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Graphs and Algorithms

Our research:

Design fast algorithms to solve computational problems.

Model of abstraction: graphs

vertex

edge

G

V (G) = set of vertices of G
E(G) = set of edges of G
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Graph modification problems

Require:

1. A target graph class H ex: edgeless graphs

2. A set M of allowed graph modifications ex: vertex deletion

3. A measure p on the modulator

set of the vertices that are involved
in the modification

ex: its size

Input: A graph G and an integer k.
Output: Is there a modulator S of measure p at most k s.t. the graph
obtained from G after applying to S modifications from M is in H?

S S′M
∈ H

p(S) ≤ k
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Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time nO(1)

and search for FPT algorithms

→ fix a parameter k (here the measure on the modulator)

running in time f(k) · nO(1) for some function f

nb of vertices of
the input graph

[Chen, Kanj, Jia, ’06]

There is an algorithm solving Vertex Cover in time O(1.2738k + k · n).
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Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

f(k) · nc improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once

often at the cost of its efficiency.

This thesis:

Between efficiency and generality:
Find meta-algorithms with an efficient running
time.

Beyond generality:
Solve problems that escape the scope of known
meta-algorithms.

1. Target class
2. Set of modifications
3. Measure on the

modulator
4. Vertex identification

Organization
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Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = graphs embeddable on the surface Σ

sphere torus 2-torus

projective plane

Möbius strip

Klein bottle

[Kociumaka, Pilipzuk, ’19]

solvable in time
2OΣ(k2 log k) · nO(1)

Modification = vertex deletion
Measure = size of the modulator
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Target graph class H

Vertex Deletion to H
Input: A graph G and an integer k.
Output: Is there a vertex set S of size at most k s.t. G− S ∈ H?

H = minor-closed graph class

G minor of G

edge contraction

edge deletion

vertex deletion

If G ∈ H, then minors of G in H.
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

originates from [Robertson, Seymour, ’95]
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

Tree decomposition (T , {Bt}t∈V (T )) of G

Bt ⊆ V (G)

each edge is in a bag

each vertex is in a
connected subtree

tw(G) ≤ k:

|Bt| ≤ k + 1 ⋃
t∈V (T ) Bt = V (G)

“bag” of t
t
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

k

tw = 1 tw = 2 tw = k
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

planar

= aHA

there is an “obstruction” F /∈ H:

minor of

= aH

OH(1)

all edges
A

F
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

. . .

k + 1

Ak deleted vertices of S
contains F as a minor

unless S ∩A ̸= ∅
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

unless S ∩A ̸= ∅

A

OH(
√
k)

OH(1)

k + 1 subgrids

contains F as a minor
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

A

then A ∩ S ̸= ∅ “obligatory set”

= aH
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then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

= aH
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

A flat wall:

[figure by Dimitrios M. Thilikos]



9 - 23

Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”
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A < aH

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”
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Sketch of the proof

Target graph class H

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

A < aH

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude. 2OH(tw log tw) · n
Representative-based technique [Baste, Sau, Thilikos, ’19]
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Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H F

Measure = size of the modulator

L(H)

[Fomin, Golovach, Thilikos, ’19]
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Model of abstraction to represent many modifications at once?

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

F ∈ H?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H F

L
S

G GS
F

Measure = size of the modulator

[Fomin, Golovach, Thilikos, ’19]
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H

L
S
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L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
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(F, ϕ)

GS
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[Fomin, Golovach, Thilikos, ’19]
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R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

vertex
deletion

Measure = size of the modulator

edge deletion edge addition
[Fomin, Golovach, Thilikos, ’19]
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Model of abstraction to represent many modifications at once?

R-action: function L mapping each graph H to a collection L(H) of
graphs of equal or smaller size.

L

H

L
S

G

L-Replacement to H
Input: A graph G and an integer k.
Question: Is there a vertex set S of
size at most k and F ∈ L(G[S]) s.t.
GS

(F,ϕ) ∈ H?

(F, ϕ)

GS
(F,ϕ)

identification

vertex
deletion

[Morelle, Sau, Thilikos]

L-Replacement to H is solvable in time 2polyH(k) · n2 for L hereditary.

H minor-closed

Measure = size of the modulator

edge deletion edge addition
[Fomin, Golovach, Thilikos, ’19]
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If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances.

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

“irrelevant vertex”

Generalize to R-actions

new dynamic programming

for Vertex Deletion to H:

2OH(k2+(k+tw) log(k+tw)) · n
Representative-based technique [Baste, Sau, Thilikos , ’19]
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3. Measure p on the modulator
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Torso of a vertex set S in a graph G:
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S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

Parameter p

∈ H

p( ) ≤ k

Torso of a vertex set S in a graph G:
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torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

H-size → Vertex Deletion to H if H is closed under disjoint union

∈ H ∈ H ∈ H

Parameter p

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?
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Torso of a vertex set S in a graph G:
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G− S

torso(G,S)

S

H-size → Vertex Deletion to H

H-td → Elimination Distance to H

Step 0

treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component
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treedepth td(G):

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
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H-td → Elimination Distance to H

Step 4

treedepth td(G): min number of steps to remove all vertices

[Bulian, Dawar, ’16]

Torso of a vertex set S in a graph G:

At each step, remove 1 vertex
from each component
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G− S

torso(G,S)

S

H-p(G) = min{k | there is a vertex set S s.t. p(torso(G,S)) ≤ k

and the components of G− S are in H}

H-size → Vertex Deletion to H

Parameter p

H-td → Elimination Distance to H [Bulian, Dawar, ’16]

H-tw→ H-Treewidth [Eiben, Ganian, Hamm, Kwon, ’21]

Graph modification problem: Input: A graph G and an integer k.
Output: Is H-p(G) ≤ k?

∈ H

p( ) ≤ k

Torso of a vertex set S in a graph G:
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tw

size Vertex Deletion to H
[Morelle, Sau, Stamoulis, Thilikos]

2polyH(k) · n2

td

H minor-closed

for each G, tw(G) ≤ td(G) ≤ size(G)
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[Morelle, Sau, Stamoulis, Thilikos]
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td

Elimination Distance to H

H minor-closed

for each G, tw(G) ≤ td(G) ≤ size(G)

H minor-closed

[Robertson, Seymour, ’04] + [Bulian, Dawar, ’17] +
[Kawarabayashi, Kobayashi, Reed, ’12]

f(k) · n2 for some computable f
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Sketch of the proof

Win/Win strategy on the treewidth tw(G) of G:

If G has big treewidth:

then G contains a big grid as a minor.

If there is a big flow from a set A to the grid:

then A ∩ S ̸= ∅ “obligatory set”

Branching step: guess v ∈ A s.t. v ∈ S and recurse on (G− v, k − 1).

Otherwise there is a small flow to the grid:

then G contains a “flat wall”

Irrelevant vertex technique: there is a vertex v in the wall s.t.
(G, k) and (G− v, k) are equivalent instances. “irrelevant vertex”

Otherwise G has small treewidth:

then apply dynamic programming to conclude.

for Vertex Deletion to H:
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Limit of the irrelevant vertex technique
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For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.
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bidim(G,S) = 2
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tw

size
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[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

bidim(G,S) =
max treewidth of an
S-minor of G.

“max size of a grid
grasped by S”
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can be solved in time f(k) · n2, for some computable f .
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For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Any graph modification problem where:
• the modulator has bounded bidimensionality
• the target class is minor-closed
• the set of allowed modifications is expressible in CMSO logic

can be solved in time f(k) · n2, for some computable f .

variables v, e, V , E
quantifiers ∀, ∃
connectives ∧, ∨, ⇒, ¬, ∈
relations inc(·), | · | = q mod r
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Limit of the irrelevant vertex technique

tw

size
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[Fomin, Golovach, Sau, Stamoulis, Thilikos, ’23]

For H minor-closed, the irrelevant vertex technique
works for any parameter H-p such that
size ≥ p ≥ tw.

[Sau, Stamoulis, Thilikos, ’25]

“up to modulators of bounded tw”

For H minor-closed, the irrelevant vertex technique
works up to modulators of bounded bidimensionality.

bidim

Irrelevant vertex technique requires:

flat wall

no matter how we delete/modify the
modulator

there is a big enough subwall that is not
modified. false when unbounded bidimensionality
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Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?
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Breaking the limit

How to solve a graph modification problem where the modulator has
unbounded bidimensionality?

H-Planarity
Input: A graph G.
Output: Is there a vertex set S whose torso is planar and s.t. the
connected components of G− S are in H?

S

∈ H
∈ H

∈ H

∈ H

[Fomin, Golovach, Morelle, Thilikos]

If H is hereditary, CMSO-definable, and
decidable in time O(nc),
then H-Planarity is solvable in time
O(n4 + nc log n).

more general than minor-closed

→ new irrelevant vertex technique
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It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

H-planar graph

S torso(G,S) planar

∈ H

≤ 4
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Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

≤ 4≥ α(4) ≥ α(4)

(α(4), 4)-breakable graph

H-planar graph

S torso(G,S) planar

∈ H

≤ 4

< α(4) + 4

or
S

S

< α(4)
≥ α(4)
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It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

Guess the separator X of size ≤ 4.

Check if there is a unique component D in
G−X of size ≥ α(4).

X
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Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, ’18]

It suffices to prove the result on (α(4), 4)-unbreakable graphs.

< α(4) + 4

≥ α(4)

S

∈ H

Guess the separator X of size ≤ 4.

Check if there is a unique component D in
G−X of size ≥ α(4).

X

D

Guess the set S ⊇ X in G−D and check
if the torso of S is planar and if the
components of G− S are in H.
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Sketch of the proof

S
< α(4)

torso(G,S) planar

Restate the problem

Small-Leaves H-Planarity

Rendition of (G,Ω)

cell

boundary ≤ 3

G is a yes-instance

⇔
G has a rendition whose cells are
H-compatible.

∈ H

Ω

X
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Idea:

Pick a vertex v.

G

Solve recursively on G− v.

Rendition ρ1 of G− v whose cells are H-compatible.

Take a region G′ around v of small treewidth.

G′

Solve on G′. [Courcelle, ’90]

v

Rendition ρ2 of G′ whose cells are H-compatible.

→ want to combine ρ1 and ρ2 into a rendition of G whose cells are H-compatible.

Problem: How to glue correctly?

no “canonical rendition” of a graph
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ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

ground-minimal rendition:
cannot remove more vertices from the ground

Every cell of ground-maximal rendition is contained in a cell of a
ground-minimal rendition.
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G is a yes-instance of Small-Leaves H-Planarity

⇔
G has a rendition whose cells are H-compatible.

∈ H

⇔
G has a ground-maximal rendition whose cells are H-compatible.

flat wall

[figure by Dimitrios M. Thilikos]

= wall + rendition

can choose ground-minimal
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Find a flat wall W in G whose interior G′ has bounded treewidth

Win the center of W .

(or conclude).

Take a region R of cells of ρ′ around v in W .

Ground-minimal rendition ρ′ in G′.

⇒ G is a yes-instance.

Each cell of ρ1 and ρ2 is contained in a cell of ρ′.

G

→ replace the cells of ρ′ in R with cells of ρ2

v

→ replace the cells of ρ′ outside of R with cells of ρ1 (and use cells of
ρ1 outside of G′)

→ can glue ρ1 and ρ2 at the boundary of R
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Going even further

tw

size
td

planar

pltd
pltw

bidim

Graph class H
• hereditary,

• closed under disjoint union,

• CMSO-definable, and

• Vertex Deletion to H in time Ok(n
c).

Tree decomposition (T , {Bt}t) of G

Planar treewidth pltw

either |Bt| ≤ k + 1
or the torso of Bt

is planar

T

[Fomin, Golovach, Morelle, Thilikos]

One can decide if H-pltw(G) ≤ k in
time Ok(n

4 + nc log n).
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4. A new modification:
vertex identification
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Vertex identification

Size of the identification = number of vertices involved in the identification

identification of size 10
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then:
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after identifying a vertex set S of
bidimensionality ≤ f(h).
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[Morelle, Sau, Thilikos]

Vertex Identification to Forests is solvable in time
O(1.2738k + k

√
log k · n).

[Morelle, Sau, Thilikos]

If H is minor-closed, then L-Replacement to H is solvable in time
2polyH(k) · n2 for L hereditary.

→ includes Vertex Identification to H

Results on identifications
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Further research
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Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, Vertex Deletion to H

2k
OH(1) · n2 n1+o(1)?

2OH(kc)?

[Korhonen, Pilipczuk, Stamoulis, ’24]
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Direction 2: Generalization

Graph class H hereditary, closed under disjoint union, and CMSO-definable.
Parameter p minor-monotone.

for each minor H of G, p(H) ≤ p(G)

Conjecture: If Vertex Deletion to H is FPT, then checking
H-p(G) ≤ k is also FPT.

Proved for p ∈ {td, tw}
[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, ’22]

and p ∈ {pltd, pltw}
[Fomin, Golovach, Morelle, Thilikos]

→ likely to hold for any p with tw ≤ p ≤ size.

→ extension for any p?
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Direction 3: Structure theorems

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).
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Direction 3: Structure theorems

If G excludes an edge-apex graph H as a minor,
then:

planar

G has a tree decomposition s.t.
the torso of each bag

is embeddable in the projective plane

after identifying a vertex set S of
bidimensionality ≤ f(h).

some surface Σh

?
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Thank you!
• Faster parameterized algorithms for modification problems to minor-closed classes, with Ignasi Sau, Giannos

Stamoulis, and Dimitrios M. Thilikos. ICALP 2023, TheoretiCS 2024.

• Dynamic programming on bipartite tree decompositions, with Lars Jaffke, Ignasi Sau, and Dimitrios M. Thilikos.
IPEC 2023, submitted to a journal.

• PACE Solver Description: Touiouidth, with Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Amadeus
Reinald, and Mathis Rocton. IPEC 2023.

• A note on locating sets in twin-free graphs, with Nicolas Bousquet, Quentin Chuet, Victor Falgas-Ravry, and
Amaury Jacques. Discrete Mathematics 2025.

• On the parameterized complexity of computing good edge-labelings, with Davi de Andrade, Júlio Araújo, Ignasi
Sau, and Ana Silva. Submitted to a journal.

• Vertex identification to a forest, with Ignasi Sau and Dimitrios M. Thilikos. Discrete Mathematics 2026.

• Graph modification of bounded size to minor-closed classes as fast as vertex deletion, with Ignasi Sau and
Dimitrios M. Thilikos. ESA 2025.

• Excluding Pinched Spheres, with Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht.
Submitted to a journal.

• When does FTP become FPT?, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. WG 2025.

• Fault-Tolerant Matroid Bases, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. ESA 2025.

• H-Planarity and Parametric Extensions: when Modulators Act Globally, with Fedor V. Fomin, Petr A. Golovach,
and Dimitrios M. Thilikos. Submitted to a conference.

• Faster Algorithms for the Pre-Assignment Problem for Unique Minimum Vertex Cover, with Marthe Bonamy,
Timothé Picavet, and Alexander Scott. Submitted to a conference.


