
1

Algorithms for graph modification problems:
towards generality and efficiency

Laure Morelle

Committee

Robert Ganian Reviewer
Eunjung Kim Reviewer
Archontia Giannopoulou Examiner
Petr Golovach Examiner
Frédéric Havet Examiner
Ignasi Sau Supervisor
Dimitrios M. Thilikos Supervisor

September 23rd, 2025

2

Graphs and Algorithms

Our research:

Design fast algorithms to solve computational problems.

Model of abstraction: graphs

vertex

edge

G

V (G) = set of vertices of G
E(G) = set of edges of G

3 - 1

Graph modification problems

3 - 2

Graph modification problems

Require:

3 - 3

Graph modification problems

Require:

1. A target graph class H

3 - 4

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

3 - 5

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications

3 - 6

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3 - 7

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

3 - 8

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

3 - 9

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

3 - 10

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

Input: A graph G and an integer k.
Output: Is there a modulator S of measure p at most k s.t. the graph
obtained from G after applying to S modifications from M is in H?

S S′M
∈ H

p(S) ≤ k

3 - 11

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

Input: A graph G and an integer k.
Output: Is there a modulator S of measure p at most k s.t. the graph
obtained from G after applying to S modifications from M is in H?

Vertex Cover
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S has no edges?

3 - 12

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

Input: A graph G and an integer k.
Output: Is there a modulator S of measure p at most k s.t. the graph
obtained from G after applying to S modifications from M is in H?

Vertex Cover
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S has no edges?

3 - 13

Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

Input: A graph G and an integer k.
Output: Is there a modulator S of measure p at most k s.t. the graph
obtained from G after applying to S modifications from M is in H?

Vertex Cover
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S has no edges?

4 - 1

Parameterized complexity

4 - 2

Parameterized complexity

Graph modification problems are usually NP-hard.

4 - 3

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

nb of vertices of
the input graph

4 - 4

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

→ fix a parameter k (here the measure on the modulator)

nb of vertices of
the input graph

4 - 5

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

and search for FPT algorithms

→ fix a parameter k (here the measure on the modulator)

nb of vertices of
the input graph

4 - 6

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

and search for FPT algorithms

→ fix a parameter k (here the measure on the modulator)

running in time f(k) · nO(1) for some function f

nb of vertices of
the input graph

4 - 7

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

and search for FPT algorithms

→ fix a parameter k (here the measure on the modulator)

running in time f(k) · nO(1) for some function f

nb of vertices of
the input graph

[Chen, Kanj, Jia, ’06]

There is an algorithm solving Vertex Cover in time O(1.2738k + k · n).

5 - 1

Graph modification problems = one of the most active areas of research

5 - 2

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

5 - 3

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

5 - 4

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

5 - 5

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

5 - 6

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

5 - 7

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

This thesis:

5 - 8

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

This thesis:

Between efficiency and generality:
Find meta-algorithms with an efficient running
time.

5 - 9

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

This thesis:

Between efficiency and generality:
Find meta-algorithms with an efficient running
time.

Beyond generality:
Solve problems that escape the scope of known
meta-algorithms.

5 - 10

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

This thesis:

Between efficiency and generality:
Find meta-algorithms with an efficient running
time.

Beyond generality:
Solve problems that escape the scope of known
meta-algorithms.

1. Target class
2. Set of modifications
3. Measure on the

modulator
4. Vertex identification

Organization

6

1. Target graph class H

7 - 1

Modification = vertex deletion
Measure = size of the modulator

7 - 2

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

Modification = vertex deletion
Measure = size of the modulator

7 - 3

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = forests Feedback Vertex Set
[Li, Nederlof, ’22]

solvable in time O(2.7k · n)no cycles

Modification = vertex deletion
Measure = size of the modulator

7 - 4

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = forests Feedback Vertex Set
[Li, Nederlof, ’22]

solvable in time O(2.7k · n)

H = planar graphs

no cycles

embeddable on the sphere =
can be drawn on the sphere with no edges crossing

Planarization

[Jansen, Lokshtanov, Saurabh, ’14]

solvable in time 2O(k log k) · n

Modification = vertex deletion
Measure = size of the modulator

7 - 5

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = forests Feedback Vertex Set
[Li, Nederlof, ’22]

solvable in time O(2.7k · n)

H = planar graphs

no cycles

embeddable on the sphere =
can be drawn on the sphere with no edges crossing

Planarization

[Jansen, Lokshtanov, Saurabh, ’14]

solvable in time 2O(k log k) · n

H = graphs embeddable on the surface Σ [Kociumaka, Pilipzuk, ’19]

solvable in time
2OΣ(k2 log k) · nO(1)

Modification = vertex deletion
Measure = size of the modulator

7 - 6

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = graphs embeddable on the surface Σ

sphere torus 2-torus

projective plane

Möbius strip

Klein bottle

[Kociumaka, Pilipzuk, ’19]

solvable in time
2OΣ(k2 log k) · nO(1)

Modification = vertex deletion
Measure = size of the modulator

8 - 1

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

8 - 2

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

G minor of G

edge contraction

edge deletion

vertex deletion

8 - 3

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

G minor of G

edge contraction

edge deletion

vertex deletion

If G ∈ H, then minors of G in H.

8 - 4

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

[Robertson, Seymour, ’04] + [Adler, Grohe, Kreutzer, ’08] + [Kawarabayashi,

Kobayashi, Reed, ’12]

solvable in time f(k) · n2 for some computable function f

[Sau, Stamoulis, Thilikos, ’22]

solvable in time 2polyH(k) · n3

8 - 5

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

[Robertson, Seymour, ’04] + [Adler, Grohe, Kreutzer, ’08] + [Kawarabayashi,

Kobayashi, Reed, ’12]

solvable in time f(k) · n2 for some computable function f

[Sau, Stamoulis, Thilikos, ’22]

solvable in time 2polyH(k) · n3

[Morelle, Sau, Stamoulis, Thilikos]

solvable in time 2polyH(k) · n2

8 - 6

Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

[Robertson, Seymour, ’04] + [Adler, Grohe, Kreutzer, ’08] + [Kawarabayashi,

Kobayashi, Reed, ’12]

solvable in time f(k) · n2 for some computable function f

[Sau, Stamoulis, Thilikos, ’22]

solvable in time 2polyH(k) · n3

[Morelle, Sau, Stamoulis, Thilikos]

solvable in time 2polyH(k) · n2

9 - 1

Sketch of the proof

Target graph class H

9 - 2

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

originates from [Robertson, Seymour, ’95]

9 - 3

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

Tree decomposition (T , {Bt}t∈V (T)) of G

Bt ⊆ V (G)

⋃
t∈V (T) Bt = V (G)

“bag” of t
t

9 - 4

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

Tree decomposition (T , {Bt}t∈V (T)) of G

Bt ⊆ V (G)

each edge is in a bag

⋃
t∈V (T) Bt = V (G)

“bag” of t
t

9 - 5

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

Tree decomposition (T , {Bt}t∈V (T)) of G

Bt ⊆ V (G)

each edge is in a bag

each vertex is in a
connected subtree

⋃
t∈V (T) Bt = V (G)

“bag” of t
t

9 - 6

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

Tree decomposition (T , {Bt}t∈V (T)) of G

Bt ⊆ V (G)

each edge is in a bag

each vertex is in a
connected subtree

tw(G) ≤ k:

|Bt| ≤ k + 1 ⋃
t∈V (T) Bt = V (G)

“bag” of t
t

9 - 7

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

k

tw = 1 tw = 2 tw = k

9 - 8

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

9 - 9

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

9 - 10

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

planar

= aHA

there is an “obstruction” F /∈ H:

F

9 - 11

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

planar

= aHA

there is an “obstruction” F /∈ H:

minor of

= aH

OH(1)

all edges
A

F

9 - 12

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

. . .

k + 1

A

9 - 13

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

. . .

k + 1

Ak deleted vertices of S

9 - 14

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

. . .

k + 1

Ak deleted vertices of S
contains F as a minor

9 - 15

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

. . .

k + 1

Ak deleted vertices of S
contains F as a minor

unless S ∩A ̸= ∅

9 - 16

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

unless S ∩A ̸= ∅

A

OH(
√
k)

OH(1)

k + 1 subgrids

contains F as a minor

9 - 17

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

A

then A ∩ S ̸= ∅ “obligatory set”

= aH

9 - 18

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

A

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

= aH

9 - 19

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

9 - 20

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

9 - 21

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

A wall:

9 - 22

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

A flat wall:

[figure by Dimitrios M. Thilikos]

9 - 23

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

9 - 24

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

9 - 25

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude. 2OH(tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos, ’19]

10

2. Set of modifications M

11 - 1

Measure = size of the modulator

11 - 2

Model of abstraction to represent many modifications at once?

Measure = size of the modulator

11 - 3

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H F

Measure = size of the modulator

L(H)

[Fomin, Golovach, Thilikos, ’19]

11 - 4

Model of abstraction to represent many modifications at once?

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

F ∈ H?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H F

L
S

G GS
F

Measure = size of the modulator

[Fomin, Golovach, Thilikos, ’19]

11 - 5

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

Measure = size of the modulator

[Fomin, Golovach, Thilikos, ’19]

11 - 6

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

Measure = size of the modulator

[Fomin, Golovach, Thilikos, ’19]

11 - 7

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

vertex
deletion

Measure = size of the modulator

[Fomin, Golovach, Thilikos, ’19]

11 - 8

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

vertex
deletion

Measure = size of the modulator

edge deletion edge addition
[Fomin, Golovach, Thilikos, ’19]

11 - 9

Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

vertex
deletion

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

H minor-closed

Measure = size of the modulator

edge deletion edge addition
[Fomin, Golovach, Thilikos, ’19]

11 - 10

Model of abstraction to represent many modifications at once?

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

H minor-closed

• Vertex Deletion to H
• Edge Deletion to H
• Edge Contraction to H
• Matching Deletion to H
• Matching Contraction to H
• Independent Set Deletion to H
• Connected Vertex Deletion to H
• Subgraph Complementation to H
• etc.

Measure = size of the modulator

11 - 11

Model of abstraction to represent many modifications at once?

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

H minor-closed

• Vertex Deletion to H
• Edge Deletion to H
• Edge Contraction to H
• Matching Deletion to H
• Matching Contraction to H
• Independent Set Deletion to H
• Connected Vertex Deletion to H
• Subgraph Complementation to H
• etc.

Measure = size of the modulator

12 - 1

Sketch of the proof

12 - 2

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances.

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

“irrelevant vertex”

for Vertex Deletion to H:

12 - 3

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances.

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

“irrelevant vertex”

Generalize to R-actions

for Vertex Deletion to H:

12 - 4

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances.

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

“irrelevant vertex”

Generalize to R-actions

new dynamic programming

for Vertex Deletion to H:

2OH(k2+(k+tw) log(k+tw)) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]

13 - 1

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

13 - 2

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 3

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 4

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

General case:

flat wall

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 5

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

General case:

flat wall

polyH(k)

homogeneous wall

OH(k)

irrelevant vertex

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 6

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

General case:

flat wall

polyH(k)

homogeneous wall

OH(k)

irrelevant vertex

Case of surfaces:

planar flat wall

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 7

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

General case:

flat wall

polyH(k)

homogeneous wall

OH(k)

irrelevant vertex

Case of surfaces:

planar flat wall
homogeneous

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

13 - 8

H minor-closed

[Morelle, Sau, Thilikos]

L-Replacement to HΣ is solvable in time 2OΣ(k9) · n2 for L hereditary.

Irrelevant vertex technique

General case:

flat wall

polyH(k)

homogeneous wall

OH(k)

irrelevant vertex

Case of surfaces:

planar flat wall
homogeneous

irrelevant vertex

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

HΣ = graphs embeddable on a surface Σ

14

3. Measure p on the modulator

15 - 1

S

G− S

torso(G,S)

S

Torso of a vertex set S in a graph G:

15 - 2

S

G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

Parameter p

∈ H

p() ≤ k

Torso of a vertex set S in a graph G:

15 - 3

S

G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

Parameter p

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?

∈ H

p() ≤ k

Torso of a vertex set S in a graph G:

15 - 4

S

G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

H-size → Vertex Deletion to H if H is closed under disjoint union

∈ H ∈ H ∈ H

Parameter p

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?

∈ H

p() ≤ k

Torso of a vertex set S in a graph G:

15 - 5

S

G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

H-size → Vertex Deletion to H

Parameter p

H-td → Elimination Distance to H [Bulian, Dawar, ’16]

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?

∈ H

p() ≤ k

Torso of a vertex set S in a graph G:

15 - 6

S

G− S

torso(G,S)

S

H-size → Vertex Deletion to H

H-td → Elimination Distance to H

Step 0

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 7

H-td → Elimination Distance to H

Step 1

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 8

H-td → Elimination Distance to H

Step 2

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 9

H-td → Elimination Distance to H

Step 3

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 10

H-td → Elimination Distance to H

Step 4

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 11

H-td → Elimination Distance to H

Step 4

treedepth td(G): min number of steps to remove all vertices

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component

15 - 12

S

G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

H-size → Vertex Deletion to H

Parameter p

H-td → Elimination Distance to H [Bulian, Dawar, ’16]

H-tw→ H-Treewidth [Eiben, Ganian, Hamm, Kwon, ’21]

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?

∈ H

p() ≤ k

Torso of a vertex set S in a graph G:

16 - 1

tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

H minor-closed

for each G, tw(G) ≤ td(G) ≤ size(G)

16 - 2

tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

Elimination Distance to H

H minor-closed

for each G, tw(G) ≤ td(G) ≤ size(G)

H minor-closed

[Robertson, Seymour, ’04] + [Bulian, Dawar, ’17] +
[Kawarabayashi, Kobayashi, Reed, ’12]

f(k) · n2 for some computable f

16 - 3

tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

Elimination Distance to H

[Morelle, Sau, Stamoulis, Thilikos]

22
2polyH(k)

· n2

H minor-closed

for each G, tw(G) ≤ td(G) ≤ size(G)

H minor-closed

[Robertson, Seymour, ’04] + [Bulian, Dawar, ’17] +
[Kawarabayashi, Kobayashi, Reed, ’12]

f(k) · n2 for some computable f

16 - 4

tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

Elimination Distance to H

[Morelle, Sau, Stamoulis, Thilikos]

22
2polyH(k)

· n2

H minor-closed

2polyH(k) · n3 H excludes an apex graph
as a minor

planar

for each G, tw(G) ≤ td(G) ≤ size(G)

H minor-closed

[Robertson, Seymour, ’04] + [Bulian, Dawar, ’17] +
[Kawarabayashi, Kobayashi, Reed, ’12]

f(k) · n2 for some computable f

16 - 5

tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

Elimination Distance to H

[Morelle, Sau, Stamoulis, Thilikos]

22
2polyH(k)

· n2

H minor-closed

2polyH(k) · n3 H excludes an apex graph
as a minor

planar

for each G, tw(G) ≤ td(G) ≤ size(G)

H minor-closed

[Robertson, Seymour, ’04] + [Bulian, Dawar, ’17] +
[Kawarabayashi, Kobayashi, Reed, ’12]

f(k) · n2 for some computable f

17 - 1

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

for Vertex Deletion to H:

17 - 2

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

works similarly

for Vertex Deletion to H:

17 - 3

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

works similarly

new dynamic programming 2O(k·tw+tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]

DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, ’14]

for Vertex Deletion to H:

17 - 4

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

Elimination Distance to H:
Is there a vertex set S s.t. td(torso(G,S)) ≤ k and the
components of G− S are in H?

works similarly

new dynamic programming 2O(k·tw+tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]

DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, ’14]

17 - 5

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

works similarly

new dynamic programming 2O(k·tw+tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]

DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, ’14]

17 - 6

Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

works similarly

new dynamic programming 2O(k·tw+tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]

DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, ’14]

22
2polyH(k)

· n2

18 - 1

Limit of the irrelevant vertex technique

tw

size
td

18 - 2

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

18 - 3

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw. “up to modulators of bounded tw”

18 - 4

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

18 - 5

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

18 - 6

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

18 - 7

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

bidim(G,S) = k

k

18 - 8

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

18 - 9

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

bidim(G,S) = 2

18 - 10

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

“max size of a grid
grasped by S”

18 - 11

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Any graph modification problem where:
• the modulator has bounded bidimensionality
• the target class is minor-closed
• the set of allowed modifications is expressible in CMSO logic

can be solved in time f(k) · n2, for some computable f .

18 - 12

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Any graph modification problem where:
• the modulator has bounded bidimensionality
• the target class is minor-closed
• the set of allowed modifications is expressible in CMSO logic

can be solved in time f(k) · n2, for some computable f .

variables v, e, V , E
quantifiers ∀, ∃
connectives ∧, ∨, ⇒, ¬, ∈
relations inc(·), | · | = q mod r

18 - 13

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

18 - 14

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

flat wall

18 - 15

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

flat wall

no matter how we delete/modify the
modulator

18 - 16

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

flat wall

no matter how we delete/modify the
modulator

there is a big enough subwall that is not
modified.

18 - 17

Limit of the irrelevant vertex technique

tw

size
td

[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

flat wall

no matter how we delete/modify the
modulator

there is a big enough subwall that is not
modified. false when unbounded bidimensionality

19 - 1

Breaking the limit

19 - 2

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

19 - 3

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

19 - 4

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and
decidable in time O(nc),
then H-Planarity is solvable in time
O(n4 + nc log n).

19 - 5

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and
decidable in time O(nc),
then H-Planarity is solvable in time
O(n4 + nc log n).

if G ∈ H, then G− v ∈ H

19 - 6

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and
decidable in time O(nc),
then H-Planarity is solvable in time
O(n4 + nc log n).

more general than minor-closed

19 - 7

Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and
decidable in time O(nc),
then H-Planarity is solvable in time
O(n4 + nc log n).

more general than minor-closed

→ new irrelevant vertex technique

20 - 1

Sketch of the proof

20 - 2

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

20 - 3

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

20 - 4

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

H-planar graph

S torso(G,S) planar

∈ H

20 - 5

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

H-planar graph

S torso(G,S) planar

∈ H

≤ 4

20 - 6

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

H-planar graph

S torso(G,S) planar

∈ H

≤ 4

< α(4) + 4

or
S

S

< α(4)
≥ α(4)

20 - 7

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

20 - 8

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

Guess the separator X of size ≤ 4.

X

20 - 9

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

Guess the separator X of size ≤ 4.

Check if there is a unique component D in
G−X of size ≥ α(4).

X

D

20 - 10

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

Guess the separator X of size ≤ 4.

Check if there is a unique component D in
G−X of size ≥ α(4).

X

D

Guess the set S ⊇ X in G−D and check
if the torso of S is planar and if the
components of G− S are in H.

20 - 11

Sketch of the proof

S
< α(4)

torso(G,S) planar

20 - 12

Sketch of the proof

S
< α(4)

torso(G,S) planar Small-Leaves H-Planarity

20 - 13

Sketch of the proof

S
< α(4)

torso(G,S) planar

Restate the problem

Small-Leaves H-Planarity

20 - 14

Sketch of the proof

S
< α(4)

torso(G,S) planar

Restate the problem

Small-Leaves H-Planarity

Rendition of (G,Ω)

cell

boundary ≤ 3 Ω

20 - 15

Sketch of the proof

S
< α(4)

torso(G,S) planar

Restate the problem

Small-Leaves H-Planarity

Rendition of (G,Ω)

cell

boundary ≤ 3

G is a yes-instance

⇔
G has a rendition whose cells are
H-compatible.

∈ H

Ω

X

21 - 1

Idea:

G

21 - 2

Idea:

Pick a vertex v.

G

v

21 - 3

Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

v

21 - 4

Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

Take a region G′ around v of small treewidth.

G′v

21 - 5

Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

Take a region G′ around v of small treewidth.

G′

Solve on G′. [Courcelle, ’90]

v

Rendition ρ2 of G′ whose cells are H-compatible.

21 - 6

Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

Take a region G′ around v of small treewidth.

G′

Solve on G′. [Courcelle, ’90]

v

Rendition ρ2 of G′ whose cells are H-compatible.

→ want to combine ρ1 and ρ2 into a rendition of G whose cells are H-compatible.

21 - 7

Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

Take a region G′ around v of small treewidth.

G′

Solve on G′. [Courcelle, ’90]

v

Rendition ρ2 of G′ whose cells are H-compatible.

→ want to combine ρ1 and ρ2 into a rendition of G whose cells are H-compatible.

Problem: How to glue correctly?

no “canonical rendition” of a graph

22 - 1

ground vertices

22 - 2

ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

22 - 3

ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

ground-minimal rendition:
cannot remove more vertices from the ground

22 - 4

ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

ground-minimal rendition:
cannot remove more vertices from the ground

Every cell of ground-maximal rendition is contained in a cell of a
ground-minimal rendition.

23 - 1

G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

23 - 2

G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

⇔
G has a ground-maximal rendition whose cells are H-compatible.

23 - 3

G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

⇔
G has a ground-maximal rendition whose cells are H-compatible.

flat wall

[figure by Dimitrios M. Thilikos]

23 - 4

G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

⇔
G has a ground-maximal rendition whose cells are H-compatible.

flat wall

[figure by Dimitrios M. Thilikos]

= wall + rendition

23 - 5

G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

⇔
G has a ground-maximal rendition whose cells are H-compatible.

flat wall

[figure by Dimitrios M. Thilikos]

= wall + rendition

can choose ground-minimal

24 - 1

Pick a vertex v

G

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

G′

Solve on G′. [Courcelle, ’90]

v

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

24 - 2

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

W

(or conclude).

Ground-minimal rendition ρ′ in G′.

24 - 3

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Ground-minimal rendition ρ′ in G′.

v

24 - 4

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Ground-minimal rendition ρ′ in G′. G

v

24 - 5

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Ground-minimal rendition ρ′ in G′. G

v

24 - 6

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′. G

v

24 - 7

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

v

→ can glue ρ1 and ρ2 at the boundary of R

24 - 8

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

v

→ can glue ρ1 and ρ2 at the boundary of R

24 - 9

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ can glue ρ1 and ρ2 at the boundary of R

24 - 10

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ can glue ρ1 and ρ2 at the boundary of R

24 - 11

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ replace the cells of ρ′ outside of R with cells of ρ1 (and use cells of
ρ1 outside of G′)

→ can glue ρ1 and ρ2 at the boundary of R

24 - 12

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ replace the cells of ρ′ outside of R with cells of ρ1 (and use cells of
ρ1 outside of G′)

→ can glue ρ1 and ρ2 at the boundary of R

⇒ rendition ρ of G whose cells are H-compatible.

→ replace the cells of ρ′ in R with cells of ρ2

24 - 13

Pick a vertex v

Solve recursively on G− v.

Ground-maximal rendition ρ1 of G− v whose cells
are H-compatible.

Take a region G′ around v of small treewidth.

Solve on G′. [Courcelle, ’90]

Ground-maximal rendition ρ2 of G′ whose cells are H-compatible.

Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

⇒ G is a yes-instance.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ replace the cells of ρ′ outside of R with cells of ρ1 (and use cells of
ρ1 outside of G′)

→ can glue ρ1 and ρ2 at the boundary of R

⇒ rendition ρ of G whose cells are H-compatible.

→ replace the cells of ρ′ in R with cells of ρ2

25 - 1

Going even further

tw

size
td

bidim

25 - 2

Going even further

tw

size
td

planar

bidim

25 - 3

Going even further

tw

size
td

planar

pltd

planar

H

planar

planar

pltd

[Fomin, Golovach, Morelle, Thilikos]

One can decide if H-pltd(G) ≤ k in
time Ok(n

4 + nc log n).

bidim

Graph class H
• hereditary,

• closed under disjoint union,

• CMSO-definable, and

• Vertex Deletion to H in time Ok(n
c).

Planar treedepth pltd

25 - 4

Going even further

tw

size
td

planar

pltd
pltw

bidim

Graph class H
• hereditary,

• closed under disjoint union,

• CMSO-definable, and

• Vertex Deletion to H in time Ok(n
c).

Tree decomposition (T , {Bt}t) of G

Planar treewidth pltw

either |Bt| ≤ k + 1
or the torso of Bt

is planar

T

[Fomin, Golovach, Morelle, Thilikos]

One can decide if H-pltw(G) ≤ k in
time Ok(n

4 + nc log n).

26

4. A new modification:
vertex identification

27 - 1

Vertex identification

27 - 2

Vertex identification

Size of the identification = number of vertices involved in the identification

identification of size 10

28 - 1

Why identifications?

Structure theorems meet graph modification problems

28 - 2

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

Structure theorems meet graph modification problems

28 - 3

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

Structure theorems meet graph modification problems

28 - 4

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Structure theorems meet graph modification problems

28 - 5

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes a graph
Hh as a minor.

Structure theorems meet graph modification problems

28 - 6

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes a graph
Hh as a minor.

[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:

planar

Structure theorems meet graph modification problems

28 - 7

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes a graph
Hh as a minor.

[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

Structure theorems meet graph modification problems

28 - 8

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes a graph
Hh as a minor.

[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).

Structure theorems meet graph modification problems

28 - 9

Why identifications?

[Robertson, Seymour, ’03]+[Thilikos, Wiederrecht, ’23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

h = |V (H)|

is embeddable in some surface Σh

after deleting a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes a graph
Hh as a minor.

[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).

Conversely, if G admits such a tree
decomposition, then G excludes an
edge-apex graph Hh as a minor.

Structure theorems meet graph modification problems

29

[Morelle, Sau, Thilikos]

Vertex Identification to Forests is solvable in time
O(1.2738k + k

√
log k · n).

[Morelle, Sau, Thilikos]

If H is minor-closed, then L-Replacement to H is solvable in time
2polyH(k) · n2 for L hereditary.

→ includes Vertex Identification to H

Results on identifications

30

Further research

31 - 1

Direction 1: Efficiency

31 - 2

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

31 - 3

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, Vertex Deletion to H

2k
OH(1) · n2

31 - 4

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, Vertex Deletion to H

2k
OH(1) · n2 n1+o(1)? [Korhonen, Pilipczuk, Stamoulis, ’24]

31 - 5

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, Vertex Deletion to H

2k
OH(1) · n2 n1+o(1)?

2OH(kc)?

[Korhonen, Pilipczuk, Stamoulis, ’24]

32 - 1

Direction 2: Generalization

32 - 2

Direction 2: Generalization

Graph class H hereditary, closed under disjoint union, and CMSO-definable.
Parameter p minor-monotone.

for each minor H of G, p(H) ≤ p(G)

Conjecture: If Vertex Deletion to H is FPT, then checking
H-p(G) ≤ k is also FPT.

32 - 3

Direction 2: Generalization

Graph class H hereditary, closed under disjoint union, and CMSO-definable.
Parameter p minor-monotone.

for each minor H of G, p(H) ≤ p(G)

Conjecture: If Vertex Deletion to H is FPT, then checking
H-p(G) ≤ k is also FPT.

Proved for p ∈ {td, tw}
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, ’22]

and p ∈ {pltd, pltw}
[Fomin, Golovach, Morelle, Thilikos]

→ likely to hold for any p with tw ≤ p ≤ size.

→ extension for any p?

33 - 1

Direction 3: Structure theorems

33 - 2

Direction 3: Structure theorems

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).

33 - 3

Direction 3: Structure theorems

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).

some surface Σh

?

34

Thank you!
• Faster parameterized algorithms for modification problems to minor-closed classes, with Ignasi Sau, Giannos

Stamoulis, and Dimitrios M. Thilikos. ICALP 2023, TheoretiCS 2024.

• Dynamic programming on bipartite tree decompositions, with Lars Jaffke, Ignasi Sau, and Dimitrios M. Thilikos.
IPEC 2023, submitted to a journal.

• PACE Solver Description: Touiouidth, with Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Amadeus
Reinald, and Mathis Rocton. IPEC 2023.

• A note on locating sets in twin-free graphs, with Nicolas Bousquet, Quentin Chuet, Victor Falgas-Ravry, and
Amaury Jacques. Discrete Mathematics 2025.

• On the parameterized complexity of computing good edge-labelings, with Davi de Andrade, Júlio Araújo, Ignasi
Sau, and Ana Silva. Submitted to a journal.

• Vertex identification to a forest, with Ignasi Sau and Dimitrios M. Thilikos. Discrete Mathematics 2026.

• Graph modification of bounded size to minor-closed classes as fast as vertex deletion, with Ignasi Sau and
Dimitrios M. Thilikos. ESA 2025.

• Excluding Pinched Spheres, with Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht.
Submitted to a journal.

• When does FTP become FPT?, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. WG 2025.

• Fault-Tolerant Matroid Bases, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. ESA 2025.

• H-Planarity and Parametric Extensions: when Modulators Act Globally, with Fedor V. Fomin, Petr A. Golovach,
and Dimitrios M. Thilikos. Submitted to a conference.

• Faster Algorithms for the Pre-Assignment Problem for Unique Minimum Vertex Cover, with Marthe Bonamy,
Timothé Picavet, and Alexander Scott. Submitted to a conference.

