoint union graph class. Suppose that there is an FPT algorithm solving Vertex Deletion
to H parameterized by the solution size. Then there exists a polynomial-time algorithm constructing,
for a given graph G with H-planar treewidth at most k, a PTk ▷H-modulator S of a graph G and a
tree decomposition T of torso(G,S) of planar width at most k.

Sketch of the proof. We follow the proof of Theorem 10.5.1. The problem is trivial if H includes
every graph. Otherwise, because H is hereditary, there is a minimum forbidden subgraph F . We use
F to identify a PTk ▷H-modulator. We have two cases depending on whether F is connected or not.
In this sketch, we consider only the connected case; the second case is analyzed in the same way
as in the proof of Theorem 10.5.1. We pick an arbitrary vertex r ∈ V (F) and declare it to be the
root of F . We construct h = max{5, k + 2} copies F1, . . . , Fh of F rooted in r1, . . . , rh, respectively.
Then we define F ′ to be the graph obtained from F1, . . . , Fh by unifying their root into a single
vertex r which is defined to be the root of F ′. Then similarly to Claim 10.5.2, we have the following
property for every v ∈ V (G): G has a PTk ▷H-modulator S with v ∈ S if and only if the graph Gv

10.5. Applications 261

obtained from G and F ′ by unifying v and the root of F ′ has a PTk ▷H-modulator S. Thus, we can
find S by using self-reduction by calling the algorithm from Theorem 2.6.3.

In the next step, we again use self-reducibility to construct a tree decomposition T of G′ =
torso(G,S) of planar width at most k. For this, we consider all pairs {u, v} of non-adjacent vertices
of G′. For each {u, v}, we add the edge uv to the considered graph, and then use the algorithm
from Theorem 2.6.3 to check whether the obtained graphs admits a tree decomposition of planar
width at most k (in this case, H contains the unique empty graph). If yes, we keep the edge uv, and
we discard the pair {u, v}, otherwise. Let G∗ be the graph obtained as the result of this procedure.
We have that G∗ has a tree decomposition of planar width at most k where every bag of size at
most k + 1 is a clique. Furthermore, the adhesion sets for every bag of size at least k + 2, whose
torso is planar, are cliques of size at most 4. Then we can find all such bags by decomposing G∗ via
clique-separators of size at most 4. After that, we can find the remaining bags using the fact that
they are cliques. This completes the sketch of the proof.

Corollary 10.5.5. Let H be a hereditary, CMSO-definable, polynomial-time decidable, and closed
under disjoint union graph class. Suppose that there is an FPT algorithm solving Vertex Deletion
to H parameterized by the solution size. Then there exists a polynomial-time algorithm constructing,
for a given graph G with H-planar treedepth at most k, a certifying elimination sequence X1, . . . , Xk.

Sketch of the proof. We again follow the proof of Theorem 10.5.1 and use self-reduction. Assume
that H does not include every graph and let F be a rooted minimum forbidden subgraph. Assume
that F is connected; the disconnected case is analyzed similarly to the proof of Theorem 10.5.1. We
construct the graph F ′ as follows:

• construct a copy of the complete graph K4k.

• for every vertex v of the complete graph, construct five copies F1, . . . F5 of F rooted in r1, . . . , r5,
respectively, and then identify r1, . . . , r5 with v.

Then we declare an arbitrary vertex r of the complete graph in F ′ to be its root. Then similarly
to to Claim 10.5.2, we have the following property for every v ∈ V (G): G admits a certifying
elimination sequence X1, . . . , Xk with v ∈ X1 if and only if the graph G′ obtained from G and F ′ by
unifying v and the root of F ′ has H-planar treedepth at most k. We use this observation to identify
X1. Then we find X2, . . . , Xk by using the same arguments inductively. This concludes the sketch
of the proof.

Now, we can proceed to algorithmic applications of Theorem 10.5.1, Corollary 10.5.4, and
Corollary 10.5.5.

10.5.1 Colourings

Our first algorithmic application is the existence of a polynomial-time additive-approximation
algorithm for graph coloring on H-planar graphs.

Theorem 10.5.6. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that there is a polynomial-time algorithm computing the chromatic number
χ(H) for H ∈ H. Then, there exists a polynomial-time algorithm that, given an H-planar graph G,
produces a proper coloring of G using at most χ(G) + 4 colors.

For example, the class of perfect graphs is hereditary, CMSO-definable, and polynomial-time
decidable [62]. Moreover, the chromatic number of a perfect graph is computable in polynomial

10.5. Applications 262

time [155]. Thus by Theorem 10.5.6, when H is the class of perfect graphs, for any H-planar graph
G, there is a polynomial-time algorithm coloring G in at most χ(G) + 4 colors.

Proof. By Theorem 10.5.1, there is a polynomial-time algorithm computing a planar H-modulator S
of an H-planar graph G. Given that G[S] is planar, there is a proper coloring of G[S] with colors [1, 4]
by the Four Color theorem [15,257]. Moreover, the proof of the Four Color theorem is constructive
and yields a polynomial-time algorithm producing a 4-coloring of a planar graph. For each component
C ∈ cc(G− S), by the assumptions of the theorem, we can compute χ(G[C]) ≤ χ(G) in polynomial
time. Since all components are disjoint, we use at most χ(G) to color all the components of cc(G−S)
and then additional four colors to color G[S]. This gives a proper (χ(G) + 4)-coloring of G.

For a graph with bounded H-planar treedepth, we can use Corollary 10.5.5 to find a certifying
elimination sequence. Then by repetitive applications of Theorem 10.5.6, we immediately obtain a
bound on the chromatic number.

Corollary 10.5.7. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that there is a polynomial-time algorithm computing the chromatic number
χ(H) for H ∈ H. Then, there exists a polynomial-time algorithm that, given a graph G with
H-ptd(G) ≤ k, produces a proper coloring of G using at most χ(G) + 4k colors.

We can also prove a similar result for graphs of bounded H-planar treewidth.

Theorem 10.5.8. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph class.
Moreover, assume that there is a polynomial-time algorithm computing the chromatic number χ(H)
for H ∈ H. Then, there exists a polynomial-time algorithm that, given a graph G with H-ptw(G) ≤ k,
produces a proper coloring of G using at most χ(G) + max{4, k + 1} colors.

Proof. Given a graph G, we use the algorithm from Corollary 10.5.4 to find a PTk ▷H-modulator
S of G with a tree decomposition T of torso(G,S) of planar width at most k. As in the proof of
Theorem 10.5.6, for each component C ∈ cc(G − S), by the assumptions of the theorem, we can
compute χ(G[C]) ≤ χ(G) in polynomial time. Let us now find a proper coloring of torso(G,S) with
max{4, k + 1} colors. For this, it is enough to find a proper coloring of the torso of each bag of T
with at most max{4, k + 1} colors. If a bag as at most k + 1 vertices, then k + 1 colors suffices, and
if a bag has a planar torso, then four colors are enough [15,257], hence the result.

10.5.2 Counting perfect matchings

Our second example of applications of Theorem 2.6.1 concerns counting perfect matchings. While
counting perfect matchings on general graphs is #P-complete, on planar graphs, it is polynomial-time
solvable by the celebrated Fisher–Kasteleyn–Temperley (FKT) algorithm [118,182,300]. Given a
graph G with an edge weight function w : E(G)→ N, the weighted number of perfect matchings is

pmm(G) =
∑
M

∏
uv∈M

w(uv)

where the sum is taken over all perfect matchings M .

Theorem 10.5.9. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that the weighted (resp. unweighted) number of perfect matchings pmm(H)
is computable in polynomial time for each graph H in H. Then, there exists a polynomial-time
algorithm that, given a weighted (resp. unweighted) H-planar graph G, computes its weighted number
of perfect matchings pmm(G).

10.5. Applications 263

Examples of classes of graphs H where counting perfect matching can be done in polynomial
time are graphs excluding a shallow-vortex as a minor [303] (see also [18, 70,72,105,135]), bounded
clique-width graphs [71], and chain, co-chain, and threshold graphs [245].

To prove this, we use Valiant “matchgates” [308], or more precisely the gadgets from [298].

Proposition 10.5.10 ([298]). Let G be a graph and (A,B) be a separation of G of order two (resp.
three) with A∩B = {a, b} (resp. A∩B = {a, b, c}). Denote by GB the graph obtained from G[B] by
removing the edges with both endpoints in A ∩B. Let also pγ := pmm(GB − γ) for each γ ⊆ A ∩B.
Then, pmm(G) = pmm(G′), where G′ is the graph obtained from G[A] by adding the corresponding
planar gadget of Figure 10.10 (that depends on the size of A ∩B and the parity of B).

|B| odd |B| even

2

3

a b
pb pa p∅ pab 1

a b

c cc c

a aa a b bb b
if pa = 0 if p∅ = 0

pb

pabc

pa

pc

pa

pb

pc
pabc

1

1

pbc

p∅
pac

pab
1p∅

pab

pbc pac

1

|A ∩B|

Figure 10.10: The gadget (from [298]) we replace GB with, depending on the size of A ∩B and the
parity of |B|; to simplify notation, we write the indices of the weight pγ as the lists of the elements
of γ (e.g., we write pabc instead of p{a,b,c}). Note that, if pa = 0 or p∅ = 0, then there may be a
variant gadget.

We now prove Theorem 10.5.9.

Proof of Theorem 10.5.9. Let G be an H-planar graph and w : E(G) → N be a weight function
(with w = 1 in the unweighted case).

If G is not connected, then the weighted number of perfect matchings in G is the product of the
number of perfect matchings in the connected components of G. Hence, we assume without loss of
generality that G is connected.

Obviously, if G has an odd number of vertices, then pmm(G) = 0. So we assume that |V (G)| is
even. Additionally, if G has a cut vertex v, let C1 ∈ cc(G− v) and C2 =

⋃
C∈cc(G−v)\{C1}C. Given

that |V (G− v)| is odd, exactly one of C1 and C2, say C1, has an odd number of vertices. Then the
(weighted) number of perfect matchings is the product of pmm(C1 ∪ v) and pmm(C2). Therefore, we
can assume without loss of generality that G is 2-connected.

By Theorem 10.5.1, there is a polynomial-time algorithm computing a planar H-modulator S of
an H-planar graph G. Let δ′ be a sphere embedding of torso(G,S). Let δ be the sphere embedding
of G[S] obtained from δ′ by removing the edges that do not belong to G[S]. By Claim 10.2.7, for
every D ∈ cc(G− S), there is a δ-aligned disk ∆D such that:

• the vertices of NG(V (D)) are in the disk ∆D, i.e. NG(V (D)) ⊆ πδ(N(δ) ∩∆D),

10.5. Applications 264

• with all but at most one (in the case |NG(V (D))| ≤ 4) being exactly the vertices of the
boundary of ∆D, i.e. there is a set XD ⊆ NG(V (D)) of size min{|NG(V (D))|, 3} such that
XD = πδ(bd(∆D) ∩N(δ)).

Actually, Claim 10.2.7 is proved for δ′, but it is still true after removing edges to obtain δ. Note
that, given that G is 2-connected, we have 2 ≤ |XD| ≤ 3.

Let {∆1, . . . ,∆p} be the set of all such disks ∆D, ordered so that there is no i < j ∈ [p] with
∆i ⊇ ∆j . Note that for any D,D′ such that XD = XD′ , we assume that ∆D = ∆′

D, and thus, that
there is a unique i such that ∆i = ∆D = ∆′

D. Given that there are at most
(
n
3

)
separators in G, we

have p ≤ n3.
For i ∈ [p], let Zi := {C ∈ cc(G − S) | NG(V (C)) ⊆ πδ(N(δ) ∩∆i)} be the set of connected

components whose neighborhood is in ∆i. For i ∈ [p] in an increasing order, we will construct by
induction a tuple (Gi, Si, δi, wi) such that

1. Si is a planar H-modulator of the graph Gi with cc(Gi − Si) = cc(G− S) \
⋃

j≤i Zj ,

2. δi is a sphere embedding of Gi[Si] with δi \
⋃

j≤i int(∆j) = δ \
⋃

j≤i int(∆j), and

3. wi : E(Gi)→ N is a weight function such that pmm(Gi) = pmm(G).

Therefore, cc(Gp − Sp) = ∅, so Gp = G[Sp] is a planar graph with pmm(Gp) = pmm(G). Then,
by [183], pmm(Gp), and thus pmm(G), can be computed in polynomial time.

Obviously, the conditions are originally respected for (G0, S0, δ0, w0) = (G,S, δ, w). Let i ∈ [p].
Suppose that we constructed (Gi−1, Si−1, δi−1, wi−1). Let Bi := V (innerδ(∆i)) ∪ V (Zi) be the set of
vertices that are either in ∆i or in a connected component whose neighborhood is in ∆i. Let also
Xi := πδ(N(δi−1) ∩∆i) be the vertices on the boundary of ∆i. Given that there are no j < i such
that ∆i ⊆ ∆j , and by the induction hypothesis (2), there is D ∈ cc(G − S) such that Xi = XD,
so we have 2 ≤ |Xi| ≤ 3. If |Xi| = 2, we label its elements a and b, and if |Xi| = 3, we label its
elements a, b, c. Let Hi be the graph induced by Bi but where we remove the edges whose endpoints
are both in Xi.

For γ ⊆ Xi, let
pγ := pmm(Hi − γ).

Then, by Proposition 10.5.10, if we manage to compute pγ for each γ ⊆ Xi, then we can replace Hi

with the corresponding planar gadget Fi of Figure 10.10 (that depends on the size of Xi and the
parity of |V (Hi)| = |Bi|) to obtain Gi and the weight function wi, so that pmm(Gi) = pmm(Gi−1) =
pmm(G). So Item (3) of the induction holds. Then Si := Si−1 \ Zi ∪ V (Fi) is a planar H-modulator
of Gi with cc(Gi − Si) = cc(Gi−1 − Si−1) \ Zi = cc(G− S) \

⋃
j≤i Zj . So Item (1) of the induction

holds. Additionally, δi, that is obtained from δi−1 by adding the gadget to the planar embedding, is
such that δi \ int(∆i) = δi−1 \ int(∆i), and thus respects Item (2) by induction hypothesis. Then,
the obtained tuple (Gi, Si, δi, wi) would respects the induction hypothesis.

What is left is to explain how to compute pγ for γ ⊆ Xi. For each v ∈ Xi \ γ, we guess with
which vertex of Bi \Xi v is matched. There are O(n) choices for each such v, and therefore O(n3)
guesses to match all vertices in Xi \ γ. Let H ′

i be the graph obtained from Hi after removing Xi

and the vertices matched with vertices of Xi \ γ. We have pγ = pmm(H ′
i) + |Xi \ γ|. Note that

for any C ∈ Zi, Xi ⊆ NGi−1(C) = NG(V (C)). Indeed, otherwise, there would be j > i such that
∆C = ∆j , with ∆j ⊆ ∆i, a contradiction. Therefore, for any C ∈ Zi, if |NG(V (C))| ≤ 3, then C
is a connected component of H ′

i, and if |NG(V (C))| = 4, then C is a block of H ′
i. The rest of H ′

i

is innerδi−1
(∆i), that is a planar graph. Therefore, H ′

i is a graph whose blocks are either planar or
in H. As said above, for each cut vertex, we know in which block it should be matched depending
on the parity of the blocks. Hence, we can compute the weighted number of perfect matchings in

10.5. Applications 265

each block separately. Note that the weights added by the gadgets of Figure 10.10 are only present
in planar blocks, where we know how to compute the weighted number of perfect matchings in
polynomial time. In blocks belonging to H, the weight of edges did not change, so in the unweighted
(resp. weighted) case, we know how to compute the unweighted (resp. weighted) number of perfect
matchings in polynomial time. Thus, we can compute pmm(H ′

i) and, therefore, pγ in polynomial
time.

Again, by repetitive applications of Theorem 10.5.9, we immediately obtain the following for
graphs with bounded H-planar treedepth.

Corollary 10.5.11. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that the weighted (resp. unweighted) number of perfect matchings pmm(H)
is computable in polynomial time for graphs in H. Then, there exists an algorithm that, given a
weighted (resp. unweighted) graph G with H-ptd(G) ≤ k, computes its weighted (resp. unweighted)
number of perfect matchings pmm(G) in time nO(k).

If G has H-planar treewidth at most k, even given a Pk ▷H-modulator of G, computing the
number of perfect matchings is more difficult. Still, combining Theorem 10.5.9 with the dynamic
programming approach of [303], it is easy to derive an algorithm that, given a weighted graph,
computes the weighted number of its perfect matchings in time nO(k).

Theorem 10.5.12. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that the weighted (resp. unweighted) number of perfect matchings pmm(H)
is computable in polynomial time for graphs in H. Then, there exists an algorithm that, given
H-ptw(G) ≤ k, computes its weighted (resp. unweighted) number of perfect matchings pmm(G) in
time nO(k).

10.5.3 EPTAS for Independent Set

Baker’s technique [20] provides PTAS and EPTAS for many optimization problems on planar graphs.
This method is based on the fact that planar graphs have bounded local treewidth. In particular,
for every planar graph G and every vertex v ∈ V (G), tw(N r

G[v]) = O(r), where N r
G[v] is the closed

r-neighborhood of v, that is, the set of vertices at distance at most r from v (see [259]).
Given that the torso of a planar H-modulator X is planar, we extend Baker’s technique to H-

planar graphs, by replacing the role of treewidth with H-treewidth. As mentioned in the introduction,
H-treewidth has been defined by Eiben, Ganian, Hamm, and Kwon [104]. Its algorithmic properties
have been studied in [6, 104,174].

Let us explain how the EPTAS works on Independent Set. The problem of Independent
Set asks for an independent set of maximum size, that is a set S such that no edge of G has both
endpoints in S. Let us remind that an independent set in a graph G is a set of pairwise nonadjacent
vertices. We use α(G) to denote the maximum size of an independent set of G. The following is
proved in [174, Theorem 3.16] (it is proven for the dual problem of Vertex Cover).

Proposition 10.5.13 ([174]). Let H be a hereditary graph class on which Independent Set is
polynomial-time solvable. Then Independent Set can be solved in time 2k · nO(1) when given a
tree H-decomposition of width at most k − 1 consisting of nO(1) nodes.

With Theorem 10.5.1 on hands, the proof of the following theorem is almost identical to Baker’s
style algorithms for planar graphs. The main observation is that the supergraph of an input H-planar
graph G obtained by adding to G all edges of the torso of its planar modulator, is of bounded local
H-treewidth.

10.5. Applications 266

Theorem 10.5.14. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. We also assume that there is a polynomial-time algorithm computing a maximum independent
set of graphs in H. Then, there is an algorithm that, given ε > 0 and an H-planar graph G, computes
in time 2O(1/ε) · |V (G)|O(1) an independent set of G of size at least (1− ε) · α(G).

Examples of graph classes where α(G) is computable in polynomial time are perfect graphs [155]
or graphs excluding P6 as an induced subgraph [157]. Theorem 10.5.14 could also be modified for
graph classes where computing a maximum independent set is quasi-polynomial or subexponential.
In these cases, the approximation ratio will remain 1− ε, but the approximation algorithm’s running
time will also become quasi-polynomial or subexponential.

Proof. Let G be an H-planar graph. We assume without loss of generality that G is a connected
graph and ε < 1. By Theorem 10.5.1, there is a polynomial-time algorithm computing a planar
H-modulator X of G. Let v be an arbitrary vertex in X. For i ∈ N, let Li denote the set of vertices
of X at distance i of v in torso(G,X). Observe that the endpoints of an edge in torso(G,X) belong
to at most two (consecutive) Lis. Given that, for C ∈ cc(G −X), NG(V (C)) induces a clique in
torso(G,X), it therefore implies that the vertices of NG(V (C)) belong to at most two (consecutive)
Lis.

Let k be the smallest integer such that 2/k ≤ ε. For i ∈ [0, k − 1], let Si be the union of
the Lj for which j is equal to i (mod k). Let Xi := X \ Si and let Ci be the set of components
C ∈ cc(G −X) such that NG(V (C)) ⊆ Xi. Let Gi be the induced subgraph of G induced by Xi

and Ci. Given that the connected components of Gi − Xi are connected components of G − X,
it implies that torso(Gi, Xi) is a subgraph of torso(G,X) − Si, and is thus planar. Therefore, as
proven in [74, Corollary 7.34] (see also [259, (2.5)]), torso(Gi, Xi) has treewidth O(k) and there is
a polynomial-time algorithm constructing a tree decomposition (Ti, βi) of torso(Gi, Xi) of width
O(k). Therefore, (Ti, βi, Ci) is a tree H-decomposition of torso(Gi, Xi) ∪G[Ci], and hence of Gi, of
width O(k). We apply Proposition 10.5.13 to find in time 2O(k) · nO(1) = 2O(1/ε) · nO(1) a maximum
independent set Ii of Gi. Note that Ii is also an independent set of G. We return as a solution the
maximum size set Ii for i ∈ [0, k − 1].

Let I∗ be a maximum independent set of G, of size |I∗| = α(G) = OPT. For i ∈ [0, k − 1],
let Di := cc(G − X) \ Ci and let S′

i := Si ∪ V (Di). Let C ∈ cc(G − X). Given that the vertices
of NG(V (C)) belong to at most two (consecutive) Lis, it implies that C belongs to at most two
(consecutive) Dis. Additionally, the Sis partition X. Therefore,

k−1∑
i=0

|S′
i| = |X|+

k−1∑
i=0

|V (Di)| ≤ |X|+ 2|V (G) \X| = 2|V (G)| − |X| ≤ 2|V (G)|.

Hence, there is j ∈ [0, k − 1] such that |I∗ ∩ S′
j | ≤ 2|I∗|/k. Since I∗ \ S′

j is an independent set in Gj ,
we have the following:

|Ij | ≥ |I∗ \ S′
j | = |I∗| − |I∗ ∩ S′

j | ≥ (1− 2/k)|I∗| ≥ (1− ε)OPT.

Thus, the algorithm returns a solution of size at least (1− ε)OPT in time 2O(1/ε) · nO(1).

As with the previous applications, it is possible to generalize the technique for the graphs of
bounded H-planar treewidth or treedepth. We sketch our algorithms in the following two corollaries.

Corollary 10.5.15. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that the maximum independent set is computable in polynomial time for
graphs in H. Then, there exists a polynomial-time algorithm that, given ε > 0 and a graph G with

10.6. Necessity of conditions 267

H-ptd(G) ≤ k, computes in time 2O(max{k,1/ε})|V (G)|O(1) an independent set of G of size at least
(1− ε) · α(G).

Sketch of the proof. We assume without loss of generality that G is a connected graph and ε < 1. We
use Corollary 10.5.4 to find a PTk ▷H-modulator S of G with a tree decomposition T of torso(G,S) of
planar width at most k. Let X1, . . . , Xℓ be the bags of the decomposition such that Gi = torso(G,Xi)
is a planar graph for i ∈ [ℓ]. Because G is connected, each Gi is a connected graph. We select
arbitrarily ℓ vertices vi ∈ Xi for i ∈ [ℓ]. For each i ∈ [ℓ] and every integer j ≥ 0, we denote by Li

j the
set of vertices of Xi at distance j from vi in Gi. Let h ≥ 2 be the smallest integer such that 2/h ≤ ε.
For j ∈ [0, h− 1], let Sj be

⋃
p

⋃ℓ
i=1 L

i
p where the first union is taken over all p ≥ 0 for which p is

equal to i (mod h). For each j ∈ [0, h− 1], let Yj = X \ Sj . The crucial observation is that, because
each Gi is planar, the adhesion set of Xi with other bags in T is in at most two consecutive sets Li

q

and Li
q+1 for some j ≥ 0. This implies that tw(G[Yi]) = O(max{h, k}). This implies that we can

apply the same Baker’s style arguments as in the proof of Theorem 10.5.14. This concludes the
sketch of the proof.

Corollary 10.5.16. Let H be a hereditary, CMSO-definable, and polynomial-time decidable graph
class. Moreover, assume that the maximum independent set is computable in polynomial time for
graphs in H. Then, there exists a polynomial-time algorithm that, given ε > 0, a graph G with
H-ptw(G) ≤ k, computes in time 2O(k+1/ε)|V (G)|O(1) an independent set of G of size at least
(1− ε) · α(G).

Sketch of the proof. The main idea is the same as in Corollary 10.5.15. We assume without loss
of generality that G is a connected graph and ε < 1. We use Corollary 10.5.5 to find a certifying
elimination sequence X1, . . . , Xk. For i ∈ [k] and j ∈ [ℓi], denote by Yij ⊆ Xi the inclusion maximal
subsets of Xi such that Gij = torso(G − ∪i−1

h=1Xh, Yij) is connected. We arbitrarily select vertices
vij ∈ Yij for i ∈ [k] and j ∈ [ℓi]. For i ∈ [k], j ∈ [ℓi], and each integer h ≥ 0, denote by Lij

h the
set of vertices of Yij at distance h from vij in Gij . Let s ≥ 2 be the smallest integer such that
2/s ≤ ε. For t ∈ [0, s− 1], let St be

⋃
p

⋃k
i=1

⋃ℓi
j=1 L

ij
p where the first union is taken over all p ≥ 0

for which p is equal to i (mod s). For each t ∈ [0, s − 1], let Zt = X \ St. Now we have that
tw(G[Zt]) = O(s+ k). Using the same arguments as in Theorem 10.5.14 and Corollary 10.5.15, we
show the desired approximation. This concludes the sketch of the proof.

Baker’s style arguments and other approaches apply to many optimization problems on planar
graphs. For instance, dynamic programming algorithms on graphs of bounded H-treewidth, as the
one of Proposition 10.5.13, exist for other problems (see [104, 174]) that are amenable to Baker’s
technique. Investigating which of these problems admit good approximations on H-planar graphs
and whether there are meta-algorithmic theorems in the style of [82, 127, 149], is an interesting
research direction that goes beyond the scope of this thesis.

10.6 Necessity of conditions

In our algorithmic results, we require that the considered graph classes H should satisfy certain
properties. In this section, we discuss tightness of these properties. First, we show that the heredity
condition for H is crucial for the existence of a polynomial-time algorithm for H-Planarity. For
this, we prove that H-Planarity is NP-hard even if H consists of a single graph.

Theorem 10.6.1. Let H be the class consisting of the complete graph on four vertices. Then
H-Planarity is NP-complete.

10.6. Necessity of conditions 268

Proof. We show NP-hardness by reducing from a variant of the Planar SAT problem. Consider a
Boolean formula φ in the conjunctive normal form on n variables x1, . . . , xn with clauses C1, . . . , Cm.
We define the graph G(φ) with 2n+m vertices constructed as follows:

• for each i ∈ [n], construct two vertices xi and xi and make them adjacent,

• for each j ∈ [m], construct a vertex Cj ,

• for each i ∈ [n] and j ∈ [m], make xi and Cj adjacent if the clause Cj contains the literal xi,
and make xi and Cj adjacent if Cj contains the negation of xi.

It is known that the SAT problem is NP-complete when restricted to instances where (i) G(φ) is
planar, (ii) each variable occurs at most 4 times in the clauses—at most two times in positive and at
most two times with negations, and (iii) each clause contains either two or three literals [206].

xi1 xi1

xi2 xi2

xi3 xi3 xi4 xi4

uj1 vj1

wj1

uj2 vj2

wj2

Figure 10.11: Construction of G′ and G′′. The vertices and edges of G′ are shown in black and the
additional vertices and edges of G′′ are blue (for the variable) and purple (for the clauses). The
construction is shown for four variables xi1 , xi2 , xi3 , xi4 and two clauses x1 ∨ xi2 ∨ xi4 and xi3 ∨ xi4 .
Here, xi1 , xi3 occur in three clauses and xi2 , xi4 occur in four clauses. We also show in dashed red
the edges of the torso of X constructed for the assignment xi1 = xi2 = xi4 = true and xi3 = false.

Consider such an instance φ of Planar SAT with the variables x1, . . . , xn and the clauses
C1, . . . , Cm. We construct the following graph G′:

• for each i ∈ [n], construct two variable vertices xi and xi and make them adjacent,

• for each j ∈ [m], construct three clause vertices uj , vj , wj and make them pairwise adjacent,

• for each i ∈ [n] and j ∈ [m], make xi adjacent to one of the vertices uj , vj , wj if the clause Cj

contains the literal xi, and make xi adjacent to one of the vertices uj , vj , wj if Cj contains the
negation of xi; we select the neighbor of xi or xi among uj , vj , wj in such a way that no clause
vertex is adjacent to two variable vertices.

Notice that because G(φ) is planar, G′ is a planar graph. In the next stage of our reduction, we
construct G′′ from G′:

• for each i ∈ [n], construct three vertices y1i , y
2
i , y

3
i and make them pairwise adjacent and

adjacent to both xi and xi,

10.6. Necessity of conditions 269

• for each j ∈ [m] such that |Cj | = 3, construct a set of three vertices Zj = {z1j , z2j , z3j } and
make the vertices of Zj pairwise adjacent and adjacent to uj , vj , wj ,

• for each j ∈ [m] such that |Cj | = 2, construct a set of two vertices Zj = {z1j , z2j } and make the
vertices of Zj adjacent and adjacent to uj , vj , wj .

The construction of G′ and G′′ is shown in Figure 10.11. In our construction, we assume that each
clause vertex wj constructed for Cj of size two is not adjacent to any variable vertex.

We claim that φ has a satisfying assignment if and only if G′′ has a planar H-modulator.
Suppose that φ has a satisfying assignment and the variables x1, . . . , xn have values satisfying φ.

We define the induced subgraphs H1, . . . ,Hn and H ′
1, . . . ,H

′
m of G′′ by setting

• for every i ∈ [n], V (Hi) = {xi, y1i , y2i , y3i } if xi = false and V (Hi) = {xi, y1i , y2i , y3i }, otherwise,

• for every j ∈ [m], consider a literal ℓ = true in Cj and let r ∈ {uj , vj , wj} be the clause vertex
adjacent to the variable vertex corresponding to ℓ, and then set V (H ′

j) = ({r} ∪Zj) if |Cj | = 3
and V (H ′

j) = ({r, wj} ∪ Zj) if |Cj | = 2.

Notice that H1, . . . ,Hn and H ′
1, . . . ,H

′
m are copies of K4, that is, they are in H. Furthermore, all

these subgraphs of G′′ are disjoint, and distinct subgraphs have no adjacent edges. We set

X = V (G′′) \
((n⋃

i=1

V (Hi)
)
∪
(m⋃
j=1

V (H ′
j)
))
.

Then G′′−X is the disjoint union of n+m copies of K4 and we obtain that each connected component
of G′′ − X is in H. Because G′ is planar, we have that the torso of X is planar as well. To see
this, notice that the torso of X can be obtained from G′ by edge contractions and replacements of
Y -subgraphs, that is, subgraph isomorphic to the star K1,3 whose central vertex has degree three in
G′, by triangles formed by the leaves of the star (see Figure 10.11). Since these operations preserve
planarity, the torso of X is planar. Thus, G′′ has a planar H-modulator.

For the opposite direction, assume that G′′ has a planar H-modulator. Let X ⊆ V (G′′) be such
that the torso of X is planar and G′′ −X is the disjoint union of copies of K4. Consider i ∈ [n].
The clique Ri = {xi, xi, y1i , y2i , y3i } of size 5, so X ∩Ri ̸= ∅. Observe that, by the construction of G′′,
any clique of size four containing a vertex of Hi is contained in Ri. Thus, G′′ −X has a connected
component Hi that is copy of K4 with V (Hi) ⊆ Ri. Therefore, at least one of the vertices xi and xi
is in Hi. We set the value of the variable xi = true if xi /∈ V (Hi) and xi = false, otherwise. We
perform this assignment of the values to all variables x1, . . . , xn. We claim that this is a satisfying
assignment for φ.

Consider j ∈ [m]. Suppose first that |Cj | = 3. Let R′
j = {uj , vj , wj , z

1
j , z

2
j , z

3
j }. Since R′

j is a
clique of size 6, X ∩R′

j ≠ ∅. The construction of G′′ implies that each clique of size four containing a
vertex of R′

j is contained in R′
j . This means that G′′−X has a connected component H ′

j isomorphic
to K4 such that V (H ′

j) ⊆ R′
j . Then at least one of the vertices uj , vj , wj is in V (H ′

j). By symmetry,
we can assume without loss of generality that uj ∈ V (H ′

j). Also by symmetry, we can assume that
uj is adjacent to xi for some i ∈ [n]. Because Hi and H ′

j are disjoint and have no adjacent vertices,
xi /∈ V (Hi). This means that xi = true and the clause Cj is satisfied. The case |Cj | = 2 is analyzed
in a similar way. Now we let R′

j = {uj , vj , wj , z
1
j , z

2
j } and have that R′

j is a clique of size 5. Then
X ∩R′

j ̸= ∅. We again have that each clique of size four containing a vertex of R′
j is contained in R′

j .
Therefore, G′′ −X has a connected component H ′

j isomorphic to K4 such that V (H ′
j) ⊆ R′

j . Recall
that we assume that wj is not adjacent to any variable vertex. Then either ui or vi is in V (H ′

j).
We assume without loss of generality that uj ∈ V (Hj) and ui are adjacent to xi for some i ∈ [n].

10.6. Necessity of conditions 270

Because Hi and H ′
j are disjoint and have no adjacent vertices, xi /∈ V (Hi). Thus, xi = true and

the clause Cj is satisfied. This proves that each clause is satisfied by our truth assignment for the
variables. We conclude that φ has a satisfying assignment.

It is straightforward that G′′ can be constructed in polynomial time. Therefore, H-Planarity
is NP-hard for H = {K4}. As the inclusion of H-Planarity in NP is trivial, this concludes the
proof.

In Theorem 2.6.2 and Theorem 2.6.3, the existence of the respective algorithms for p ∈ {ptd, ptw}
is shown under condition that the Vertex Deletion to H problem parameterized by the solution
size is FPT. While we leave open the question whether the existence of an FPT algorithm for checking
that the H-planar treedepth is at most k or the H-planar treewidth at most k would imply that there
is an FPT algorithm solving Vertex Deletion to H, we note that for natural hereditary graph
classes H for which Vertex Deletion to H is known to be W[1]-hard or W[2]-hard, deciding
whether the elimination distance to H and whether the H-planar treewidth at most k is also can be
shown to be hard. This follows from the observation that for graphs of high vertex connectivity, the
three problems are essentially equivalent. In particular, it can be noticed the following.

Observation 10.6.2. Let G be a 4k + 2-connected graph for an integer k ≥ 0. Then, for any class
H, a graph G∗ ∈ H can be obtained by at most 4k vertex deletions from G if and only if the H-planar
treedepth of G is at most k.

Proof. Suppose that there is a set X ⊆ V (G) of size at most 4k such that G −X ∈ H. Because
|X| ≤ 4k, G − X is connected. Also, since |X| ≤ 4k, there is a partition {X1, . . . , Xs} of X
such that s ≤ k and |Xi| ≤ 4 for each i ∈ [s]. Notice that for each i ∈ [s], torso(Gi, Xi), where
Gi = G−

⋃i−1
j=1Xj is planar. Then we decompose G by consecutively selecting X1, . . . , Xs.

For the opposite direction, we use induction on k. We prove that if the H-planar treedepth of a
graph G is at most k then a graph G′ ∈ H can be obtained by deleting at most 4k vertices. The claim
trivially holds if G ∈ H as the deletion distance to H is 0 ≤ k. In particular, this proves the claim
for k = 0. Assume that k ≥ 1 and G /∈ H. Because ptdH(G) ≤ k, there is a nonempty set X ⊆ V (G)
such that (i) for each connected component C of G′ = G−X, ptdG′(C) ≤ k− 1 and (ii) torso(G,X1)
is planar. Because G is 6-connected, G is not planar and, therefore, X ̸= V (G). Consider an
arbitrary connected component C of G− S. Because torso(G,X) is planar, NG(V (C)) ≤ 4. Since
NG(V (C)) cannot be a separator in a 6-connected graph, we obtain that X = NG(V (C)) is of
size at most four and C = G′ is a unique connected component of G − X. Because |X| ≤ 4, G′

is 4(k − 1) + 2-connected and we can apply induction. Then there is a set Y ⊆ V (G′) such that
|Y | ≤ 4(k − 1) and G∗ = G′ − Y ∈ H. Consider Z = X ∪ Y . Then G∗ = G′ − Y = G − Z and
|Z| ≤ 4k. This proves that the deletion distance of G to H is at most 4k.

Given a computational lower bound for Vertex Deletion to H, typically, it is easy to show
that the hardness holds for highly connected graphs and for k divisible by four. Here, we give just
one example. If was proved by Heggernes et al. [164] that Perfect Deletion, that is, Vertex
Deletion to H when H is the class of perfect graphs, is W[2]-hard when parameterized by the
solution size. Then we can show the following theorem using Observation 10.6.2.

Theorem 10.6.3. Let H be the class of perfect graphs. The problem of deciding whether the H-planar
treedepth is at most k is W[2]-hard when parameterized by k.

Proof. We reduce from Perfect Deletion. Let (G, k) be an instance of the problem. First, we
can assume without loss of generality that k = 4k′ for an integer k′ ≥ 0. Otherwise, we add 4− (k
mod 4) disjoint copies of the cycle on five vertices to G using the fact that at least one vertex should

10.6. Necessity of conditions 271

be deleted form each odd hole to obtain a perfect graph. Then we observe that the class of perfect
graphs is closed under adding universal vertices. This can be seen, for example, from the strong
perfect graph theorem [63]. Let G′ be the graph obtained from G by adding 6k′ vertices, making
them adjacent to each other, and adjacent to each every vertex of G. Then the deletion distance of
G to perfect graphs is the same as the deletion distance of G′. Thus, the instance (G, k) of Perfect
Deletion is equivalent to the instance (G′, k). By Observation 10.6.2, we obtain that (G′, 4k) is a
yes-instance of Perfect Deletion if and only if the H-planar treedepth of G′ is at most k′. This
completes the proof.

The same arguments also could be used for the case when H is the class of weakly chordal
graph—it was proved by Heggernes et al. [164] that Weakly Chordal Deletion is W[2]-hard
and the class is also closed under adding universal vertices. Also, it is known that the Wheel-Free
Deletion, that is, the problem asking whether k vertices may be deleted to obtain a wheel-free
graph (a graph is wheel-free if it does not contain a wheel, i.e., a graph obtained from a cycle by
adding a universal vertex, as an induced subgraph) is W[2]-hard when parameterized by k by the
result of Lokshtanov [223]. We remark that it is possible to show that the lower bound holds for
highly connected graphs and obtain the W[2]-hardness for the H-planar treedepth when H is the
class of wheel-free graphs.

Finally in this section, we note that the variant of Observation 10.6.2 holds for H-planar treewidth.

Observation 10.6.4. Let G be a (max{4, k}+ 2)-connected graph for an integer k ≥ 0. Then, for
any class H, a graph G∗ ∈ H can be obtained by at most k vertex deletions from G if and only if the
H-planar treewidth of G is at most k.

Then the lower bound for Deletion to H from [164,223] can be used to show the W[2]-hardness
for deciding whether the H-planar treewidth is at most k.

Part V

Conclusion and research directions

272

CHAPTER 11

Concluding remarks

In this final chapter, we discuss several consequences and open questions that emerge from our
results.

11.1 Perspectives on our structure theorem

In Chapter 5, we prove a decomposition-based min-max theorem for the structure of graphs excluding
as minors edge-apex graphs or, alternatively, graphs embedded in the pinched sphere. We prove
that such graphs can be tree-decomposed so that each torso contains a set of vertices of bounded
bidimensionality that can be identified to obtain a graph embeddable in the projective plane.
Moreover, this decomposition optimally determines the structure of the excluded edge-apex graphs.
If the excluded graph is embeddable in a surface, analogous decomposition theorems are proved
in [302], for every surface. In that sense this work can be seen as the first step to extend the results
of [302] to pseudosurfaces, in particular to those that, according to Knor [199], define graphs classes
that are minor-closed. A first question is hence the following.

Question 1. For each surface Σ, what is the structure of graphs excluding as a minor a graph
embeddable in the pinched version Σ◦ of Σ?

In this direction we believe that the decomposition theorems for pinched surfaces of higher genus
are not expected to avoid the presence of apices.

Notice that the operations that are applied to the torsos of our decomposition are not removals
of low bidimensionality vertex sets, as it is the case of the interpretation of the GMST in [302], but
vertex identifications of them. In our structural theorem, given the absence of apices, they serve in
order to shrink the “few” vortices to vertices that will give rise to an embedding in the projective
plane or in the sphere. In fact, we may combine vertex removals and vertex identifications in order
to describe the modification operations for the version of the GMST proposed in [302]: when it
comes to apices we remove vertex sets of small size, and when it comes to vortices we identify them
as vertex sets of low bidimensionality in order to obtain some surface embedding of the resulting
graph. In that sense, vertex removal of bounded size is the correct modification operation for apices
and vertex identification of small bidimensionality is the correct modification operation for vortices.

273

11.2. Open problems on identifications 274

We obtain the first structure theorem with vortices but no apices. Here, the surface is either the
sphere (Theorem 5.2.37) or the projective plane (Theorem 5.2.36). A natural follow-up question is
thus the following.

Question 2. For each surface Σ, does there exist a graph class HΣ such that:

• for each graph H ∈ HΣ, there exists a constant cH depending on |V (H)| such that each
H-minor-free graph G can be tree-decomposed so that each torso has a cH-almost embedding in
Σ, and

• for each h ∈ N, there exists a graph H ∈ HΣ that cannot be tree-decomposed so that each torso
has an h-almost embedding in Σ?

Let us mention that Thilikos and Wiederrecht introduced in [303] the concept of the vga-hierarchy
where v stands for “vortices”, g for “genus”, and a for “apices”. For each x ⊆ {v, g, a}, we can try to find
an infinite class of graphs Hx such that a graph excluding H ∈ H as a minor can be tree-decomposed
so that each torso has an almost embedding (or an embedding if v /∈ x) in a surface of bounded
genus (or the sphere if g /∈ x) after removing a bounded number of apices (or none if a /∈ x). Hvga is
of course the class of all graphs, as proved in the GMST. Thilikos and Wiederrecht settle in [303]
the case of Hga. In Theorem 5.2.37, we settle the case of Hv, while Question 2 corresponds to the
case of Hvg.

Another direction of research is whether one may use the decomposition of Theorem 2.1.2 (or
Theorem 2.1.4) for algorithmic purposes.

Question 3. Are there interesting problems for which the presence of Jk (or of Jk and Ck) as a
minor in the input graph directly certifies an answer?

In other words, we search for problems that behave well with respect to vortices, but not with
respect to apices.

A last question for this chapter is the following.

Question 4. Can the functional dependencies of our results (i.e., the function f mapping H to cH
in Theorem 2.1.2 or Theorem 2.1.4) be reduced to polynomial ones?

The only obstacle for this resides in the already exponential dependencies of the GMST in [195]
that is the departure point of our proof. Apart from this, all bounds generated by our proofs are
polynomial. In the light of the result of Gorsky, Seweryn, and Wiederrecht that just appeared
in [148] reducing the dependencies of the GMST to a polynomial one, the functional dependencies of
our results are likely to be reducible as well.

11.2 Open problems on identifications

In Chapter 6, we initiate the study of graph modification problems where the modification operation
is vertex identification. We defined the problem Identification to H and studied the case where
the target class H is the class of forests, denoted by F . We prove that Identification to F is
NP-hard, and provide a linear kernel as well as an FPT-algorithm for the problem that are derived
from similar results for Vertex Cover. Any improvement on the parameterized complexity of
Vertex Cover would immediately imply an improvement on our results. Additionally, we prove in
Theorem 6.2.13 that the obstructions of the set F (k) of yes-instances of k-Identification to F
have at most 2k + 4 vertices. We actually conjecture the following.

11.2. Open problems on identifications 275

Conjecture 1. For each k ∈ N≥3, the obstruction of maximum size of F (k) is C2k+1.

Dinneen and Lai proved in [92] that C2k+1 is the maximum connected obstruction of the set Vk
of yes-instances of k-Vertex Cover. Given that a disconnected obstruction of Vk is the disjoint
union of obstructions of lower levels, we can easily prove that the only obstruction of Vk of larger
size that C2k+1 is the matching (k + 1) ·K2. To prove Conjecture 1, we can deduce from the above
and from the proof of Theorem 6.2.13 that it would be sufficient to prove that (a) no obstruction of
F (k) can be obtained from (k + 1) ·K2 by adding edges and (b) the marguerite (k + 1) ∗K3 (for
even k) is the only obstruction of F (k) that is also an obstruction of F (k+1).

The universal obstructions that we obtain for Identification to F are packings of triangles,
marguerites, and cycles (Theorem 6.3.1). Going further, we can wonder about the universal
obstructions of Identification to Minor-closedness.

Question 5. For each minor-closed graph class H, what are the universal obstructions of Identifi-
cation to H?

We conjecture that they are, for each H ∈ obs(H):

• a packing of H,

• for each v ∈ V (H), copies of H identified together at vertex v, and

• for each e = uv ∈ E(H), copies of H − e glued in a cyclic manner so that the vertex v in copy
i is identified to vertex u in copy i+ 1.

As we introduced in Section 6.5, we may consider universal obstructions in terms of identification
minors instead of minors, which reduce to a unique universal obstruction, that is the marguerite of
triangles. We can again wonder about the universal obstructions of Identification to Minor-
closedness, this time for identification minors.

Question 6. For each minor-closed graph class H, what are the universal obstructions of Identifi-
cation to H in terms of identification minors?

Here, we conjecture that they are, for each H ∈ obs(H) and for each v ∈ V (H), copies of H
identified together at vertex v.

For each graph class H, recall that ecH is the parameter mapping a graph G to the minimum
number of edge contractions that can transform G to a graph inH, and let idH be the graph parameter
mapping a graph G to the minimum k such that (G, k) is a yes-instance of Identification to H.
We prove in Lemma 6.4.1 that ecF ∼ idF . While it is easy to see that idH(G) ≤ 2 · ecH(G), we also
conjecture that an upper bound as the one of Lemma 6.4.1 holds for every minor-closed class H.

Conjecture 2. For every minor-closed graph class H, there is a function fH : N→ N such that, for
every G, ecH ≤ fH(idH(G)).

Note that Contraction to H is known to be W[1]-hard, parameterized by the solution size,
for several families H that are not minor-closed, such as chordal graph or split graphs (see [9]
and the references cited therein). However, when H is minor-closed, the recent meta-algorithmic
results in [120] (further generalized in [287]) imply that Contraction to H is (constructively)
FPT (see [165,209] for explicit algorithms for some particular families). Also, as it has been proved
in [165], Contraction to Forest is not expected to admit a polynomial kernel. Interestingly,
the kernelization we give in this chapter for Identification to Forest, under the light of the
polynomial-gap functional equivalence of Lemma 6.4.1, can be seen as some kind of “functional
kernel” for Contraction to Forest.

11.3. Concluding notes on bounded size modulators 276

11.3 Concluding notes on bounded size modulators

For a large family of graph modification problems involving a bounded number of vertices, if
the target class H is minor-closed, we provide in Chapter 7 an algorithm solving the problem
in time 2poly(k) · n2. This is actually the same running time as the best known running time
for Vertex Deletion to H [235] (up to an extra additive constant of one in the degree of
the polynomial function poly(k) that is absolutely negligible compared to the total degree that
depends wildly on the size of the obstructions of H). For the other graph modification problems
encompassed by our result, such as Edge Deletion to H, Edge Contraction to H, Vertex
Identification to H, or Independent Set Deletion to H, the only minor-closed H for
which an algorithm with an explicit parametric dependence on the solution size was known, to our
knowledge, were the classes of forests and of union of paths [165,218,219,307]. Other problems, such
as Matching Deletion to H, Matching Contraction to H, Induced Star Deletion to
H, or Subgraph Complementation to H, were not even considered yet from the parameterized
complexity viewpoint, other than in the meta-theorem of [287]. A natural question is the following.

Question 7. Can we find a faster algorithm for L-Replacement to H when L is hereditary and
H is a minor-closed graph class, and, as a first step, for Vertex Deletion to H?

Concerning the parametric dependence, the question is more particularly whether poly(k) could
be replaced by c ·kd for some constant c depending on H and some universal constant d (independent
of H). This dependence on H comes from the use of the irrelevant vertex vertex technique of [271].
Thus, improving more the parametric dependence would certainly require coming up with new
techniques. On the other hand, given the recent results of [205] for minor containment, it is worth
studying whether the quadratic dependence on n could be improved to an almost-linear dependence
while maintaining a good dependence on k. Note that the approach of [205] heavily uses Courcelle’s
theorem [67], which would require to be translated to a plausibly very involved dynamic programming
algorithm to keep a good parametric dependence on k.

On the other hand, we are not aware of any lower bound, assuming the Exponential Time
Hypothesis [169], stronger than 2o(k) · nO(1), which follows quite easily from known results for
Vertex Cover. Proving stronger lower bounds seems to be quite challenging.

In the bounded genus case, we reduce the running time to 2O(k9) ·n2 thanks to some improvement
on the irrelevant vertex technique. To our knowledge, this is the first bounded genus result with
an explicit parametric dependence on the solution size for the other graph modification problems
encompassed by our result. This does not match the parametric dependence on the running time of
2O(k2 log k) · nO(1) for Vertex Deletion to H [202] for H of bounded genus, though we possibly
have a better dependence on n. Hence, we can ask the following.

Question 8. Can we solve L-Replacement to H as fast as Vertex Deletion to H (in terms
of parametric dependence) when L is hereditary and H is class of graphs embeddable in a surface of
bounded genus?

Given that we require the replacement action L to be hereditary for our irrelevant vertex technique
to work, unfortunately we restrict the graph modification problems that we solve. For instance,
Planar Subgraph Isomorphism can be expressed as an L-Replacement to Planar problem
for a specific L, which is not hereditary. Hence, we do not encompass this problem in our general
algorithm, while such an algorithm is provided in [121], where the constraint about L being hereditary
is not required. While most of the “reasonable” modification problems correspond to a hereditary
replacement action, it is worth investigating whether our result can be extended to non-hereditary
replacement actions. In other words:

11.4. Beyond elimination distance 277

Question 9. Can we drop the hereditary condition for L-Replacement to H and still solve the
problem within the same running time?

11.4 Beyond elimination distance

For a minor-closed graph class H, we prove in Chapter 8 that Vertex Deletion to H can be
solved in time 2poly(k) ·n2 and that Elimination Distance to H can be solved in time 22

2poly(k) ·n2,
and in time 22

c·k2 log k · n2 and 2poly(k) · n3 in the case where the obstruction set of H contains an
apex-graph. As in Question 7, a natural question is whether a faster algorithm exists.

Question 10. Can we find a faster algorithm for Elimination Distance to H when H is a
minor-closed graph class?

Given that the degree of poly and c heavily depend again on the size of the obstructions of H due
to the use the irrelevant vertex technique, there is not much hope to improve those before answering
positively Question 7 (more particularly for Vertex Deletion to H). Similarly, improving the
dependence on n for Vertex Deletion to H would give an idea of how to improve the dependence
on n for Elimination Distance to H.

Another way to answer Question 10 positively would be to drop the running time of Elimination
Distance to H to 2poly(k) · n2 for every minor-closed graph class H. We tend to believe that this
should be possible. However, it seems to require to use branching ingeniously and, in particular, to
find equivalent instances of Elimination Distance to H with a decreasing value of k.

We also proposed an XP-algorithm for Elimination Distance to H parameterized by the
treewidth of the input graph (with running time nO(tw2)). As mentioned in [6], the existence of
an FPT-algorithm for Elimination Distance to H, parameterized by treewidth, remains wide
open and this is the case even in the very special case where H contains only the empty graph,
where Elimination Distance to H is equivalent to the problem of computing treedepth. The
first question in this direction is hence:

Question 11. Can we compute the treedepth of a graph parameterized by its treewidth in FPT-time?

Another direction of research would be to improve the bounds on the size of the obstructions
given in Theorem 2.4.4. Let us thus ask the following.

Question 12. What is the maximum size of an obstruction of the set Ek(H) of yes-instances of
k-Elimination Distance to H when H is minor-closed?

We believe again that any substantial improvement should demand novel methodologies that go
beyond the irrelevant vertex technique.

As mentioned in Section 1.5, Elimination Distance to H asks, given an instance (G, k),
whether H-td(G) ≤ k. A natural question is thus whether the methods used to solve the problem
for H-td can be generalized to any parameter H-p. That is:

Question 13. For any graph parameter p and any (apex-)minor-closed graph class H, is there an
algorithm checking whether H-p(G) ≤ k as fast as the one for p = td?

We believe that this is true for any minor-monotone parameter p such that tw ⪯ p ⪯ size.
The irrelevant vertex technique (Proposition 8.2.4) works similarly in this case. The only missing
ingredient is a dynamic programming algorithm solving the problem on graphs of bounded treewidth.
A first step in this direction would be to solve the problem for p = tw, that is, to compute the

11.5. Towards odd-minor-closedness 278

H-treewidth of a graph parameterized by tw, and then by H-tw, with the same running time as
Elimination Distance to H. For the parameterization by tw, one may consider combining a known
dynamic programming algorithm for computing the treewidth [33,204] with the representative-based
technique of [24].

Going even further, instead of vertex deletions, we could consider other modifications. That is,
we could consider L-Replacement to H, not parameterized by the size of the modulator, but by
another parameter. Again, the techniques are likely to transfer there, the main obstacle being to
design a dynamic programming algorithm on bounded treewidth graphs.

11.5 Towards odd-minor-closedness

In Chapter 9, we study the complexity of several problems parameterized by bipartite treewidth,
denoted by btw. In particular, our results extend the graph classes for which Vertex Cover/
Independent Set, Maximum Weighted Cut, Odd Cycle Transversal, and Maximum
Weighted Cut are polynomial-time solvable. A number of interesting questions remain open.

We are still far from a full classification of the variants that are para-NP-complete, and those that
are not (FPT or XP). For instance, concerning H-Subgraph-Cover, we provided FPT-algorithms
when H is a clique (Corollary 9.5.6). This case is particularly well-behaved because we know that in
a tree decomposition every clique appears in a bag. On the other hand, as an immediate consequence
of the result of Yannakakis [314] (Proposition 9.5.28), we know that H-Subgraph-Cover is para-
NP-complete for every bipartite graph H containing P3 (cf. Subsection 9.5.5). We do not know what
happens when H is non-bipartite and is not a clique. An apparently simple but challenging case is
C5-Subgraph-Cover (or any other larger odd cycle).

Question 14. Is C5-Subgraph-Cover parameterized by btw solvable in FPT-time?

The main difficulty seems to be that C5-Subgraph-Cover does not have the gluing property,
which is the main ingredient in our proofs to show that a problem is nice, and therefore to obtain an
FPT-algorithm. We do not exclude the possibility that the problem is para-NP-complete, as we were
not able to obtain even an XP algorithm.

Most of our para-NP-completeness results consist in proving NP-completeness on bipartite graphs
(i.e., those with bipartite treewidth zero). There are two exceptions, which can be found in [171]. On
the one hand, the NP-completeness of 3-Coloring on graphs with odd cycle transversal at most
three and on the other hand, the NP-completeness of H-Scattered-Packing parameterized by
q-B-treewidth for every integer q ≥ 2. None of our hardness results really exploits the structure of
bipartite tree decompositions (i.e., for q = 1), beyond being bipartite or having bounded odd cycle
transversal. Hence, we ask the following.

Question 15. Is there a problem whose complexity differs when parameterized by oct or by btw?

Going further away, in the light of the results obtained in Chapter 7 for Vertex Deletion to
H (and more generally L-R-H), we can ask the following.

Question 16. Given an odd-minor-closed graph class H, can we solve Vertex Deletion to H in
FPT-time parameterized by the solution size as fast as when the target graph class is minor-closed?

There are two main obstacles towards such an algorithm, if we want to use techniques similar
to the ones of Chapter 7. The first one concerns the flat wall theorem (Subsection 3.1.2): one
of its outputs is a big clique that is a minor of G. When H is minor-closed, we can trivially

11.6. Further research on unbounded bidimensionality modulators 279

output a no-answer. This is not the case for an odd-minor-closed graph class H, given that an
(odd-minor-)obstruction of H might not be found in a big clique-minor. An easy way out is to assume
that one of the (odd-minor-) obstructions of H is bipartite. In this case, we can actually find a
packing of this obstruction in a big clique-minor, by applying results from [137]. Otherwise, we may
adapt techniques from [126] to find an irrelevant vertex inside a big clique-minor. Unfortunately, this
irrelevant vertex technique has a huge parametric dependence. Therefore, this would not be much
help towards answering Question 16. The second obstacle concerns the irrelevant vertex technique,
which has no parity conditions, something crucial when working with odd-minors. In the extended
abstract of [193], Kawarabayashi, Reed, and Wollan hint towards results from Schrijver [288,289]
for the creation of an irrelevant vertex technique with parity conditions. This could be a promising
direction towards solving Vertex Deletion to Odd-minor-closedness.

11.6 Further research on unbounded bidimensionality modulators

In Chapter 10, we develop a new irrelevant vertex technique to prove that H-planarity is solvable
in polynomial time under some mild conditions on H (cf. Theorem 2.6.1). We proceed with a few
remarks on the conditions on H.

First, it is important that we demand the torso of the modulator to be planar rather than to
allow the whole modulator to be planar. Without this condition, the problem becomes NP-hard.
Indeed, Farrugia [109] proved that for two graph classes P and Q that are hereditary and closed
under disjoint union, the problem of deciding whether a graph G admits a partition (A,B) of V (G)
such that G[A] ∈ P and G[B] ∈ Q is NP-hard, unless P and Q are both the class of edgeless graphs.
Hence, for any hereditary graph class H closed under the disjoint union operation, the problem of
deciding, given a graph G, whether there exists S ⊆ V (G) such that G[S] is planar and that, for
each C ∈ cc(G− S), C ∈ H, is NP-hard.

Second, the necessity of H to be a polynomial-time decidable graph class is apparent—it is easy
to show that NP-hardness of deciding whether a graph is in H implies NP-hardness of H-Planarity
as well. However, the necessity of H to be a hereditary property is less obvious. We prove in
Theorem 10.6.1 that for non-hereditary classes H, H-Planarity becomes NP-hard.

Finally, we do not know whether CMSO-definability of H is necessary. The CMSO-definability
condition is needed because we are using the meta-theorem of Lokshtanov, Ramanujan, Saurabh,
and Zehavi from [224]. This meta-theorem is a powerful tool allowing us, via unbreakable graphs,
to reduce solving H-Planarity to solving H(k)-Planarity for bounded k, making it possible to
apply our version of the irrelevant vertex technique. We thus ask the following.

Question 17. Is there a graph class H that is hereditary and polynomial-time decidable, but not
CMSO-definable, such that H-Planarity is NP-hard?

Using the meta-theorem of [224] also comes with the following drawback: Theorem 2.6.1 is non-
constructive. Similar to the results in [224], it allows us to infer the existence of a polynomial-time
algorithm for every CMSO formula φ, but it does not provide the actual algorithm. The reason
for that is that [224] relies on the existence of representative subgraphs for equivalence classes
of bounded-boundary graphs but does not provide a procedure to compute such representatives.
In other words, Theorem 2.6.1 provides a non-constructive polynomial-time algorithm. Our next
question is thus:

Question 18. Is there a constructive polynomial-time algorithm solving H-Planarity for any
graph class H that is hereditary, CMSO-definable, and polynomial-time decidable?

11.6. Further research on unbounded bidimensionality modulators 280

A last drawback of the meta-theorem of [224] is the following: Theorem 2.6.2 and Theorem 2.6.3
are not uniform in k. That is, for each k ∈ N, they output a different algorithm checking whether
H-ptd(G) ≤ k or H-ptw(G) ≤ k. This comes from the fact that the constants on the unbreakable
graphs we require depend on k. Hence the following question.

Question 19. Is there an FPT-algorithm that, given a graph G and k ∈ N, decides, uniformly in k,
whether H-p(G) ≤ k, for p ∈ {ptd, ptw}, under the same conditions for H as in Theorem 2.6.2 and
Theorem 2.6.3?

Other tools than the meta-theorem of [224] can perhaps be used in order to answer Question 17,
Question 18, and Question 19. In particular, it can be noted that we aim to decompose in a
special way the input graph via separators of small size, and graph decompositions of this type
were introduced by Grohe [150]. It is very interesting whether avoiding using the meta-theorem is
possible.

All our techniques heavily rely on the planarity of the torso of X. In particular, this concerns
our method for finding an irrelevant vertex inside a flat wall no matter how the graph outside the
modulator interacts with this flat wall. For this, we present our techniques for the H-Planarity
problem and later, in Section 10.3 and Section 10.4 we explain how these techniques can be extended
on graphs where H-ptd or H-ptw is bounded. However, ptd and ptw are not the only minor-monotone
parameters to consider, further than td and tw. We actually conjecture the following.

Conjecture 3. Let H be a hereditary and CMSO-definable graph class and p be a minor-monotone
graph parameter. Then an FPT-algorithm for checking H-size(G) ≤ k implies an FPT-algorithm for
checking H-p(G) ≤ k.

We believe that our techniques are a promising departure point for resolving this conjecture.
However, this appears to be a quite challenging task.

On the other hand, Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, and Zehavi
proved in [6], that, for p ∈ {td, tw}, an FPT-algorithm for checking H-p(G) ≤ k implies an FPT-
algorithm for checking H-size(G) ≤ k. We can thus wonder whether this result holds for any
minor-monotone parameter p. We actually believe that this holds for tw ≤ p ≤ size. More generally,
we conjecture the following.

Conjecture 4. Let H be a hereditary and CMSO-definable graph class and p, p′ be two minor-
monotone graph parameters such that tw ≤ p, p′ ≤ size. Then an FPT-algorithm for checking
H-p(G) ≤ k implies an FPT-algorithm for checking H-p′(G) ≤ k.

On the other hand, we conjecture that this does not hold if hw ≤ p ≤ tw.

Conjecture 5. There exist a graph class H that is hereditary, CMSO-definable and polynomial-time
decidable and a graph parameter p that is minor-monotone such that checking whether H-p(G) ≤ k
can be done in FPT-time, but checking whether H-size(G) ≤ k is W[1]-hard.

The intuition is that there could be a subclass of planar graphs H such that checking whether
H-ptd(G) ≤ k reduces to checking whether ptd(G) ≤ k + 1, which is solvable in FPT-time by
Theorem 2.6.2. And it is unlikely that, for every subclass of planar graphs, Vertex Deletion to
H is in FPT.

Regarding applications, we stress that Theorem 10.5.6, Theorem 10.5.9, Theorem 10.5.14, and
their corollaries for graphs with bounded H-ptd and H-ptw are only indicative snapshots of the
algorithmic applicability of H-planarity, H-planar treewidth, and H-planar treedepth. Numerous

11.6. Further research on unbounded bidimensionality modulators 281

planar applications exist in various algorithmic subfields, ranging from distributed algorithms to
kernelization and subexponential algorithms. Of course, not all such methods and results for
planar graphs could be transferred even to H-planar graphs. Exploring the full set of algorithmic
applications of H-planarity, H-planar treewidth, and H-planar treedepth escapes the purposes of
this thesis. However, we expect that our results will appear to be useful in extending algorithmic
paradigms where dynamic programming on graphs of bounded treewidth can be extended to dynamic
programming on graphs of bounded H-treewidth.

Bibliography

[1] Karl R. Abrahamson, Rodney G. Downey, and Michael R. Fellows. Fixed-parameter tractability
and completeness IV: on completeness for W[P] and PSPACE analogues. Annals of Pure and
Applied Logic, 73(3):235–276, 1995. doi:10.1016/0168-0072(94)00034-Z. 5

[2] Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Faster
parameterized algorithms for minor containment. Theoretical Computer Science, 412(50):7018–
7028, 2011. doi:10.1016/j.tcs.2011.09.015. 54

[3] Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proc.
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650,
2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347153. 17, 46

[4] Isolde Adler, Stavros G. Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,
and Dimitrios M. Thilikos. Irrelevant vertices for the planar disjoint paths problem. Journal
of Combinatorial Theory, Series B, 122:815–843, 2017. doi:10.1016/J.JCTB.2016.10.001.
46, 68

[5] Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Pranabendu Misra, and Saket Saurabh.
Exploring the kernelization borders for hitting cycles. In Proc. of the 13th International
Symposium on Parameterized and Exact Computation (IPEC), volume 115 of LIPIcs, pages
14:1–14:14, 2018. doi:10.4230/LIPICS.IPEC.2018.14. 130

[6] Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,
Saket Saurabh, and Meirav Zehavi. Deleting, Eliminating and Decomposing to Hereditary
Classes Are All FPT-Equivalent. In Proc. of the 2022 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1976–2004, 2022. doi:10.1137/1.9781611977073.79. x, 14, 22,
23, 39, 265, 277, 280

[7] Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
An FPT algorithm for elimination distance to bounded degree graphs. In Proc. of the 38th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 187 of
LIPIcs, pages 5:1–5:11, 2021. doi:10.4230/LIPIcs.STACS.2021.5. 14, 22

[8] Akanksha Agrawal, Lawqueen Kanesh, Saket Saurabh, and Prafullkumar Tale. Paths to trees
and cacti. Theoretical Computer Science, 860:98–116, 2021. doi:10.1016/J.TCS.2021.01.033.
129

282

https://doi.org/10.1016/0168-0072(94)00034-Z
https://doi.org/10.1016/j.tcs.2011.09.015
http://dl.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.1016/J.JCTB.2016.10.001
https://doi.org/10.4230/LIPICS.IPEC.2018.14
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.4230/LIPIcs.STACS.2021.5
https://doi.org/10.1016/J.TCS.2021.01.033

Bibliography 283

[9] Akanksha Agrawal, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Split contraction:
The untold story. ACM Transactions on Computational Theory, 11(3):18:1–18:22, 2019.
doi:10.1145/3319909. 275

[10] Akanksha Agrawal and M. S. Ramanujan. On the parameterized complexity of clique elimination
distance. In Proc. of the 15th International Symposium on Parameterized and Exact Computa-
tion (IPEC), volume 180 of LIPIcs, pages 1:1–1:13, 2020. doi:10.4230/LIPIcs.IPEC.2020.1.
22

[11] Akanksha Agrawal, Saket Saurabh, and Prafullkumar Tale. On the parameterized complexity
of contraction to generalization of trees. Theory of Computing Systems, 63(3):587–614, 2019.
doi:10.1007/S00224-018-9892-Z. 129

[12] Ernst Althaus and Sarah Ziegler. Optimal tree decompositions revisited: A simpler linear-
time fpt algorithm. In Graphs and Combinatorial Optimization: from Theory to Appli-
cations, volume 5 of AIRO Springer Series, pages 67–78. Springer, 2021. doi:10.1007/
978-3-030-63072-0_6. 54

[13] Eyal Amir. Approximation algorithms for treewidth. Algorithmica, 56(4):448–479, 2010.
doi:10.1007/S00453-008-9180-4. 8

[14] Dhanyamol Antony, Sagartanu Pal, and R. B. Sandeep. Algorithms for subgraph com-
plementation to some classes of graphs. Information Processing Letters, 188:106530, 2025.
doi:10.1016/J.IPL.2024.106530. 131

[15] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. American Mathe-
matical Society, 1989. 262

[16] N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. On polynomial kernelization of h-free
edge deletion. Algorithmica, 79(3):654–666, 2017. doi:10.1007/S00453-016-0215-Y. 14

[17] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.
doi:10.1137/0608024. 8, 165

[18] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable graphs.
Journal of Algorithms, 12:308–340, 1991. doi:10.1016/0196-6774(91)90006-K. ix, 8, 24, 43,
47, 54, 263

[19] Arash Asadi, Luke Postle, and Robin Thomas. Minor-minimal non-projective planar graphs
with an internal 3-separation. Electronic Notes Discrete Mathematics, 38:69–75, 2011. doi:
10.1016/J.ENDM.2011.09.012. 106

[20] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM (JACM), 41(1):153–180, 1994. doi:10.1145/174644.174650. 265

[21] R. Balasubramanian, Michael R. Fellows, and Venkatesh Raman. An improved fixed-parameter
algorithm for vertex cover. Information Processing Letters, 65(3):163–168, 1998. doi:10.1016/
S0020-0190(97)00213-5. 7

[22] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Optimal algorithms for hitting (topological)
minors on graphs of bounded treewidth. In Proc. of the 12th International Symposium on

https://doi.org/10.1145/3319909
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.1007/S00224-018-9892-Z
https://doi.org/10.1007/978-3-030-63072-0_6
https://doi.org/10.1007/978-3-030-63072-0_6
https://doi.org/10.1007/S00453-008-9180-4
https://doi.org/10.1016/J.IPL.2024.106530
https://doi.org/10.1007/S00453-016-0215-Y
https://doi.org/10.1137/0608024
https://doi.org/10.1016/0196-6774(91)90006-K
https://doi.org/10.1016/J.ENDM.2011.09.012
https://doi.org/10.1016/J.ENDM.2011.09.012
https://doi.org/10.1145/174644.174650
https://doi.org/10.1016/S0020-0190(97)00213-5
https://doi.org/10.1016/S0020-0190(97)00213-5

Bibliography 284

Parameterized and Exact Computation (IPEC), volume 89 of LIPIcs, pages 4:1–4:12, 2017.
doi:10.4230/LIPIcs.IPEC.2017.4. 14

[23] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theoretical Computer Science, 814:135–152, 2020.
doi:10.1016/j.tcs.2020.01.026. 47, 54, 55, 159

[24] Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. IV. An optimal algorithm. SIAM Journal on Computing, 52(4):865–912, 2023. doi:
10.1137/21M140482X. 46, 55, 62, 68, 132, 145, 152, 175, 278

[25] Ann Becker, Reuven Bar-Yehuda, and Dan Geiger. Randomized algorithms for the loop cutset
problem. Journal of Artificial Intelligence Research, 12:219–234, 2000. doi:10.1613/JAIR.638.
11

[26] Mahdi Belbasi and Martin Fürer. Finding all leftmost separators of size $\le k$. In Proc. of
the 15th International Conference on Combinatorial Optimization and Applications (COCOA),
volume 13135 of Lecture Notes in Computer Science, pages 273–287. Springer, 2021. doi:
10.1007/978-3-030-92681-6_23. 8

[27] Mahdi Belbasi and Martin Fürer. An improvement of reed’s treewidth approximation. Journal
of Graph Algorithms and Applications, 26(2):257–282, 2022. doi:10.7155/JGAA.00593. 8

[28] Patrick Bellenbaum and Reinhard Diestel. Two short proofs concerning tree-
decompositions. Combinatorics, Probability and Computing, 11(6):541–547, 2002. doi:
10.1017/S0963548302005369. 190

[29] Tatiana Belova and Ivan Bliznets. Hardness of approximation for h-free edge modification
problems: Towards a dichotomy. In Proc. of the 33rd International Symposium on Algorithms
and Computation (ISAAC), volume 248 of LIPIcs, pages 24:1–24:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPICS.ISAAC.2022.24. 10

[30] Ivan Bliznets, Marek Cygan, Pawel Komosa, and Michal Pilipczuk. Hardness of approximation
for H -free edge modification problems. ACM Transactions on Computation Theory, 10(2):9:1–
9:32, 2018. doi:10.1145/3196834. 10

[31] Manuel Bodirsky, Jan Kára, and Barnaby Martin. The complexity of surjective homomorphism
problems—a survey. Discrete Applied Mathematics, 160(12):1680–1690, 2012. doi:10.1016/j.
dam.2012.03.029. 33

[32] Hans L. Bodlaender. On disjoint cycles. International Journal of Foundations of Computer
Science, 5(1):59–68, 1994. doi:10.1142/S0129054194000049. 11

[33] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996. doi:10.1137/S0097539793251219. 8,
278

[34] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423–
434, 2009. doi:10.1016/J.JCSS.2009.04.001. 7

https://doi.org/10.4230/LIPIcs.IPEC.2017.4
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1137/21M140482X
https://doi.org/10.1137/21M140482X
https://doi.org/10.1613/JAIR.638
https://doi.org/10.1007/978-3-030-92681-6_23
https://doi.org/10.1007/978-3-030-92681-6_23
https://doi.org/10.7155/JGAA.00593
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.1017/S0963548302005369
https://doi.org/10.4230/LIPICS.ISAAC.2022.24
https://doi.org/10.1145/3196834
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1016/j.dam.2012.03.029
https://doi.org/10.1142/S0129054194000049
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/J.JCSS.2009.04.001

Bibliography 285

[35] Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374. 8

[36] Hans L. Bodlaender, John R. Gilbert, Ton Kloks, and Hjálmtyr Hafsteinsson. Approximating
treewidth, pathwidth, and minimum elimination tree height. In Proc. of the 17th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 570 of LNCS,
pages 1–12, 1991. doi:10.1007/3-540-55121-2_1. 36, 174

[37] Hans L. Bodlaender, Carla Groenland, and Michal Pilipczuk. Parameterized complexity of
binary CSP: vertex cover, treedepth, and related parameters. In Proc. of the 50th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 261 of LIPIcs, pages
27:1–27:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ICALP.2023.27. 21

[38] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Preprocessing for treewidth:
A combinatorial analysis through kernelization. SIAM Journal on Discrete Mathematics,
27(4):2108–2142, 2013. doi:10.1137/120903518. 11

[39] Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël Paulusma.
Independent feedback vertex set for p5-free graphs. Algorithmica, 81(4):1342–1369, 2019.
doi:10.1007/S00453-018-0474-X. 19, 130

[40] Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Parameterized vertex deletion
problems for hereditary graph classes with a block property. In Proc. of the 42nd International
Workshop on Graphs-Theoretic Concepts in Computer Science (WG), volume 9941 of Lecture
Notes in Computer Science, pages 233–244, 2016. doi:10.1007/978-3-662-53536-3_20. 14

[41] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. Journal of the ACM, 69(1):3:1–3:46, 2022. doi:10.1145/3486655.
24

[42] Henry Roy Brahana. Systems of circuits on two-dimensional manifolds. Annals of Mathematics,
23(2):144–168, 1921. doi:10.2307/1968030. 12

[43] Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3. ix,
17, 22

[44] Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7. ix, 22, 170

[45] Jonathan F. Buss and Judy Goldsmith. Nondeterminism within P. SIAM Journal on Computing,
22(3):560–572, 1993. doi:10.1137/0222038. 7

[46] Sergio Cabello, Éric Colin de Verdière, and Francis Lazarus. Algorithms for the edge-width
of an embedded graph. Computational Geometry, 45(5-6):215–224, 2012. doi:10.1016/J.
COMGEO.2011.12.002. 142

[47] Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)
00050-6. 14

https://doi.org/10.1137/130947374
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.4230/LIPICS.ICALP.2023.27
https://doi.org/10.4230/LIPICS.ICALP.2023.27
https://doi.org/10.1137/120903518
https://doi.org/10.1007/S00453-018-0474-X
https://doi.org/10.1007/978-3-662-53536-3_20
https://doi.org/10.1145/3486655
https://doi.org/10.2307/1968030
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1137/0222038
https://doi.org/10.1016/J.COMGEO.2011.12.002
https://doi.org/10.1016/J.COMGEO.2011.12.002
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6

Bibliography 286

[48] Leizhen Cai and Yufei Cai. Incompressibility of h-free edge modification problems. Algorithmica,
71(3):731–757, 2015. doi:10.1007/S00453-014-9937-X. 14

[49] Rutger Campbell, J. Pascal Gollin, Kevin Hendrey, and Sebastian Wiederrecht. Odd-Minors
II: Bipartite treewidth, 2023. Manuscript under preparation (private communication). 29, 30,
37, 202

[50] Yixin Cao, Jianer Chen, and Yang Liu. On feedback vertex set: New measure and new
structures. Algorithmica, 73(1):63–86, 2015. doi:10.1007/S00453-014-9904-6. 11

[51] Paul A. Catlin. Hajós’ graph-coloring conjecture: Variations and counterexamples. Journal of
Combinatorial Theory, Series B, 26(2):268–274, 1979. doi:10.1016/0095-8956(79)90062-5.
18

[52] Kevin Cattell and Michael J. Dinneen. A characterization of graphs with vertex cover up
to five. In Proc. of Orders, Algorithms, and Applications, International Workshop ORDAL,
volume 831 of LNCS, pages 86–99. Springer, 1994. doi:10.1007/BFB0019428. 115

[53] Kevin Cattell, Michael J. Dinneen, Rodney G. Downey, Michael R. Fellows, and Michael A.
Langston. On computing graph minor obstruction sets. Theoretical Computer Science, 233:107–
127, 2000. doi:10.1016/S0304-3975(97)00300-9. 46

[54] L Sunil Chandran and Fabrizio Grandoni. Refined memorisation for vertex cover. In Proc.
of the 1st International Workshop of Parameterized and Exact Computation (IWPEC), pages
61–70. Springer, 2004. doi:10.1007/978-3-540-28639-4_6. 7

[55] Dimitris Chatzidimitriou, Dimitrios M. Thilikos, and Dimitris Zoros. Sparse obstructions for
minor-covering parameters. Discrete Applied Mathematics, 278:28–50, 2020. doi:10.1016/j.
dam.2019.10.021. 17, 190, 191

[56] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. Journal
of the ACM, 63(5):40:1–40:65, 2016. doi:10.1145/2820609. 26

[57] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved algorithms
for feedback vertex set problems. Journal of Computer and System Sciences, 74(7):1188–1198,
2008. doi:10.1016/J.JCSS.2008.05.002. 11, 17

[58] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further
improvements. Journal of Algorithms, 41(2):280–301, 2001. doi:10.1006/JAGM.2001.1186. 7,
114

[59] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex cover.
In Proc. of the 31st International Symposium of the Mathematical Foundations of Computer
Science (MFCS), volume 4162 of Lecture Notes in Computer Science, pages 238–249. Springer,
2006. doi:10.1007/11821069_21. vi, 7, 17, 115

[60] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
Journal on Computing, 45(4):1171–1229, 2016. doi:10.1137/15M1032077. 45, 233, 249

[61] Benny Chor, Mike Fellows, and David W. Juedes. Linear kernels in linear time, or how to
save k colors in o(n2) steps. In Proc. of the 30th International Workshop on Graph-Theoretic

https://doi.org/10.1007/S00453-014-9937-X
https://doi.org/10.1007/S00453-014-9904-6
https://doi.org/10.1016/0095-8956(79)90062-5
https://doi.org/10.1007/BFB0019428
https://doi.org/10.1016/S0304-3975(97)00300-9
https://doi.org/10.1007/978-3-540-28639-4_6
https://doi.org/10.1016/j.dam.2019.10.021
https://doi.org/10.1016/j.dam.2019.10.021
https://doi.org/10.1145/2820609
https://doi.org/10.1016/J.JCSS.2008.05.002
https://doi.org/10.1006/JAGM.2001.1186
https://doi.org/10.1007/11821069_21
https://doi.org/10.1137/15M1032077

Bibliography 287

Concepts in Computer Science (WG), volume 3353 of Lecture Notes in Computer Science,
pages 257–269. Springer, 2004. doi:10.1007/978-3-540-30559-0_22. 7

[62] Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu, Paul D. Seymour, and Kristina
Vuskovic. Recognizing berge graphs. Combinatorica, 25(2):143–186, 2005. doi:10.1007/
S00493-005-0012-8. 261

[63] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong perfect
graph theorem. Annals of mathematics (2), 164(1):51–229, 2006. doi:10.4007/annals.2006.
164.51. 271

[64] Julia Chuzhoy. Improved Bounds for the Flat Wall Theorem. In Proc. of the 26th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 256–275, 2015. doi:10.1137/
1.9781611973730.20. 45

[65] Julia Chuzhoy and Zihan Tan. Towards tight(er) bounds for the Excluded Grid Theorem.
Journal of Combinatorial Theory, Series B, 146:219–265, 2021. doi:10.1016/j.jctb.2020.
09.010. 26, 89

[66] Marc Comas and Maria Serna. Vertex fusion under distance constraints. European Journal of
Combinatorics, 30(7):1612–1623, 2009. doi:10.1016/j.ejc.2009.03.014. 19, 33

[67] Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H. ix,
8, 24, 43, 47, 54, 132, 276

[68] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/knowledge/isbn/
item5758776/?site_locale=fr_FR. 231, 258

[69] Christophe Crespelle, Pål Grønås Drange, Fedor V. Fomin, and Petr Golovach. A survey of
parameterized algorithms and the complexity of edge modification. Computer Science Review,
48:100556, 2023. doi:10.1016/j.cosrev.2023.100556. 10, 14, 19, 129

[70] Radu Curticapean. Counting perfect matchings in graphs that exclude a single-crossing minor.
CoRR, abs/1406.4056, 2014. arXiv:1406.4056. 263

[71] Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Proc. of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms(SODA), pages 1650–1669. SIAM, 2016.
doi:10.1137/1.9781611974331.CH113. 263

[72] Radu Curticapean and Mingji Xia. Parameterizing the permanent: Genus, apices, minors,
evaluation mod 2k. In Proc. of the IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), pages 994–1009. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.65.
263

[73] Marek Cygan. Deterministic parameterized connected vertex cover. In Proc. of the 13th
Scandinavian Symposium and Workshops on Algorithm Theory (SWAT), volume 7357 of Lecture
Notes in Computer Science, pages 95–106. Springer, 2012. doi:10.1007/978-3-642-31155-0\
_9. 19

https://doi.org/10.1007/978-3-540-30559-0_22
https://doi.org/10.1007/S00493-005-0012-8
https://doi.org/10.1007/S00493-005-0012-8
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.4007/annals.2006.164.51
https://doi.org/10.1137/1.9781611973730.20
https://doi.org/10.1137/1.9781611973730.20
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.jctb.2020.09.010
https://doi.org/10.1016/j.ejc.2009.03.014
https://doi.org/10.1016/0890-5401(90)90043-H
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1016/j.cosrev.2023.100556
https://arxiv.org/abs/1406.4056
https://doi.org/10.1137/1.9781611974331.CH113
https://doi.org/10.1109/FOCS.2015.65
https://doi.org/10.1007/978-3-642-31155-0_9
https://doi.org/10.1007/978-3-642-31155-0_9

Bibliography 288

[74] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3. 5, 7, 266

[75] Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/J.IC.2017.04.009. 14

[76] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. ACM Transactions on Algorithms, 18(2):17:1–17:31, 2022. doi:
10.1145/3506707. 11

[77] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In Proc. of the
22nd IEEE Symposium on Logic in Computer Science (LICS), pages 270–279. IEEE Computer
Society, 2007. doi:10.1109/LICS.2007.31. 46

[78] Davi de Andrade, Júlio Araújo, Laure Morelle, Ignasi Sau, and Ana Silva. On the parameterized
complexity of computing good edge-labelings. CoRR, abs/2408.15181, 2024. arXiv:2408.
15181, doi:10.48550/ARXIV.2408.15181. 9

[79] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and
Kim Stevens. An O(2o(k)n3) FPT algorithm for the undirected feedback vertex set problem.
Theory of Computing Systems, 41(3):479–492, 2007. doi:10.1007/S00224-007-1345-Z. 11

[80] Frank K. H. A. Dehne, Michael R. Fellows, Frances A. Rosamond, and Peter Shaw. Greedy
localization, iterative compression, modeled crown reductions: New FPT techniques, an
improved algorithm for set splitting, and a novel 2k kernelization for vertex cover. In Proc. of
First International Workshop on Parameterized and Exact Computation (IWPEC), volume
3162 of Lecture Notes in Computer Science, pages 271–280. Springer, 2004. doi:10.1007/
978-3-540-28639-4_24. 7

[81] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs.
Journal of the ACM, 52(6):866–893, 2005. doi:10.1145/1101821.1101823. 26, 142

[82] Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Bidimensional parameters and local treewidth. SIAM Journal on Discrete Mathematics,
18(3):501–511, 2004. doi:10.1137/S0895480103433410. 72, 107, 238, 267

[83] Erik D Demaine and Mohammad Taghi Hajiaghayi. Bidimensionality: new connections between
FPT algorithms and PTASs. In Proc. of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), volume 5, pages 590–601, 2005. doi:10.5555/1070432.1070514. 27

[84] Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In Proc. of the 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS)), pages 637–646. IEEE
Computer Society, 2005. doi:10.1109/SFCS.2005.14. 27

[85] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Decomposition,
approximation, and coloring of odd-minor-free graphs. In Proc. of the 21st Annual ACM-SIAM

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/J.IC.2017.04.009
https://doi.org/10.1145/3506707
https://doi.org/10.1145/3506707
https://doi.org/10.1109/LICS.2007.31
https://arxiv.org/abs/2408.15181
https://arxiv.org/abs/2408.15181
https://doi.org/10.48550/ARXIV.2408.15181
https://doi.org/10.1007/S00224-007-1345-Z
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1007/978-3-540-28639-4_24
https://doi.org/10.1145/1101821.1101823
https://doi.org/10.1137/S0895480103433410
https://doi.org/10.5555/1070432.1070514
https://doi.org/10.1109/SFCS.2005.14

Bibliography 289

Symposium on Discrete Algorithms (SODA), pages 329–344. SIAM, 2010. doi:10.1137/1.
9781611973075.28. xi, 18, 29, 201

[86] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Dimitrios M. Thilikos. The bidimensional
theory of bounded-genus graphs. SIAM Journal on Discrete Mathematics, 20(2):357–371, 2006.
doi:10.1137/040616929. 133, 142

[87] Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. doi:
10.1007/978-3-662-53622-3. 2, 51, 72, 93, 98, 140, 144, 172, 215

[88] Reinhard Diestel, Ken-ichi Kawarabayashi, Theodor Müller, and Paul Wollan. On the excluded
minor structure theorem for graphs of large tree-width. Journal of Combinatorial Theory,
Series B, 102(6):1189–1210, 2012. doi:10.1016/j.jctb.2012.07.001. 72, 93, 94

[89] Öznur Yaşar Diner, Archontia C. Giannopoulou, Giannos Stamoulis, and Dimitrios M. Thilikos.
Block elimination distance, 2021. arXiv:2103.01872. 17

[90] Michael J. Dinneen. Too many minor order obstructions (for parameterized lower ideals).
Journal of Universal Computer Science, 3(11):1199–1206, 1997. doi:10.3217/jucs-003-11.
34

[91] Michael J. Dinneen, Kevin Cattell, and Michael R. Fellows. Forbidden minors to graphs
with small feedback sets. Discrete Mathematics, 230(1-3):215–252, 2001. doi:10.1016/
S0012-365X(00)00083-2. 17

[92] Michael J. Dinneen and Rongwei Lai. Properties of vertex cover obstructions. Discrete
Mathematics, 307(21):2484–2500, 2007. doi:10.1016/j.disc.2007.01.003. 17, 34, 275

[93] Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractability. In Proc. of the
7th Annual Structure in Complexity Theory Conference, pages 36–49. IEEE Computer Society,
1992. doi:10.1109/SCT.1992.215379. 5

[94] Rodney G. Downey and Michael R. Fellows. Fixed parameter tractability and completeness
III: some structural aspects of the W hierarchy. In Complexity Theory: Current Research,
Dagstuhl Workshop, pages 191–225. Cambridge University Press, 1992. 5, 11

[95] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and complete-
ness I: basic results. SIAM Journal on Computing, 24(4):873–921, 1995. doi:10.1137/
S0097539792228228. 5, 6

[96] Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
II: on completeness for W[1]. Theoretical Computer Science, 141(1&2):109–131, 1995. doi:
10.1016/0304-3975(94)00097-3. 5, 6

[97] Rodney G. Downey and Michael R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, 1999. doi:10.1007/978-1-4612-0515-9. 6

[98] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1. 5

[99] Maël Dumas, Anthony Perez, Mathis Rocton, and Ioan Todinca. Polynomial kernels for edge
modification problems towards block and strictly chordal graphs. CoRR, abs/2201.13140, 2022.
arXiv:2201.13140. 129

https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1137/1.9781611973075.28
https://doi.org/10.1137/040616929
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.jctb.2012.07.001
https://arxiv.org/abs/2103.01872
https://doi.org/10.3217/jucs-003-11
https://doi.org/10.1016/S0012-365X(00)00083-2
https://doi.org/10.1016/S0012-365X(00)00083-2
https://doi.org/10.1016/j.disc.2007.01.003
https://doi.org/10.1109/SCT.1992.215379
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://arxiv.org/abs/2201.13140

Bibliography 290

[100] Zdenek Dvorák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for
tree-depth. European Journal of Combinatorics, 33(5):969–979, 2012. doi:10.1016/j.ejc.
2011.09.014. 37, 188

[101] Zdenek Dvorák and Robin Thomas. List-coloring apex-minor-free graphs. CoRR, 2014.
arXiv:1401.1399. xi, 28, 48, 72, 93

[102] Zdenek Dvorák and Paul Wollan. A structure theorem for strong immersions. Journal of
Graph Theory, 83(2):152–163, 2016. doi:10.1002/JGT.21990. 29

[103] Walther Dyck. Beiträge zur Analysis situs: I. Aufsatz. Ein-und zweidimensionale Mannig-
faltigkeiten. Mathematische Annalen, 32:457–512, 1888. doi:10.1007/BF01443580. 12

[104] Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005. ix, 22, 201, 265, 267

[105] David Eppstein and Vijay V. Vazirani. NC algorithms for computing a perfect matching and
a maximum flow in one-crossing-minor-free graphs. SIAM Journal on Computing, 50(3):1014–
1033, 2021. doi:10.1137/19M1256221. 263

[106] Joshua Erde. A unified treatment of linked and lean tree-decompositions. Journal of Combi-
natorial Theory, Series B, 130:114–143, 2018. doi:10.1016/j.jctb.2017.12.001. 190

[107] Paul Erdös and George Szekeres. A combinatorial problem in geometry. Compositio Mathe-
matica, 2:463–470, 1935. doi:10.1007/978-0-8176-4842-8_3. 74

[108] Paul Erdős and Lajos Pósa. On independent circuits contained in a graph. Canadian Journal
of Mathematics, 17:347–352, 1965. doi:10.4153/CJM-1965-035-8. 120, 123

[109] Alastair Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is
NP-hard. Electronic Journal of Combinatorics, 11(1), 2004. doi:10.37236/1799. 10, 21, 279

[110] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation
algorithms for minimum weight vertex separators. SIAM Journal on Computing, 38(2):629–657,
2008. doi:10.1137/05064299X. 8

[111] Michael R. Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in FPT.
In Proc. of the 29th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 2880 of Lecture Notes in Computer Science, pages 1–12. Springer, 2003.
doi:10.1007/978-3-540-39890-5_1. 7

[112] Michael R. Fellows, Danny Hermelin, and Frances A. Rosamond. Well quasi orders in subclasses
of bounded treewidth graphs and their algorithmic applications. Algorithmica, 64(1):3–18,
2012. doi:10.1007/S00453-011-9545-Y. 9

[113] Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35(3):727–739, 1988. doi:10.1145/44483.44491.
17

[114] Michael R. Fellows and Michael A. Langston. An analogue of the myhill-nerode theorem and
its use in computing finite-basis characterizations (extended abstract). In Proc. of the 30th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 520–525. IEEE
Computer Society, 1989. doi:10.1109/SFCS.1989.63528. 17

https://doi.org/10.1016/j.ejc.2011.09.014
https://doi.org/10.1016/j.ejc.2011.09.014
https://arxiv.org/abs/1401.1399
https://doi.org/10.1002/JGT.21990
https://doi.org/10.1007/BF01443580
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1137/19M1256221
https://doi.org/10.1016/j.jctb.2017.12.001
https://doi.org/10.1007/978-0-8176-4842-8_3
https://doi.org/10.4153/CJM-1965-035-8
https://doi.org/10.37236/1799
https://doi.org/10.1137/05064299X
https://doi.org/10.1007/978-3-540-39890-5_1
https://doi.org/10.1007/S00453-011-9545-Y
https://doi.org/10.1145/44483.44491
https://doi.org/10.1109/SFCS.1989.63528

Bibliography 291

[115] Michael R. Fellows and Michael A. Langston. On search, decision, and the efficiency of
polynomial-time algorithms. Journal of Computer and System Sciences, 49(3):769–779, 1994.
doi:10.1016/S0022-0000(05)80079-0. 17

[116] Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In Proc. of the 19th Interna-
tional Symposium on Algorithms and Computation (ISAAC), volume 5369 of Lecture Notes in
Computer Science, pages 294–305. Springer, 2008. doi:10.1007/978-3-540-92182-0_28. 9

[117] Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. Theoretical Computer Science, 412(23):2513–2523,
2011. doi:10.1016/J.TCS.2010.10.043. 9

[118] Michael E Fisher. Statistical mechanics of dimers on a plane lattice. Physical Review,
124(6):1664, 1961. doi:10.1103/PhysRev.124.1664. 262

[119] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X. 5, 6

[120] Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos.
Compound logics for modification problems. ACM Transactions on Computational Logic,
26(1):2:1–2:57, 2025. doi:10.1145/3696451. 24, 26, 35, 38, 46, 68, 234, 275

[121] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Modification to planarity
is fixed parameter tractable. In Proc. of the 36th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 126 of LIPIcs, pages 28:1–28:17, 2019. doi:
10.4230/LIPIcs.STACS.2019.28. ix, xii, 19, 20, 35, 46, 125, 276

[122] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. On the parameterized complexity
of graph modification to first-order logic properties. Theory of Computing Systems, 64(2):251–
271, 2020. doi:10.1007/S00224-019-09938-8. 10, 23

[123] Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Parameterized complexity of
elimination distance to first-order logic properties. ACM Transactions on Computational Logic,
23(3):17:1–17:35, 2022. doi:10.1145/3517129. 22

[124] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, and Saket Saurabh.
Hitting forbidden minors: Approximation and kernelization. SIAM Journal on Discrete
Mathematics, 30(1):383–410, 2016. doi:10.1137/140997889. 17

[125] Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F -Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012. doi:
10.1109/FOCS.2012.62. 17

[126] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Proc. of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pages 1317–1326, 2020. doi:10.1145/3357713.3384318. 14, 46, 279

[127] Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded grid minors and efficient
polynomial-time approximation schemes. Journal of the ACM, 65(2):10:1–10:44, 2018. doi:
10.1145/3154833. 267

https://doi.org/10.1016/S0022-0000(05)80079-0
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1016/J.TCS.2010.10.043
https://doi.org/10.1103/PhysRev.124.1664
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/3696451
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.4230/LIPIcs.STACS.2019.28
https://doi.org/10.1007/S00224-019-09938-8
https://doi.org/10.1145/3517129
https://doi.org/10.1137/140997889
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1145/3154833
https://doi.org/10.1145/3154833

Bibliography 292

[128] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):34:1–34:45, 2018. doi:10.1145/3186898. 8

[129] Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Dimitrios M Thilikos. Bidimensionality
and kernels. In Proc. of the 21st annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 503–510. SIAM, 2010. doi:10.1137/1.9781611973075.43. 27

[130] Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. Graph modification problems: A modern
perspective. In Proc. of the 9th International Workshop on Frontiers in Algorithmics (FAW),
volume 9130 of LNCS, pages 3–6. Springer, 2015. doi:10.1007/978-3-319-19647-3_1. 9

[131] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations
and CMSO. SIAM Journal on Computing, 44(1):54–87, 2015. doi:10.1137/140964801. 8

[132] George K Francis and Jeffrey R Weeks. Conway’s zip proof. The American mathematical
monthly, 106(5):393–399, 1999. doi:10.1080/00029890.1999.12005061. 12

[133] Harvey Friedman, Neil Robertson, and Paul D. Seymour. The metamathematics of the
graph minor theorem. In Logic and combinatorics, volume 65, pages 229–261. AMS, 1987.
doi:10.1090/conm/065/891251. 17

[134] Hanna Furmanczyk, Marek Kubale, and Stanislaw P. Radziszowski. On bipartization of cubic
graphs by removal of an independent set. Discrete Applied Mathematics, 209:115–121, 2016.
doi:10.1016/J.DAM.2015.10.036. 130

[135] Anna Galluccio and Martin Loebl. On the theory of pfaffian orientations. i. perfect matchings
and permanents. The Electronic Journal of Combinatorics, 6, 1999. doi:10.37236/1438. 263

[136] Cyril Gavoille and Claire Hilaire. Minor-universal graph for graphs on surfaces. CoRR,
abs/2305.06673, 2023. arXiv:2305.06673, doi:10.48550/ARXIV.2305.06673. 71, 106

[137] Jim Geelen, Bert Gerards, Bruce A. Reed, Paul D. Seymour, and Adrian Vetta. On the
odd-minor variant of Hadwiger’s conjecture. Journal of Combinatorial Theory, Series B,
99(1):20–29, 2009. doi:10.1016/j.jctb.2008.03.006. 18, 279

[138] Archontia C. Giannopoulou, Ken-ichi Kawarabayashi, Stephan Kreutzer, and O-joung Kwon.
The Directed Flat Wall Theorem. In Proc. of the 31st ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 239–258, 2020. doi:10.1137/1.9781611975994.15. 45

[139] Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. Algorithmica, 81(2):557–
588, 2019. doi:10.1007/s00453-018-0424-7. 18, 191

[140] Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thi-
likos, and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-
closed graph classes. SIAM Journal on Discrete Mathematics, 35(1):105–151, 2021. doi:
10.1137/18M1228839. 18

[141] Archontia C. Giannopoulou and Dimitrios M. Thilikos. Optimizing the graph minors weak
structure theorem. SIAM Journal on Discrete Mathematics, 27(3):1209–1227, 2013. doi:
10.1137/110857027. 45, 233

https://doi.org/10.1145/3186898
https://doi.org/10.1137/1.9781611973075.43
https://doi.org/10.1007/978-3-319-19647-3_1
https://doi.org/10.1137/140964801
https://doi.org/10.1080/00029890.1999.12005061
https://doi.org/10.1090/conm/065/891251
https://doi.org/10.1016/J.DAM.2015.10.036
https://doi.org/10.37236/1438
https://arxiv.org/abs/2305.06673
https://doi.org/10.48550/ARXIV.2305.06673
https://doi.org/10.1016/j.jctb.2008.03.006
https://doi.org/10.1137/1.9781611975994.15
https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.1137/18M1228839
https://doi.org/10.1137/18M1228839
https://doi.org/10.1137/110857027
https://doi.org/10.1137/110857027

Bibliography 293

[142] Petr A. Golovach, Marcin Kaminski, Spyridon Maniatis, and Dimitrios M. Thilikos. The
parameterized complexity of graph cyclability. SIAM Journal on Discrete Mathematics,
31(1):511–541, 2017. doi:10.1137/141000014. 46

[143] Petr A. Golovach, Marcin Kaminski, Daniël Paulusma, and Dimitrios M. Thilikos. Induced
packing of odd cycles in planar graphs. Theoretical Computer Science, 420:28–35, 2012.
doi:10.1016/j.tcs.2011.11.004. 46

[144] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Combing a linkage in
an annulus. SIAM Journal on Discrete Mathematics, 37(4):2332–2364, 2023. doi:10.1137/
22M150914X. 68

[145] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Hitting topological minor
models in planar graphs is fixed parameter tractable. ACM Transactions on Algorithms,
19(3):23:1–23:29, 2023. doi:10.1145/3583688. 14

[146] Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-
order logic with disjoint paths predicates in proper minor-closed graph classes. In Proc. of the
2023 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3684–3699. SIAM, 2023.
doi:10.1137/1.9781611977554.CH141. 46, 68, 234

[147] Petr A. Golovach, Pim van ’t Hof, and Daniël Paulusma. Obtaining planarity by contracting
few edges. Theoretical Computer Science, 476:38–46, 2013. doi:10.1016/J.TCS.2012.12.041.
19, 129

[148] Maximilian Gorsky, Michał T Seweryn, and Sebastian Wiederrecht. Polynomial bounds
for the graph minor structure theorem. CoRR, abs/2504.02532, 2025. arXiv:2504.02532,
doi:10.48550/arXiv.2504.02532. 27, 274

[149] Martin Grohe. Local tree-width, excluded minors, and approximation algorithms. Combina-
torica, 23(4):613–632, 2003. doi:10.1007/S00493-003-0037-9. 267

[150] Martin Grohe. Quasi-4-connected components. In Proc. of the 43rd International Colloquium
on Automata, Languages, and Programming (ICALP), volume 55 of LIPIcs, pages 8:1–8:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPICS.ICALP.2016.8.
254, 280

[151] Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proc. of the 43rd ACM Symposium on Theory of
Computing (STOC), pages 479–488. ACM, 2011. doi:10.1145/1993636.1993700. 46

[152] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In
Model Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session, vol-
ume 558 of Contemporary Mathematics, pages 181–206. American Mathematical Society,
2009. URL: https://web.archive.org/web/20120901072630id_/http://www.cs.technion.
ac.il:80/~janos/RESEARCH/AMS-Book-files/pdfs/05_GroheK.pdf. 24

[153] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. Journal of the ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.
24

https://doi.org/10.1137/141000014
https://doi.org/10.1016/j.tcs.2011.11.004
https://doi.org/10.1137/22M150914X
https://doi.org/10.1137/22M150914X
https://doi.org/10.1145/3583688
https://doi.org/10.1137/1.9781611977554.CH141
https://doi.org/10.1016/J.TCS.2012.12.041
https://arxiv.org/abs/2504.02532
https://doi.org/10.48550/arXiv.2504.02532
https://doi.org/10.1007/S00493-003-0037-9
https://doi.org/10.4230/LIPICS.ICALP.2016.8
https://doi.org/10.1145/1993636.1993700
https://web.archive.org/web/20120901072630id_/http://www.cs.technion.ac.il:80/~janos/RESEARCH/AMS-Book-files/pdfs/05_GroheK.pdf
https://web.archive.org/web/20120901072630id_/http://www.cs.technion.ac.il:80/~janos/RESEARCH/AMS-Book-files/pdfs/05_GroheK.pdf
https://doi.org/10.1145/3051095

Bibliography 294

[154] Martin Grohe and Dániel Marx. Structure theorem and isomorphism test for graphs with
excluded topological subgraphs. SIAM Journal on Computing, 44(1):114–159, 2015. doi:
10.1137/120892234. 29

[155] Martin Grötschel, László Lovász, and Alexander Schrijver. Polynomial algorithms for perfect
graphs. In North-Holland mathematics studies, volume 88, pages 325–356. Elsevier, 1984.
doi:10.1016/S0304-0208(08)72943-8. 262, 266

[156] Martin Grötschel and William R. Pulleyblank. Weakly bipartite graphs and the max-cut
problem. Operations Research Letters, 1(1):23–27, 1981. doi:10.1016/0167-6377(81)90020-1.
198, 227

[157] Andrzej Grzesik, Tereza Klimosová, Marcin Pilipczuk, and Michal Pilipczuk. Polynomial-time
algorithm for maximum weight independent set on P6-free graphs. ACM Transactions on
Algorithms, 18(1):4:1–4:57, 2022. doi:10.1145/3414473. 266

[158] Bertrand Guenin. A characterization of weakly bipartite graphs. Journal of Combinatorial
Theory, Series B, 83(1):112–168, 2001. doi:10.1006/jctb.2001.2051. 198, 227

[159] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Sebastian Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of
Computer and System Sciences, 72(8):1386–1396, 2006. doi:10.1016/j.jcss.2006.02.001.
11

[160] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proc. of the 1st International Workshop on Parameterized and
Exact Computation (IWPEC), volume 3162 of LNCS, pages 162–173, 2004. doi:10.1007/
978-3-540-28639-4_15. vii, 9, 17

[161] Arvind Gupta and Russell Impagliazzo. Bounding the size of planar intertwines. SIAM Journal
on Discrete Mathematics, 10(3):337–358, 1997. doi:10.1137/S0895480192239931. 17

[162] Gregory Z. Gutin, Mark Jones, and Magnus Wahlström. The mixed chinese postman problem
parameterized by pathwidth and treedepth. SIAM Journal on Discrete Mathematics, 30(4):2177–
2205, 2016. doi:10.1137/15M1034337. 21

[163] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges.
Zürich, 88(2):133–142, 1943. URL: https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf.
18

[164] Pinar Heggernes, Pim van ’t Hof, Bart M. P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Computer
Science, 511:172–180, 2013. doi:10.1016/J.TCS.2012.03.013. 10, 270, 271

[165] Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, Daniel Lokshtanov, and Christophe
Paul. Contracting graphs to paths and trees. Algorithmica, 68(1):109–132, 2014. doi:
10.1007/S00453-012-9670-2. 34, 35, 129, 275, 276

[166] Pinar Heggernes, Pim van ’t Hof, Daniel Lokshtanov, and Christophe Paul. Obtaining a
bipartite graph by contracting few edges. SIAM Journal on Discrete Mathematics, 27(4):2143–
2156, 2013. doi:10.1137/130907392. 46

https://doi.org/10.1137/120892234
https://doi.org/10.1137/120892234
https://doi.org/10.1016/S0304-0208(08)72943-8
https://doi.org/10.1016/0167-6377(81)90020-1
https://doi.org/10.1145/3414473
https://doi.org/10.1006/jctb.2001.2051
https://doi.org/10.1016/j.jcss.2006.02.001
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1137/S0895480192239931
https://doi.org/10.1137/15M1034337
https://www.ngzh.ch/archiv/1943_88/88_2/88_17.pdf
https://doi.org/10.1016/J.TCS.2012.03.013
https://doi.org/10.1007/S00453-012-9670-2
https://doi.org/10.1007/S00453-012-9670-2
https://doi.org/10.1137/130907392

Bibliography 295

[167] Micha Hofri. Analysis of algorithms: Computational methods and mathematical tools. Oxford
University Press, Inc., 1995. 4

[168] Huynh, Tony. The Linkage Problem for Group-labelled Graphs. PhD thesis, University of
Waterloo, 2009. URL: http://hdl.handle.net/10012/4716. viii, 18

[169] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774. 276

[170] Yoichi Iwata. Linear-time kernelization for feedback vertex set. In Proc. of the 44th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 80 of LIPIcs, pages
68:1–68:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.
ICALP.2017.68. 11

[171] Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming on
bipartite tree decompositions. In Proc. of the 18th International Symposium on Parameterized
and Exact Computation (IPEC), volume 285 of LIPIcs, pages 26:1–26:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.IPEC.2023.26. 38, 210, 226, 278

[172] Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and
lower bounds for a refined parameter. Theory of Computing Systems, 53(2):263–299, 2013.
doi:10.1007/S00224-012-9393-4. 11

[173] Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination
distance to bipartite graphs and more. In Proc. of the 47th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 12911 of LNCS, pages 80–93, 2021.
doi:10.1007/978-3-030-86838-3_6. 22

[174] Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proc. of the 53rd Annual ACM-SIGACT Symposium
on Theory of Computing (STOC), pages 1757–1769, 2021. doi:10.1145/3406325.3451068.
14, 21, 46, 265, 267

[175] Bart M. P. Jansen and Stefan Kratsch. On polynomial kernels for structural parameterizations of
odd cycle transversal. In Parameterized and Exact Computation - 6th International Symposium,
IPEC 2011, Saarbrücken, Germany, September 6-8, 2011. Revised Selected Papers, volume
7112 of Lecture Notes in Computer Science, pages 132–144. Springer, 2011. doi:10.1007/
978-3-642-28050-4_11. 11

[176] Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130. 11, 17

[177] Tommy R Jensen and Bjarne Toft. Graph coloring problems. Wiley, 2011. doi:10.1002/
9781118032497. 18

[178] Marcin Kaminski and Naomi Nishimura. Finding an induced path of given parity in planar
graphs in polynomial time. In Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 656–670, 2012. doi:10.1137/1.9781611973099.55. 46

http://hdl.handle.net/10012/4716
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPICS.ICALP.2017.68
https://doi.org/10.4230/LIPICS.ICALP.2017.68
https://doi.org/10.4230/LIPICS.IPEC.2023.26
https://doi.org/10.1007/S00224-012-9393-4
https://doi.org/10.1007/978-3-030-86838-3_6
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1007/978-3-642-28050-4_11
https://doi.org/10.1007/978-3-642-28050-4_11
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1002/9781118032497
https://doi.org/10.1002/9781118032497
https://doi.org/10.1137/1.9781611973099.55

Bibliography 296

[179] Marcin Kamiński and Dimitrios M. Thilikos. Contraction checking in graphs on surfaces.
In Proc. of the 29th International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 14 of LIPIcs, pages 182–193, 2012. doi:10.4230/LIPIcs.STACS.2012.182.
46

[180] Iyad A. Kanj, Michael J. Pelsmajer, and Marcus Schaefer. Parameterized algorithms for
feedback vertex set. In Proc. of the 1st International Workshop on Parameterized and Exact
Computation (IWPEC), volume 3162 of Lecture Notes in Computer Science, pages 235–247.
Springer, 2004. doi:10.1007/978-3-540-28639-4_21. 11

[181] Richard M. Karp. Reducibility among combinatorial problems. In Proc. of a symposium on
the Complexity of Computer Computations, The IBM Research Symposia Series, pages 85–103.
Plenum Press, New York, 1972. doi:10.1007/978-1-4684-2001-2_9. vi, 4, 6, 114, 227

[182] Pieter W Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer arrangements
on a quadratic lattice. Physica, 27(12):1209–1225, 1961. doi:10.1016/0031-8914(61)90063-5.
262

[183] Pieter W. Kasteleyn. Graph theory and crystal physics. Graph theory and theoretical physics,
pages 43–110, 1967. 264

[184] Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. of the
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 639–648,
2009. doi:10.1109/FOCS.2009.45. 17

[185] Ken-ichi Kawarabayashi. Totally odd subdivisions and parity subdivisions: Structures and
coloring. In Proc. of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1013–1029. SIAM, 2013. doi:10.1137/1.9781611973105.73. 29

[186] Ken-ichi Kawarabayashi and Yusuke Kobayashi. The edge disjoint paths problem in Eulerian
graphs and 4-edge-connected graphs. In Proc. of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 345–353, 2010. doi:10.1137/1.9781611973075.29. 46

[187] Ken-ichi Kawarabayashi and Yusuke Kobayashi. Linear min-max relation between the treewidth
of an H -minor-free graph and its largest grid minor. Journal of Combinatorial Theory, Series
B, 141:165–180, 2020. doi:10.1016/j.jctb.2019.07.007. 61

[188] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/j.jctb.2011.07.004. 16, 45, 56, 121

[189] Ken-ichi Kawarabayashi, Stephan Kreutzer, and Bojan Mohar. Linkless and flat em-
beddings in 3-space. Discrete & Computational Geometry, 47(4):731–755, 2012. doi:
10.1007/s00454-012-9413-9. 46

[190] Ken-ichi Kawarabayashi, Zhentao Li, and Bruce A. Reed. Recognizing a Totally Odd K4-
subdivision, Parity 2-disjoint Rooted Paths and a Parity Cycle Through Specified Elements.
In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
318–328, 2010. doi:10.1137/1.9781611973075.27. 46

[191] Ken-ichi Kawarabayashi, Bojan Mohar, and Bruce A. Reed. A simpler linear time algorithm
for embedding graphs into an arbitrary surface and the genus of graphs of bounded tree-width.

https://doi.org/10.4230/LIPIcs.STACS.2012.182
https://doi.org/10.1007/978-3-540-28639-4_21
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1137/1.9781611973105.73
https://doi.org/10.1137/1.9781611973075.29
https://doi.org/10.1016/j.jctb.2019.07.007
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1007/s00454-012-9413-9
https://doi.org/10.1007/s00454-012-9413-9
https://doi.org/10.1137/1.9781611973075.27

Bibliography 297

In Proc. of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 771–780, 2008. doi:10.1109/FOCS.2008.53. 46

[192] Ken-ichi Kawarabayashi and Bruce A. Reed. An (almost) linear time algorithm for odd cyles
transversal. In Proc. of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 365–378. SIAM, 2010. doi:10.1137/1.9781611973075.31. 11, 18, 29

[193] Ken-ichi Kawarabayashi, Bruce A. Reed, and Paul Wollan. The graph minor algorithm with
parity conditions. In Proc. of the 52nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 27–36. IEEE Computer Society, 2011. doi:10.1109/FOCS.2011.52.
viii, 18, 279

[194] Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat wall
theorem. Journal of Combinatorial Theory, Series B, 129:204–238, 2018. doi:10.1016/j.
jctb.2017.09.006. 27, 43, 45, 48, 58, 63, 89, 131, 233, 238

[195] Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. Quickly excluding a non-planar
graph. CoRR, abs/2010.12397, 2021. arXiv:2010.12397. 27, 46, 48, 72, 73, 75, 78, 79, 80, 81,
86, 87, 93, 94, 274

[196] Ken-ichi Kawarabayashi and Paul Wollan. A Shorter Proof of the Graph Minor Algorithm:
The Unique Linkage Theorem. In Proc. of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 687–694, 2010. doi:10.1145/1806689.1806784. 68

[197] Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/
2797140. 17

[198] Valerie King, S. Rao, and Robert Endre Tarjan. A faster deterministic maximum flow algorithm.
Journal of Algorithms, 17(3):447–474, 1994. doi:10.1006/jagm.1994.1044. 196, 215, 219,
225

[199] Martin Knor. Characterization of minor-closed pseudosurfaces. Ars Combinatoria, 43, 1996.
URL: https://www.math.sk/knor/PREP/p009.pdf. 32, 273

[200] Yasuaki Kobayashi and Hisao Tamaki. Treedepth parameterized by vertex cover number. In
Proc. of the 11th International Symposium on Parameterized and Exact Computation (IPEC),
volume 63 of LIPIcs, pages 18:1–18:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPICS.IPEC.2016.18. 9

[201] Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. Information
Processing Letters, 114(10):556–560, 2014. doi:10.1016/j.ipl.2014.05.001. 11

[202] Tomasz Kociumaka and Marcin Pilipczuk. Deleting Vertices to Graphs of Bounded Genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7. 13, 17, 276

[203] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
Proc. of the 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
184–192, 2021. doi:10.1109/FOCS52979.2021.00026. 8, 54

https://doi.org/10.1109/FOCS.2008.53
https://doi.org/10.1137/1.9781611973075.31
https://doi.org/10.1109/FOCS.2011.52
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1016/j.jctb.2017.09.006
https://arxiv.org/abs/2010.12397
https://doi.org/10.1145/1806689.1806784
https://doi.org/10.1145/2797140
https://doi.org/10.1145/2797140
https://doi.org/10.1006/jagm.1994.1044
https://www.math.sk/knor/PREP/p009.pdf
https://doi.org/10.4230/LIPICS.IPEC.2016.18
https://doi.org/10.1016/j.ipl.2014.05.001
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1109/FOCS52979.2021.00026

Bibliography 298

[204] Tuukka Korhonen and Daniel Lokshtanov. An improved parameterized algorithm for treewidth.
In Proc. of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages 528–541.
ACM, 2023. doi:10.1145/3564246.3585245. 8, 278

[205] Tuukka Korhonen, Michal Pilipczuk, and Giannos Stamoulis. Minor containment and disjoint
paths in almost-linear time. In Proc. of the 65th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 53–61, 2024. doi:10.1109/FOCS61266.2024.00014. vii, 16,
22, 35, 121, 122, 156, 233, 238, 276

[206] Jan Kratochvíl. A special planar satisfiability problem and a consequence of its NP-completeness.
Discrete Applied Mathematics, 52(3):233–252, 1994. doi:10.1016/0166-218X(94)90143-0.
268

[207] Stefan Kratsch and Pascal Schweitzer. Isomorphism for graphs of bounded feedback vertex
set number. In Proc. of the 12th Scandinavian Symposium and Workshops on Algorithm
TheoryAlgorithm Theory (SWAT), volume 6139 of Lecture Notes in Computer Science, pages
81–92. Springer, 2010. doi:10.1007/978-3-642-13731-0_9. 11

[208] Stephan Kreutzer. Algorithmic meta-theorems. In Proc. of the 3rd International Workshop on
Parameterized and Exact Computation (IWPEC), pages 10–12. Springer, 2008. 24

[209] R. Krithika, V. K. Kutty Malu, Roohani Sharma, and Prafullkumar Tale. Parameterized
complexity of biclique contraction and balanced biclique contraction. In Proc. of the 43rd IARCS
Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 284 of LIPIcs, pages 8:1–8:18, 2023. doi:10.4230/LIPICS.FSTTCS.2023.8.
275

[210] R. Krithika, Pranabendu Misra, and Prafullkumar Tale. A single exponential-time FPT
algorithm for cactus contraction. Theoretical Computer Science, 954:113803, 2023. doi:
10.1016/J.TCS.2023.113803. 35, 129

[211] Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta mathe-
maticae, 15(1):271–283, 1930. 15

[212] Jens Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. Journal of
Algorithms, 20(1):20–44, 1996. doi:10.1006/JAGM.1996.0002. 8

[213] Jens Lagergren. Upper bounds on the size of obstructions and intertwines. Journal of
Combinatorial Theory, Series B, 73:7–40, 1998. doi:10.1006/jctb.1997.1788. 17, 191

[214] Michael Lampis. A kernel of order 2 k-c log k for vertex cover. Information Processing Letters,
111(23-24):1089–1091, 2011. doi:10.1016/J.IPL.2011.09.003. 7

[215] Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/S00453-011-9554-X. 9

[216] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4. 10, 228

[217] Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O⋆ (2.7k) time. ACM
Transactions on Algorithms, 18(4):34:1–34:26, 2022. doi:10.1145/3504027. 11

https://doi.org/10.1145/3564246.3585245
https://doi.org/10.1109/FOCS61266.2024.00014
https://doi.org/10.1016/0166-218X(94)90143-0
https://doi.org/10.1007/978-3-642-13731-0_9
https://doi.org/10.4230/LIPICS.FSTTCS.2023.8
https://doi.org/10.1016/J.TCS.2023.113803
https://doi.org/10.1016/J.TCS.2023.113803
https://doi.org/10.1006/JAGM.1996.0002
https://doi.org/10.1006/jctb.1997.1788
https://doi.org/10.1016/J.IPL.2011.09.003
https://doi.org/10.1007/S00453-011-9554-X
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1145/3504027

Bibliography 299

[218] Shaohua Li and Marcin Pilipczuk. An improved FPT algorithm for independent feedback vertex
set. Theory of Computing Systems, 64(8):1317–1330, 2020. doi:10.1007/S00224-020-09973-W.
19, 35, 130, 276

[219] Wenjun Li, Qilong Feng, Jianer Chen, and Shuai Hu. Improved kernel results for some
FPT problems based on simple observations. Theoretical Computer Science, 657:20–27, 2017.
doi:10.1016/J.TCS.2016.06.012. 35, 129, 276

[220] Wenjun Li and Binhai Zhu. A 2k -kernelization algorithm for vertex cover based on crown
decomposition. Theoretical Computer Science, 739:80–85, 2018. doi:10.1016/J.TCS.2018.
05.004. 7

[221] Carlos V. G. C. Lima, Dieter Rautenbach, Uéverton S. Souza, and Jayme Luiz Szwarcfiter.
On the computational complexity of the bipartizing matching problem. Annals of Operations
Research, 316(2):1235–1256, 2022. doi:10.1007/S10479-021-03966-9. 19, 130

[222] Carlos Vinícius G. C. Lima, Dieter Rautenbach, Uéverton S. Souza, and Jayme Luiz Szwarcfiter.
Decycling with a matching. Information Processing Letters, 124:26–29, 2017. doi:10.1016/J.
IPL.2017.04.003. 130

[223] Daniel Lokshtanov. Wheel-Free Deletion Is W[2]-Hard. In Proc. of the 3rd International
Workshop on Parameterized and Exact Computation (IWPEC), volume 5018 of LNCS, pages
141–147, 2008. doi:10.1007/978-3-540-79723-4_14. 10, 271

[224] Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
model checking to highly connected graphs. In Proceedings of the 45th International Colloquium
on Automata, Languages, and Programming, (ICALP), volume 107 of LIPIcs, pages 135:1–
135:14, 2018. doi:10.4230/LIPICS.ICALP.2018.135. 45, 231, 279, 280

[225] Daniel Lokshtanov, Saket Saurabh, and Somnath Sikdar. Simpler parameterized algorithm
for OCT. In Proc. of 20th International Workshop on Combinatorial Algorithms (IWOCA),
volume 5874 of Lecture Notes in Computer Science, pages 380–384. Springer, 2009. doi:
10.1007/978-3-642-10217-2_37. 11

[226] Konrad Majewski, Michał Pilipczuk, and Marek Sokołowski. Maintaining cmso2 properties on
dynamic structures with bounded feedback vertex number. ACM Transactions on Computation
Theory, 17(2):1–72, 2025. doi:10.1145/3715884. 11

[227] Rafael Martí, Panos M. Pardalos, and Mauricio G. C. Resende. Handbook of Heuristics.
Springer, 2018. doi:10.1007/978-3-319-07124-4. 4

[228] Dániel Marx and R. B. Sandeep. Incompressibility of H -free edge modification problems:
Towards a dichotomy. Journal of Computer and System Sciences, 125:25–58, 2022. doi:
10.1016/J.JCSS.2021.11.001. 14

[229] Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z. 17, 46, 47, 132

[230] Thomas W. Mattman and Mike Pierce. The Kn+5 and K32,1n families are obstructions to
n-apex. In Knots, links, spatial graphs, and algebraic invariants, volume 689 of Contemporary
Mathematics, pages 137–158. American Mathematical Society, 2017. doi:10.1090/conm/689.
17

https://doi.org/10.1007/S00224-020-09973-W
https://doi.org/10.1016/J.TCS.2016.06.012
https://doi.org/10.1016/J.TCS.2018.05.004
https://doi.org/10.1016/J.TCS.2018.05.004
https://doi.org/10.1007/S10479-021-03966-9
https://doi.org/10.1016/J.IPL.2017.04.003
https://doi.org/10.1016/J.IPL.2017.04.003
https://doi.org/10.1007/978-3-540-79723-4_14
https://doi.org/10.4230/LIPICS.ICALP.2018.135
https://doi.org/10.1007/978-3-642-10217-2_37
https://doi.org/10.1007/978-3-642-10217-2_37
https://doi.org/10.1145/3715884
https://doi.org/10.1007/978-3-319-07124-4
https://doi.org/10.1016/J.JCSS.2021.11.001
https://doi.org/10.1016/J.JCSS.2021.11.001
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1090/conm/689

Bibliography 300

[231] Silvio Micali and Vijay V. Vazirani. An O(
√
|V ||E|) Algorithm for Finding Maximum Matching

in General Graphs. In Proc. of the 21st Annual Symposium on Foundations of Computer
Science (FOCS), pages 17–27. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.
215

[232] Bojan Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM
Journal on Discrete Mathematics, 12(1):6–26, 1999. doi:10.1137/S089548019529248X. 144

[233] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hop-
kins series in the mathematical sciences. Johns Hopkins University Press, 2001.
URL: http://jhupbooks.press.jhu.edu/ecom/MasterServlet/GetItemDetailsHandler?
iN=9780801866890&qty=1&source=2&viewMode=3&loggedIN=false&JavaScript=y. 11, 17,
106, 133

[234] Hendrik Molter, Meirav Zehavi, and Amit Zivan. Treewidth parameterized by feedback vertex
number. CoRR, abs/2504.18302, 2025. arXiv:2504.18302. 11

[235] Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Faster parameterized
algorithms for modification problems to minor-closed classes. TheoretiCS, 3, 2024. doi:
10.46298/THEORETICS.24.19. 35, 128, 145, 276

[236] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CBO9780511814075. 4

[237] N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket Saurabh. LP can be a
cure for parameterized problems. In Proc. of the 29th International Symposium on Theoretical
Aspects of Computer Science (STACS), volume 14 of LIPIcs, pages 338–349. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPICS.STACS.2012.338. 7

[238] George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and
algorithms. Mathematical Programming, 8(1):232–248, 1975. doi:10.1007/BF01580444. 7

[239] Rian Neogi, M. S. Ramanujan, Saket Saurabh, and Roohani Sharma. On the parameterized
complexity of deletion to \(\boldsymbol{\mathcal{H}}\)-free strong components. SIAM
Journal on Discrete Mathematics, 38(4):3079–3110, 2024. doi:10.1137/23M1548591. 14

[240] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms,
volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/978-3-642-27875-4.
21

[241] Jaroslav Nesetril and Patrice Ossona de Mendez. On low tree-depth decompositions. Graphs
Comb., 31(6):1941–1963, 2015. doi:10.1007/S00373-015-1569-7. 21

[242] Rolf Niedermeier and Peter Rossmanith. Upper bounds for vertex cover further improved. In
Proc. of the 16th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
volume 1563 of Lecture Notes in Computer Science, pages 561–570. Springer, 1999. doi:
10.1007/3-540-49116-3_53. 7

[243] Rolf Niedermeier and Peter Rossmanith. On efficient fixed-parameter algorithms for weighted
vertex cover. J. Algorithms, 47(2):63–77, 2003. doi:10.1016/S0196-6774(03)00005-1. 7

https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1137/S089548019529248X
http://jhupbooks.press.jhu.edu/ecom/MasterServlet/GetItemDetailsHandler?iN=9780801866890&qty=1&source=2&viewMode=3&loggedIN=false&JavaScript=y
http://jhupbooks.press.jhu.edu/ecom/MasterServlet/GetItemDetailsHandler?iN=9780801866890&qty=1&source=2&viewMode=3&loggedIN=false&JavaScript=y
https://arxiv.org/abs/2504.18302
https://doi.org/10.46298/THEORETICS.24.19
https://doi.org/10.46298/THEORETICS.24.19
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.4230/LIPICS.STACS.2012.338
https://doi.org/10.1007/BF01580444
https://doi.org/10.1137/23M1548591
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/S00373-015-1569-7
https://doi.org/10.1007/3-540-49116-3_53
https://doi.org/10.1007/3-540-49116-3_53
https://doi.org/10.1016/S0196-6774(03)00005-1

Bibliography 301

[244] Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Parameterized counting
algorithms for general graph covering problems. In Proc. of the 9th International Workshop on
Algorithms and Data Structures (WADS), pages 99–109, 2005. doi:10.1007/11534273_10.
17

[245] Yoshio Okamoto, Ryuhei Uehara, and Takeaki Uno. Counting the number of matchings
in chordal and chordal bipartite graph classes. In Graph-Theoretic Concepts in Computer
Science, 35th International Workshop, WG 2009, Montpellier, France, June 24-26, 2009.
Revised Papers, volume 5911 of Lecture Notes in Computer Science, pages 296–307, 2009.
doi:10.1007/978-3-642-11409-0_26. 263

[246] James B. Orlin. Max flows in O(nm) time, or better. In Proc. of the 45th annual ACM
Symposium on Theory of Computing Conference (STOC), pages 765–774. ACM, 2013. doi:
10.1145/2488608.2488705. 196, 215, 219, 225

[247] Christophe Paul, Evangelos Protopapas, and Dimitrios M Thilikos. Graph Parameters,
Universal Obstructions, and WQO. CoRR, abs/2304.03688, 2023. URL: https://arxiv.org/
abs/2304.03688, arXiv:2304.03688. 120

[248] Christophe Paul, Evangelos Protopapas, and Dimitrios M. Thilikos. Universal obstructions of
graph parameters, 2023. arXiv:2304.14121. 120

[249] Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. DNA Computing - New Computing
Paradigms. Texts in Theoretical Computer Science. An EATCS Series. Springer, 1998. doi:
10.1007/978-3-662-03563-4. 4

[250] Ljubomir Perkovic and Bruce A. Reed. An improved algorithm for finding tree decompositions
of small width. International Journal of Foundations of Computer Science, 11(3):365–371,
2000. doi:10.1142/S0129054100000247. 165

[251] Fábio Protti and Uéverton S. Souza. Decycling a graph by the removal of a matching:
new algorithmic and structural aspects in some classes of graphs. Discrete Mathematics &
Theoretical Computer Science, 20(2), 2018. doi:10.23638/DMTCS-20-2-15. 19, 130

[252] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for undirected feedback vertex set. In Proc. of the 13th International Symposium
on Algorithms and Computation (ISAAC), volume 2518 of Lecture Notes in Computer Science,
pages 241–248. Springer, 2002. doi:10.1007/3-540-36136-7_22. 11

[253] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian. Faster fixed parameter tractable
algorithms for finding feedback vertex sets. ACM Transactions on Algorithms, 2(3):403–415,
2006. doi:10.1145/1159892.1159898. 11

[254] Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009. 11, 18, 198, 224

[255] Bruce A. Reed. Finding approximate separators and computing tree width quickly. In Proc.
of the 24th Annual ACM Symposium on Theory of Computing (STOC), pages 221–228. ACM,
1992. doi:10.1145/129712.129734. 8

[256] Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Proc. of the 41st International Colloquium on

https://doi.org/10.1007/11534273_10
https://doi.org/10.1007/978-3-642-11409-0_26
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://arxiv.org/abs/2304.03688
https://arxiv.org/abs/2304.03688
https://arxiv.org/abs/2304.03688
https://arxiv.org/abs/2304.14121
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1142/S0129054100000247
https://doi.org/10.23638/DMTCS-20-2-15
https://doi.org/10.1007/3-540-36136-7_22
https://doi.org/10.1145/1159892.1159898
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1145/129712.129734

Bibliography 302

Automata, Languages, and Programming (ICALP), volume 8572 of LNCS, pages 931–942, 2014.
doi:10.1007/978-3-662-43948-7_77. 21, 36, 47, 159, 174, 175, 176

[257] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. Efficiently four-
coloring planar graphs. In Proc. of the 28th Annual ACM Symposium on the Theory of
Computing (STOC), pages 571–575. ACM, 1996. doi:10.1145/237814.238005. 262

[258] Neil Robertson and Paul D. Seymour. Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39–61, 1983. doi:10.1016/0095-8956(83)90079-5. 16

[259] Neil Robertson and Paul D. Seymour. Graph minors. III. Planar tree-width. Journal of
Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)90013-3.
16, 265, 266

[260] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4. 8, 16

[261] Neil Robertson and Paul D. Seymour. Graph Minors. V. Excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(2):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.
xi, 16, 25, 26, 71, 89, 190, 191

[262] Neil Robertson and Paul D. Seymour. Graph minors. VI. Disjoint paths across a disc. Journal of
Combinatorial Theory, Series B, 41(1):115–138, 1986. doi:10.1016/0095-8956(86)90031-6.
16

[263] Neil Robertson and Paul D. Seymour. Graph minors. VII. Disjoint paths on a surface. Journal of
Combinatorial Theory, Series B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.
16

[264] Neil Robertson and Paul D. Seymour. Graph minors. IV. Tree-width and well-quasi-ordering.
Journal of Combinatorial Theory, Series B, 48(2):227–254, 1990. doi:10.1016/0095-8956(90)
90120-O. 16

[265] Neil Robertson and Paul D. Seymour. Graph minors. IX. Disjoint crossed paths. Journal
of Combinatorial Theory, Series B, 49(1):40–77, 1990. doi:10.1016/0095-8956(90)90063-6.
16, 58, 94

[266] Neil Robertson and Paul D. Seymour. Graph minors. VIII. A kuratowski theorem for general
surfaces. Journal of Combinatorial Theory, Series B, 48(2):255–288, 1990. doi:10.1016/
0095-8956(90)90121-F. 16

[267] Neil Robertson and Paul D. Seymour. Graph minors. X. Obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991. doi:10.1016/0095-8956(91)
90061-N. 16

[268] Neil Robertson and Paul D. Seymour. Excluding a graph with one crossing. In Graph structure
theory, volume 147 of Contemporary Mathematics, pages 669–675. American Mathematical
Society, 1993. doi:10.1090/conm/147. 28, 40, 71, 91, 93

[269] Neil Robertson and Paul D. Seymour. Graph Minors. XI. Circuits on a surface. Journal of
Combinatorial Theory, Series B, 60(1):72–106, 1994. doi:10.1006/JCTB.1994.1007. 16, 142

https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1145/237814.238005
https://doi.org/10.1016/0095-8956(83)90079-5
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1016/0095-8956(88)90070-6
https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(90)90120-O
https://doi.org/10.1016/0095-8956(90)90063-6
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0095-8956(90)90121-F
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1090/conm/147
https://doi.org/10.1006/JCTB.1994.1007

Bibliography 303

[270] Neil Robertson and Paul D. Seymour. Graph minors. XII. Distance on a surface. Journal of
Combinatorial Theory, Series B, 64(2):240–272, 1995. doi:10.1006/JCTB.1995.1034. 16

[271] Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.
vii, x, xiii, 8, 16, 24, 38, 43, 45, 46, 63, 88, 89, 121, 131, 132, 145, 233, 234, 238, 276

[272] Neil Robertson and Paul D. Seymour. Graph minors. XIV. Extending an embedding. Journal
of Combinatorial Theory, Series B, 65(1):23–50, 1995. doi:10.1006/JCTB.1995.1042. 16

[273] Neil Robertson and Paul D. Seymour. Graph minors. XV. Giant steps. Journal of Combinatorial
Theory, Series B, 68(1):112–148, 1996. doi:10.1006/JCTB.1996.0059. 16

[274] Neil Robertson and Paul D. Seymour. Graph minors. XVII. Taming a vortex. Journal of
Combinatorial Theory, Series B, 77(1):162–210, 1999. doi:10.1006/JCTB.1999.1919. 16

[275] Neil Robertson and Paul D. Seymour. Graph Minors. XVI. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)
00042-X. x, xi, 16, 27, 48

[276] Neil Robertson and Paul D. Seymour. Graph minors. XVIII. Tree-decompositions and
well-quasi-ordering. Journal of Combinatorial Theory, Series B, 89(1):77–108, 2003. doi:
10.1016/S0095-8956(03)00067-4. 16

[277] Neil Robertson and Paul D. Seymour. Graph minors. XIX. Well-quasi-ordering on a surface.
Journal of Combinatorial Theory, Series B, 90(2):325–385, 2004. doi:10.1016/J.JCTB.2003.
08.005. 16

[278] Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001. vii,
16, 22, 35, 53, 122

[279] Neil Robertson and Paul D. Seymour. Graph Minors. XXI. Graphs with unique linkages. Journal
of Combinatorial Theory, Series B, 99(3):583–616, 2009. doi:10.1016/j.jctb.2008.08.003.
16, 68, 121

[280] Neil Robertson and Paul D. Seymour. Graph minors. XXIII. Nash-williams’ immersion
conjecture. Journal of Combinatorial Theory, Series B, 100(2):181–205, 2010. doi:10.1016/
J.JCTB.2009.07.003. 16

[281] Neil Robertson and Paul D. Seymour. Graph Minors. XXII. Irrelevant vertices in linkage
problems. Journal of Combinatorial Theory, Series B, 102(2):530–563, 2012. doi:10.1016/j.
jctb.2007.12.007. 16, 68, 121

[282] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994. doi:10.1006/jctb.1994.
1073. 71, 142, 150

[283] Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded
treewidth graphs. Information and Computation, 281:104812, 2021. doi:10.1016/J.IC.2021.
104812. 14

https://doi.org/10.1006/JCTB.1995.1034
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1006/JCTB.1995.1042
https://doi.org/10.1006/JCTB.1996.0059
https://doi.org/10.1006/JCTB.1999.1919
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00067-4
https://doi.org/10.1016/S0095-8956(03)00067-4
https://doi.org/10.1016/J.JCTB.2003.08.005
https://doi.org/10.1016/J.JCTB.2003.08.005
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.jctb.2008.08.003
https://doi.org/10.1016/J.JCTB.2009.07.003
https://doi.org/10.1016/J.JCTB.2009.07.003
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.1016/j.jctb.2007.12.007
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1006/jctb.1994.1073
https://doi.org/10.1016/J.IC.2021.104812
https://doi.org/10.1016/J.IC.2021.104812

Bibliography 304

[284] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k -apices of minor-closed graph
classes. II. parameterized algorithms. ACM Transactions on Algorithms, 18(3):21:1–21:30,
2022. doi:10.1145/3519028. vii, xii, 17, 35, 46, 68, 127, 131, 132, 145, 165

[285] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k -apices of minor-closed graph
classes. I. Bounding the obstructions. Journal of Combinatorial Theory, Series B, 161:180–227,
2023. doi:10.1016/J.JCTB.2023.02.012. vii, 37, 46, 48, 66, 67, 68, 132, 145, 146, 147, 150,
159, 163, 191

[286] Ignasi Sau, Giannos Stamoulis, and Dimitrios M Thilikos. A more accurate view of the flat
wall theorem. Journal of Graph Theory, 107(2):263–297, 2024. doi:10.1002/jgt.23121. 43,
45, 46, 60, 62, 64, 65, 68, 131, 145, 163, 233, 238, 243

[287] Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Parameterizing the quantification
of CMSO: model checking on minor-closed graph classes. In Proc. of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3728–3742, 2025. doi:10.1137/1.
9781611978322.124. x, xii, 24, 25, 26, 35, 38, 46, 127, 128, 234, 275, 276

[288] Alexander Schrijver. Disjoint circuits of prescribed homotopies in a graph on a compact surface.
Journal of Combinatorial Theory, Series B, 51(1):127–159, 1991. doi:10.1016/0095-8956(91)
90009-9. 279

[289] Alexander Schrijver. Disjoint homotopic paths and trees in a planar graph. Discrete and
Computational Geometry, 6:527–574, 1991. doi:10.1007/BF02574704. 279

[290] Paul D. Seymour. A bound on the excluded minors for a surface, March 1994. Manuscript.
URL: https://web.math.princeton.edu/~pds/papers/surfacebound/bound.pdf. 17

[291] Ron Shamir, Roded Sharan, and Dekel Tsur. Cluster graph modification problems. Discrete
Applied Mathematics, 144(1-2):173–182, 2004. doi:10.1016/J.DAM.2004.01.007. 10

[292] Roded Sharan. Graph Modification Problems and their Applications to Genomic Research.
PhD thesis, Sackler Faculty of Exact Sciences, School of Computer Science, 2002. URL:
http://www.cs.tau.ac.il/thesis/thesis/Roded-Sharan-phd.pdf. 9

[293] Jozef Sirán and Pavol Gvozdjak. Kuratowski-type theorems do not extend to pseudosurfaces.
Journal of Combinatorial Theory, Series B, 54(2):209–212, 1992. doi:10.1016/0095-8956(92)
90052-Y. 32

[294] Arezou Soleimanfallah and Anders Yeo. A kernel of order 2k-c for vertex cover. Discrete
Mathematics, 311(10-11):892–895, 2011. doi:10.1016/J.DISC.2011.02.014. 7

[295] Stamoulis, Giannos. Logics and Algorithms for Graph Minors. PhD thesis, University of Mont-
pellier, 2023. URL: https://www.irif.fr/~stamoulis/2023_STAMOULIS_thesis_final.pdf.
24

[296] Ulrike Stege and Michael Ralph Fellows. An improved fixed parameter tractable
algorithm for vertex cover. Technical report/Departement Informatik, ETH Zürich,
318, 1999. URL: https://www.research-collection.ethz.ch/bitstream/handle/20.500.
11850/69332/eth-4359-01.pdf. 7

https://doi.org/10.1145/3519028
https://doi.org/10.1016/J.JCTB.2023.02.012
https://doi.org/10.1002/jgt.23121
https://doi.org/10.1137/1.9781611978322.124
https://doi.org/10.1137/1.9781611978322.124
https://doi.org/10.1016/0095-8956(91)90009-9
https://doi.org/10.1016/0095-8956(91)90009-9
https://doi.org/10.1007/BF02574704
https://web.math.princeton.edu/~pds/papers/surfacebound/bound.pdf
https://doi.org/10.1016/J.DAM.2004.01.007
http://www.cs.tau.ac.il/thesis/thesis/Roded-Sharan-phd.pdf
https://doi.org/10.1016/0095-8956(92)90052-Y
https://doi.org/10.1016/0095-8956(92)90052-Y
https://doi.org/10.1016/J.DISC.2011.02.014
https://www.irif.fr/~stamoulis/2023_STAMOULIS_thesis_final.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/69332/eth-4359-01.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/69332/eth-4359-01.pdf

Bibliography 305

[297] Raphael Steiner. Improved bound for improper colourings of graphs with no odd clique
minor. Combinatorics, Probability and Computing, 32(2):326–333, 2023. doi:10.1017/
S0963548322000268. 18

[298] Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect
matchings in K 5-free graphs. Theory of Computing Systems, 59(3):416–439, 2016. doi:
10.1007/S00224-015-9645-1. 263

[299] Siamak Tazari. Faster approximation schemes and parameterized algorithms on (odd-)h-minor-
free graphs. Theoretical Computer Science, 417:95–107, 2012. doi:10.1016/j.tcs.2011.09.
014. xi, 29, 201

[300] Harold NV Temperley and Michael E Fisher. Dimer problem in statistical mechanics-an exact
result. Philosophical Magazine, 6(68):1061–1063, 1961. doi:10.1080/14786436108243366.
262

[301] Dimitrios M. Thilikos. Graph minors and parameterized algorithm design. In The Multivariate
Algorithmic Revolution and Beyond - Essays Dedicated to Michael R. Fellows on the Occasion
of His 60th Birthday, volume 7370 of LNCS, pages 228–256. Springer, 2012. doi:10.1007/
978-3-642-30891-8_13. 46

[302] Dimitrios M. Thilikos and Sebastian Wiederrecht. Excluding surfaces as minors in graphs,
2023. arXiv:2306.01724v5. x, 12, 25, 29, 31, 32, 49, 72, 94, 105, 106, 107, 108, 110, 273

[303] Dimitrios M. Thilikos and Sebastian Wiederrecht. Killing a vortex. Journal of the ACM,
71(4):27:1–27:56, 2024. doi:10.1145/3664648. 72, 93, 263, 265, 274

[304] Robin Thomas. A Menger-like property of tree-width: The finite case. Journal of Combinatorial
Theory, Series B, 48(1):67–76, 1990. doi:10.1016/0095-8956(90)90130-R. 190, 191

[305] Andrew Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318–338, 2001. doi:10.1006/jctb.2000.2013. 53

[306] Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms,
6(2):32:1–32:8, 2010. doi:10.1145/1721837.1721848. 11

[307] Dekel Tsur. Faster deterministic algorithm for co-path set. Information Processing Letters,
180:106335, 2023. doi:10.1016/J.IPL.2022.106335. 35, 129, 276

[308] Leslie G. Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594,
2008. doi:10.1137/070682575. 263

[309] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe. Mathematische Annalen, 114:570–
590, 1937. doi:10.1007/BF01594196. 15

[310] Hassler Whitney. 2-isomorphic graphs. American Journal of Mathematics, 55(1):245–254, 1933.
doi:10.2307/2371127. 144

[311] David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. URL: http://www.cambridge.org/de/knowledge/isbn/
item5759340/?site_locale=de_DE. 4

https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1017/S0963548322000268
https://doi.org/10.1007/S00224-015-9645-1
https://doi.org/10.1007/S00224-015-9645-1
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1016/j.tcs.2011.09.014
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1007/978-3-642-30891-8_13
https://doi.org/10.1007/978-3-642-30891-8_13
https://arxiv.org/abs/2306.01724v5
https://doi.org/10.1145/3664648
https://doi.org/10.1016/0095-8956(90)90130-R
https://doi.org/10.1006/jctb.2000.2013
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/J.IPL.2022.106335
https://doi.org/10.1137/070682575
https://doi.org/10.1007/BF01594196
https://doi.org/10.2307/2371127
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item5759340/?site_locale=de_DE

Bibliography 306

[312] Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. Journal of Computer
and System Sciences, 93:1–10, 2018. doi:10.1016/J.JCSS.2017.11.003. 21

[313] Mihalis Yannakakis. Node- and Edge-Deletion NP-Complete Problems. In Proc. of the 10th
Annual ACM Symposium on Theory of Computing, pages 253–264, 1978. doi:10.1145/800133.
804355. 10

[314] Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM Journal on Computing,
10(2):310–327, 1981. doi:10.1137/0210022. 38, 195, 228, 278

[315] Noson S. Yanofsky. An introduction to quantum computing. In Proof, Computation and
Agency - Logic at the Crossroads, volume 352 of Synthese library, pages 145–180. Springer,
2011. doi:10.1007/978-94-007-0080-2_10. 4

[316] Dimitris Zoros. Obstructions and Algorithms for Graph Layout Problems. PhD thesis, National
and Kapodistrian University of Athens, Department of Mathematics, July 2017. URL: http:
//users.uoa.gr/~dzoros/Files/thesis.pdf. 17

https://doi.org/10.1016/J.JCSS.2017.11.003
https://doi.org/10.1145/800133.804355
https://doi.org/10.1145/800133.804355
https://doi.org/10.1137/0210022
https://doi.org/10.1007/978-94-007-0080-2_10
http://users.uoa.gr/~dzoros/Files/thesis.pdf
http://users.uoa.gr/~dzoros/Files/thesis.pdf

	I Introduction
	1 Motivation
	1.1 Vertex Cover
	1.1.1 Parameterized complexity
	1.1.2 Restricting the input

	1.2 Graph modification problems
	1.3 Target class
	1.3.1 Vertex Deletion to H
	1.3.2 Excluding forbidden patterns

	1.4 Modification
	1.5 Measure on the modulator
	1.6 Logic
	1.7 Structure theorems
	1.7.1 Excluding a graph as a minor
	1.7.2 Excluding a graph as an odd-minor

	2 Results
	2.1 Excluding edge-apex graphs
	2.2 Identification to a forest
	2.3 Bounded size modulators to minor-closedness
	2.4 Elimination distance to minor-closedness
	2.5 Odd-minors and bipartite treewidth
	2.6 Global modulators
	2.7 Papers

	3 Techniques
	3.1 Graph modification problems
	3.1.1 Flatness
	3.1.2 Flat wall theorem
	3.1.3 Irrelevant vertex technique
	3.1.4 Bounded treewidth
	3.1.5 Obligatory sets

	3.2 Structure theorem

	4 Preliminaries on graphs
	4.1 Sets and functions
	4.2 Basic concepts on graphs
	4.3 Tree decompositions
	4.4 Boundaried graphs
	4.5 Drawing on surfaces
	4.6 Flat walls
	4.6.1 Walls and subwalls
	4.6.2 Flatness pairs
	4.6.3 Canonical partitions
	4.6.4 Homogeneous walls
	4.6.5 Tight renditions

	II A structure theorem
	5 Excluding pinched spheres
	5.1 Proof structure
	5.2 The upper bound
	5.2.1 Excluding a long-jump transaction from a society
	5.2.2 From societies to a local structure theorem
	5.2.3 The global structure theorem

	5.3 The lower bound
	5.3.1 Identifications in a long-jump grid
	5.3.2 Lower bound under the presence of clique-sums

	III Towards efficiency
	6 Identification to forests
	6.1 Hardness and parameterized results
	6.1.1 Dealing with bridges
	6.1.2 NP-completeness
	6.1.3 Parameterized results for Identification to Forest

	6.2 Obstructions
	6.2.1 Bridges in the obstructions of Vk
	6.2.2 Constructing the obstructions of Fk from the obstructions of Vk

	6.3 Universal obstruction
	6.4 Relation with Contraction to H
	6.5 Identification minors

	7 Bounded size modifications to minor-closedness
	7.1 Definition of the problem, results, and applications
	7.1.1 Definition of the problem and main results
	7.1.2 Problems generated by different instantiations of L

	7.2 Overview of the techniques
	7.3 The algorithms
	7.3.1 Main ingredients
	7.3.2 The general case: proof of Theorem 7.1.5
	7.3.3 The special case of bounded genus: proof of Theorem 7.1.6

	7.4 Irrelevant vertex
	7.4.1 An auxiliary lemma
	7.4.2 Finding an irrelevant vertex in a homogeneous flat wall
	7.4.3 Irrelevant vertex in the bounded genus case

	7.5 Obligatory sets
	7.6 The case of bounded treewidth
	7.6.1 Signature
	7.6.2 Dynamic programming

	8 Elimination distance to minor-closedness
	8.1 Sketch of the algorithms
	8.2 Preliminaries
	8.2.1 F-elimination trees
	8.2.2 Bidimensionality of elimination sets

	8.3 Elimination distance to a minor-closed graph class
	8.3.1 Quickly finding a wall
	8.3.2 Description of the algorithm for Elimination Distance to exc(F)
	8.3.3 Correctness of the algorithm

	8.4 Elimination distance when excluding an apex-graph
	8.4.1 Generalization to annotated elimination distance
	8.4.2 Description of the algorithm for Elimination Distance to exc(F) when aF=1
	8.4.3 Correctness of the algorithm

	8.5 Solving Elimination Distance to exc(F) on tree decompositions
	8.5.1 Annotated trees
	8.5.2 Characteristic of a boundaried graph
	8.5.3 The procedures
	8.5.4 The algorithm
	8.5.5 Exchangeability of boundaried graphs with the same characteristic

	8.6 Bounding the obstructions of Ek(exc(F))
	8.6.1 Bounding the treewidth of an obstruction
	8.6.2 Bounding the size of an obstruction of small treewidth

	IV Towards generalization
	9 Dynamic programming for bipartite treewidth
	9.1 Overview of the dynamic programming scheme
	9.2 Equivalent definitions of odd-minors
	9.3 Bipartite treewidth
	9.4 General dynamic programming to obtain FPT-algorithms
	9.4.1 Gluing boundaried graphs
	9.4.2 Nice problems
	9.4.3 General dynamic programming scheme
	9.4.4 Generalizations

	9.5 Applications
	9.5.1 Kt-Subgraph-Cover
	9.5.2 Weighted Vertex Cover/Weighted Independent Set
	9.5.3 Odd Cycle Transversal
	9.5.4 Maximum Weighted Cut
	9.5.5 Hardness of covering problems

	10 H-planarity and beyond
	10.1 The algorithms
	10.1.1 The algorithms
	10.1.2 Outline of our technique of H-planarity (and H-planar treewidth)
	10.1.3 Changes for H-planar treedepth

	10.2 The FPTalgorithm for Hk-Planarity
	10.2.1 Flat walls
	10.2.2 An obstruction to Hk-Planarity
	10.2.3 H-compatible sphere decompositions
	10.2.4 Comparing sphere decompositions
	10.2.5 Combining sphere decompositions
	10.2.6 Proof of Theorem 10.1.4

	10.3 Planar elimination distance
	10.3.1 Finding a big leaf in H
	10.3.2 The algorithm

	10.4 H-planar treewidth
	10.4.1 Expression as a sphere decomposition
	10.4.2 The algorithm

	10.5 Applications
	10.5.1 Colourings
	10.5.2 Counting perfect matchings
	10.5.3 EPTAS for Independent Set

	10.6 Necessity of conditions

	V Conclusion and research directions
	11 Concluding remarks
	11.1 Perspectives on our structure theorem
	11.2 Open problems on identifications
	11.3 Concluding notes on bounded size modulators
	11.4 Beyond elimination distance
	11.5 Towards odd-minor-closedness
	11.6 Further research on unbounded bidimensionality modulators

