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Graphs and Algorithms

Our research:

Design fast algorithms to solve computational problems.

Model of abstraction: graphs

G — vertex

V(G) = set of vertices of &
E(G) = set of edges of ¢
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Parameterized complexity

nb of vertices of

Graph modification problems are usually NP-hard. /the input graph

v

unlikely to be solvable in time n©

— fix a parameter k (here the measure on the modulator)

and search for FPT algorithms

k» running in time f(k) - n®W) for some function f

[Chen, Kanj, Jia, '06]
There is an algorithm solving VERTEX COVER in time O(1.2738% 4+ k- n).
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Graph modification problems = one of the most active areas of research
Goal: Solve , efficiently.
L not realistic
2 main lines of research:
Efficiency: solving a specific problem as fast as possible.
f(k)-n° improve f and/or ¢
finding a -algorithm that solves
often at the cost of its efficiency.

This thesis: Organization
Between efficiency and generality: 1. Target class
Find -algorithms with an efficient running 2 Set of modifications
time. 3. Measure on the
Beyond generality: modulator
Solve problems that escape the scope of known 4. Vertex identification
-algorithms.
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Modification = vertex deletion
Measure = size of the modulator

VERTEX DELETION TO H

Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k£ s.t. G — 5 € H?

sphere torus 2 torus
Mobius strip 0"
‘y

projective plane Klein bottle

H = graphs embeddable on the surface > ——» /[Kociumaka, Pilipzuk, "19]

solvable in time
9O0s (k*log k) | ,,O(1)
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VERTEX DELETION TO H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most £k s.t. G — 5 € H?

H = minor-closeeg\mP_th:\SS/—If (G € H, then minors of GG in H.

edge contraction

edge deletion /‘G 7 minor of (&

vertex deletion
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VERTEX DELETION TO H
Input: A graph G and an integer k.
Qutput: Is there a vertex set S of size at most k s.t. G — S5 € H7?

H = minor-closed graph class

[Robertson, Seymour, '04] + [Adler, Grohe, Kreutzer, '08] + [Kawarabayashi,
» Kobayashi, Reed, '12]
solvable in time f(k) - n? for some computable function f

__» [Sau, Stamoulis, Thilikos, '22]
solvable in time 2P (k) . ;3
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Sketch of the proof originates from [Robertson, Seymour, '95]
Win /Win strategy on the treewidth tw(() of G-
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Sketch of the proof
Win /Win strategy on the treewidth tw(() of G

If G has big treewidth:

then (G contains a big grid as a minor.

there is an “obstruction” F' ¢ H:

A = Q
A = ay I ed "
Ia all edges
minor of A
planar O(1)
\
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Sketch of the proof
Win /Win strategy on the treewidth tw(() of G-

If & has big treewidth:

then (G contains a big grid as a minor.

unless SN A # ()

zil ‘{/—contains I as a minor

A

(9%(1)1

O3 (VE)

k + 1 subgrids Z
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A flat wall:

[figure by Dimitrios M. Thilikos]
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Branching step: guess v € A s.t. v € S and recurse on (G — v,k —1).

Otherwise there is a small flow to the grid:
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Otherwise (G has small treewidth:
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Sketch of the proof
Win /Win strategy on the treewidth tw(() of G
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If G has big treewidth:

then (G contains a big grid as a minor.

If there is a big flow from a set A to the grid:
then ANS #(0  “obligatory set”
Branching step: guess v € A s.t. v € S and recurse on (G — v,k —1).

Otherwise there is a small flow to the grid:

then (& contains a “flat wall”
Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and (G — v, k) are equivalent instances. “irrelevant vertex”
Otherwise G has small treewidth:

then apply dynamic programming to conclude. 20w (twlogtw) .,
9. 95 Representative-based technique [Baste, Sau, Thilikos, "19]
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Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function £ mapping each graph H to a collection £(H) of

graphs of equal or smaller size. [Fomin, Golovach, Thilikos, '19]
edge deletion edge addition |dentification
\:2 : A_\/ L-Replacement to H
vertex v Input: A graph G and an integer k.
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Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function £ mapping each graph H to a collection £(H) of

graphs of equal or smaller size. [Fomin, Golovach, Thilikos, '19]
edge deletion edge addition |dentification
\:2 : A_\/ L-Replacement to H
vertex v Input: A graph G and an integer k.
deletion 11 ( ’¢) Question: Is there a vertex set S of
r size at most k£ and F' € L(G|S]) s.t.
- S ?
s X, /. Clr.a) €1
S
G G r,0)

H minor-closed
[Morelle, Sau, Thilikos]
L-REPLACEMENT TO H is solvable in time 2PV (%) . 2 for £ hereditary.
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Sketch of the proof for VERTEX DELETION TO H:
Win /Win strategy on the treewidth tw(() of G-

If G has big treewidth:
then G contains a big grid as a minor.
If there is a big flow from a set A to the grid:
then ANS #()  “obligatory set”
Branching step: guess v € A s.t. v € S and recurse on (G — v,k —1).
Otherwise there is a small flow to the grid:

then (G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G — v, k) are equivalent instances.  “irrelevant vertex”

Otherwise (G has small treewidth:

then apply dynamic programming to conclude.
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Win /Win strategy on the treewidth tw((G) of G:

If G has big treewidth: _ _
Generalize to R-actions

then G contains a big grid as a minor.
If there is a big flow from a set A to trlegriy‘
then ANS # ()

“obligatory set”

Branching step: guess v € A s.t. v € S and recurse on (G - v,k —1).
Otherwise there is a small flow to the grid:

then (G contains a “flat wall”
Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and (G — v, k) are equivalent instances.  “irrelevant vertex”
Otherwise G has small treewidth:

then apply dynamic programming to conclude.
S~ _» new dynamic programming

9O (K +(k+tw) log(k+tw)) |

Representative-based technique [Baste, Sau, Thilikos , '19]
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L-REPLACEMENT TO H is solvable in time 2P°# (%) . n2 for £ hereditary.

‘Hy. = graphs embeddable on a surface X
[Morelle, Sau, Thilikos]

. . . 9 .
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Irrelevant vertex technique
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L-REPLACEMENT TO H is solvable in time 2PV (%) . n2 for £ hereditary.

Hy, = graphs embeddable on a surface X
[Morelle, Sau, Thilikos]

L-REPLACEMENT TO Hs is solvable in time 205 (k%) . n2 for £ hereditary.
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Torso of a vertex set S in a graph G:

S

A

p( torso(Z,S) ) < k
Parameter p

H-p(G) = min{k | there is a vertex set S s.t. p(torso((+,S)) < k
and the components of ¢ — S are in #}
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Torso of a vertex set S in a graph G:

A

S

p( torso(Z,S) ) < k
Parameter p

H-p(G) = min{k | there is a vertex set S s.t. p(torso((+,S)) < k
and the components of ¢ — S are in #}

Graph modification problem: [nput: A graph G and an integer k.
Output: Is H-p(G) < k7
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Torso of a vertex set S in a graph G:

A

S

p( torso(Z,S) ) < k
Parameter p

H-p(G) = min{k | there is a vertex set S s.t. p(torso((+,S)) < k
and the components of ¢ — S are in #}

Graph modification problem: [nput: A graph G and an integer k.
Output: Is H-p(G) < k7

H-size — VERTEX DELETION TO H if H is closed under disjoint union

—>
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Torso of a vertex set S in a graph G:

A

S

p( torso(Z,S) ) < k
Parameter p

H-p(G) = min{k | there is a vertex set S s.t. p(torso((+,S)) < k
and the components of ¢ — S are in #}

Graph modification problem: [nput: A graph G and an integer k.
Output: Is H-p(G) < k7

H-size — VERTEX DELETION TO H

H-td — ELIMINATION DISTANCE TO H [Bulian, Dawar, '16]

15-5



Torso of a vertex set S in a graph G-

treedepth td(G):

/

Step 0

At each step, remove 1 vertex
from each component
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. Step 3

At each step, remove 1 vertex
/ from each component

H—WMINATION DISTANCE TO H [Bulian, Dawar, '16]
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Torso of a vertex set S in a graph G-

treedepth td(G):

. Step 4

At each step, remove 1 vertex
/ from each component

/H—WMINATION DISTANCE TO H [Bulian, Dawar, '16]
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Torso of a vertex set S in a graph G-

treedepth td((G): min number of steps to remove all vertices

. Step 4

/ from each component

At each step, remove 1 vertex

H—WMINATION DISTANCE TO H [Bulian, Dawar, '16]
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Torso of a vertex set S in a graph G:

A

S

p( torso(Z,S) ) < k
Parameter p

H-p(G) = min{k | there is a vertex set S s.t. p(torso((+,S)) < k
and the components of ¢ — S are in #}

Graph modification problem: [nput: A graph G and an integer k.
Output: Is H-p(G) < k7

H-size — VERTEX DELETION TO H
H-td — ELIMINATION DISTANCE TO H [Bulian, Dawar, '16]

H-tw— H-TREEWIDTH  [Eiben, Ganian, Hamm, Kwon, '21]
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for each (7, tw((G) < td(G) < size(()
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[Morelle, Sau, Stamoulis, Thilikos]
gpoly; (k) . 2  <«—— 7 minor-closed

ELIMINATION DISTANCE TO H
[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +
[Kawarabayashi, Kobayashi, Reed, '12]
f(k) - n? for some computable f
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as a minor
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VERTEX DELETION TO H

[Morelle, Sau, Stamoulis, Thilikos]
gpoly; (k) . 2  <«—— 7 minor-closed

ELIMINATION DISTANCE TO H
[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +
[Kawarabayashi, Kobayashi, Reed, '12]
f(k) - n? for some computable f
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Sketch of the proof  for VERTEX DELETION TO H:
Win /Win strategy on the treewidth tw(() of G-

If G has big treewidth:
then G contains a big grid as a minor.
If there is a big flow from a set A to the grid:
then ANS #0
Branching step: guess v € A s.t. v € S and recurse on (G — v,k —1).
Otherwise there is a small flow to the grid:

then (G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G — v, k) are equivalent instances.

Otherwise (G has small treewidth:

then apply dynamic programming to conclude.
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Win /Win strategy on the treewidth tw(() of G-

If G has big treewidth:
then G contains a big grid as a minor.
If there is a big flow from a set A to the grid:
then ANS #0
Branching step: guess v € A s.t. v € S and recurse on (G — v,k —1).
Otherwise there is a small flow to the grid:

then G contains a “flat wall” works similarly
Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and (G — v, k) are equivalent instances.
Otherwise G has small treewidth:

then apply dynamic programming to conclude.
new dynamic programming 29(ktwitwlogtw) .,
Representative-based technique [Baste, Sau, Thilikos , '19]
17 - 3 DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, '14]



ELIMINATION DISTANCE TO H:
Is there a vertex set S s.t. td(torso((+,5)) < k and the

Sketch of the proof components of ( — S are in H?
Win /Win strategy on the treewidth tw((G) of G:

If G has big treewidth:
then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:
then ANS #0

Branchingwn (G —v,k—1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall” works similarly

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G — v, k) are equivalent instances.

Otherwise (G has small treewidth:

then apply dynamic programming to conclude.

new dynamic programming 29(ktwitwlogtw) .,

Representative-based technique [Baste, Sau, Thilikos , '19]
17 - 4 DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, '14]



Sketch of the proof
Win /Win strategy on the treewidth tw((G) of G:

If G has big treewidth:
then G contains a big grid as a minor.
P ST ! I L
—themr -5

Otherwise there is a small flow to the grid:

then G contains a “flat wall” works similarly
Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and (G — v, k) are equivalent instances.
Otherwise G has small treewidth:

then apply dynamic programming to conclude.
new dynamic programming 29(ktwitwlogtw) .,
Representative-based technique [Baste, Sau, Thilikos , '19]
17 - 5 DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, '14]
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Win /Win strategy on the treewidth tw((G) of G:

If G has big treewidth:
then G contains a big grid as a minor.
P ST ! I L
—themr -5

Otherwise there is a small flow to the grid:

then G contains a “flat wall” works similarly
Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and (G — v, k) are equivalent instances.
Otherwise G has small treewidth:

then apply dynamic programming to conclude.
new dynamic programming 29(ktwitwlogtw) .,
Representative-based technique [Baste, Sau, Thilikos , '19]
17 - 6 DP for treedepth [Reidl, Rossmanith, Villaamil, Sikdar, '14]
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size > p > tw.

[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For 4 minor-closed, the irrelevant vertex technique
works for any parameter 7-p such that

“up to modulators of bounded tw"

[Sau, Stamoulis, Thilikos, '25]

For 7{ minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim(G, S) =

max treewidth of an

S-minor of (4.
bidim(G, S) = 2
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Limit of the irrelevant vertex technique

bidim

[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For 4 minor-closed, the irrelevant vertex technique

works for any parameter H-p such that
size > p >tw. up to modulators of bounded tw"

[Sau, Stamoulis, Thilikos, '25]

For 7{ minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

max treewidth of an
S-minor of (4.

“max size of a grid
grasped by S”
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works up to modulators of bounded bidimensionality.
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Any graph modification problem where:
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e the target class is minor-closed

e the set of allowed maodifications is expressible in CMSO logic
can be solved in time f(k) - n?, for some computable f.
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bidim

[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For 7 minor-closed, the irrelevant vertex technique

works for any parameter H-p such that
size > p >tw. up to modulators of bounded tw"

[Sau, Stamoulis, Thilikos, '25]

For 7{ minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

Irrelevant vertex technique requires:

/ﬂat wall

———no matter how we delete/modify the
modulator

there is a big enough subwall that is not
modified. false when unbounded bidimensionality
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Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-PLANARITY
Input: A graph .
Output: Is there a vertex set S whose torso is planar and s.t. the

connected components of G — S are in H7?

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and

decidable in time O(n°),
then H-PLANARITY is solvable in time

c X O(n* + nlogn).
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connected components of G — S are in H7?

more general than minor-closed
[Forgin, Golovach, Morelle, Thilikos]
If H is hereditary, CMSO-definable, and

decidable in time O(n°),
then H-PLANARITY is solvable in time

c X O(n* + nlogn).

19-6



Breaking the limit

How to solve a graph modification problem where the modulator has

unbounded bidimensionality?

H-PLANARITY
Input: A graph .

Output: Is there a vertex set S whose torso is planar and s.t. the

connected components of G — S are in H7?
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more general than minor-closed

[Forgin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and

decidable in time O(n°),
then H-PLANARITY is solvable in time

O(n* 4+ nclogn).
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It suffices to prove the result on («(4),4)-unbreakable graphs.
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It suffices to prove the result on
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Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]
It suffices to prove the result on («(4),4)-unbreakable graphs.

H-planar graph
' torso((=, S) planar
(a(4),4)-breakable graph ‘ ' . oy
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Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]
It suffices to prove the result on («(4),4)-unbreakable graphs.

. . -

(a(4),4)-breakable graph
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It suffices to prove the result on («(4),4)-unbreakable graphs.
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Sketch of the proof
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Sketch of the proof
[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]
It suffices to prove the result on («(4),4)-unbreakable graphs.

g <a(4)+4 Guess the separator X of size < 4.

\ Check if there is a unique component D in

“ ,, G — X of size > «a(4).

>ad) ool Guess the set S O X in ¢ — D and check
cH if the torso of S is planar and if the

components of G — S are in H.
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S Restate the problem
< a(4)
Rendition of (G, (2)
cell
boundary S?\‘

(- is a yes-instance
=

(7' has a rendition whose cells are
‘H-compatible.
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|dea:
Pick a vertex v.

Solve recursively on G — v.

Rendition o, of G — v whose cells are H-compatible.
Take a region G/ around v of small treewidth.
Solve on G’ [Courcelle, '90]

Rendition p> of G’ whose cells are 7{-compatible.

— want to combine /; and p> into a rendition of G whose cells are 7{-compatible.

Problem: How to glue correctly?

no “canonical rendition” of a graph
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ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

ground-minimal rendition:
cannot remove more vertices from the ground

Every cell of ground-maximal rendition is contained in a cell of a
ground-minimal rendition.
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(- is a yes-instance of SMALL-LEAVES H-PLANARITY
=

(- has a rendition whose cells are H-compatible.
=

(' has a ground-maximal rendition whose cells are H-compatible.

can choose ground-minimal

flat wall = wall + rendition

[figure by Dimitrios M. Thilikos] S- NITEE TR NN



Pick a vertex v

Solve recursively on G — v.
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are H-compatible.
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Ground-maximal rendition p2 of G’ whose cells are #-compatible.
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bidim

25 -3

hereditary,

closed under disjoint union,
CMSO-definable, and

VERTEX DELETION TO # in time O (n°).

[Fomin, Golovach, Morelle, Thilikos]
One can decide if H-pltd(G) < k in
time Oy (n* + nlogn).

Planar treedepth pltd

A <:> planar

€ o> (o > @ poPlanar
' © > cooPlanar

0 ©® 00 ©® 000




Going even further Graph class

e hereditary,

p|td e closed un .er Isjoint union,
p|anar o CMSO-definable, and

e VERTEX DELETION TO H in time O (n°).
bidim

[Fomin, Golovach, Morelle, Thilikos]

One can decide if H-pltw(G) < k in
time Oy (n* + nlogn).

Planar treewidth pltw

Tree decomposition (T,{B;}:) of G
T

either |By| <k +1
or the torso of By
is planar
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Vertex identification
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Vertex identification

identification of size 10

5 e

Size of the identification = number of vertices involved in the identification
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then:
VRN
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is embeddable in the projective plane
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Results on identifications

[Morelle, Sau, Thilikos]

VERTEX IDENTIFICATION TO FORESTS is solvable in time
O(1.2738" + k+/logk - n).

[Morelle, Sau, Thilikos]

If 7 is minor-closed, then L-REPLACEMENT TO H is solvable in time
opolys (k) . n2 for £ hereditary.

29
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In particular, VERTEX DELETION TO H

L9 (1)

9 n2 — plto(1)? [Korhonen, Pilipczuk, Stamoulis, '24]
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Direction 1: Efficiency
Can we improve the running time of the different algorithms?

In particular, VERTEX DELETION TO H

QkO%(l) 2 » p,1+o(1)?  [Korhonen, Pilipczuk, Stamoulis, '24]

\, 902 (k)7
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Direction 2: Generalization

Graph class H hereditary, closed under disjoint union, and CMSO-definable.
Parameter p minor-monotone.

\ for each minor H of &, p(H) < p(&)

Conjecture: If VERTEX DELETION TO # is FPT, then checking
H-p(G) < k is also FPT.

Proved for p € {td, tw} — likely to hold for any p with tw < p < size.
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, '22]
and p € {pltd, pltw} — extension for any p?

[Fomin, Golovach, Morelle, Thilikos]
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Direction 3: Structure theorems

If G excludes an edge-apex graph H as a minor,

then:
/\ planar

(- has a tree decomposition s.t.
the torso of each bag

‘ /
iIs embeddable in the projective plane

after identifying a vertex set S of
bidimensionality < f(h).
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Direction 3: Structure theorems

?
If &' excludes an e% graph H as a minor,

then:
/\ planar

(- has a tree decomposition s.t.
the torso of each bag

_ some surface Xj,

<
is embeddable in the pr@iﬁp\lane

after identifying a vertex set S of
bidimensionality < f(h).
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Thank you!
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