

Algorithms for graph modification problems: towards generality and efficiency

Laure Morelle

September 23rd, 2025

Committee

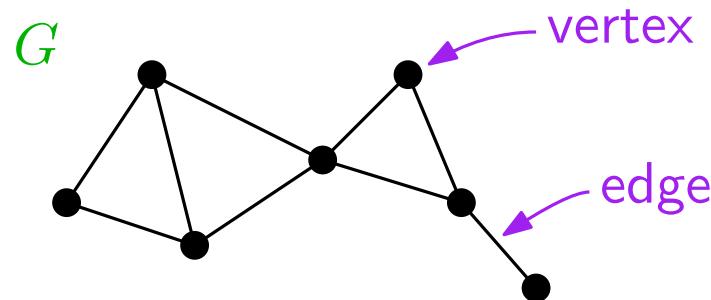
Robert Ganian	Reviewer
Eunjung Kim	Reviewer
Archontia Giannopoulou	Examiner
Petr Golovach	Examiner
Frédéric Havet	Examiner
Ignasi Sau	Supervisor
Dimitrios M. Thilikos	Supervisor

Graphs and Algorithms

Our research:

Design fast **algorithms** to solve **computational** problems.

Model of abstraction: **graphs**



$V(G)$ = set of vertices of G

$E(G)$ = set of edges of G

Graph modification problems

Graph modification problems

Require:

Graph modification problems

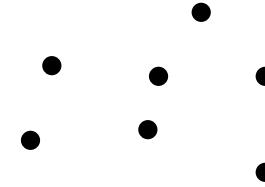
Require:

1. A **target graph class** \mathcal{H}

Graph modification problems

Require:

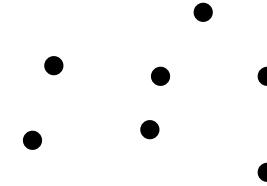
1. A **target graph class \mathcal{H}** ex: edgeless graphs



Graph modification problems

Require:

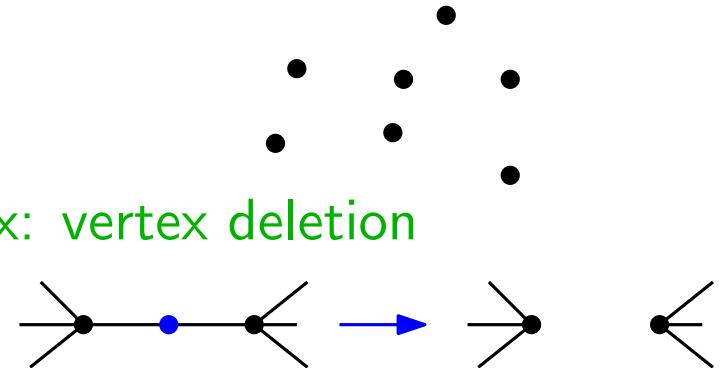
1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications**



Graph modification problems

Require:

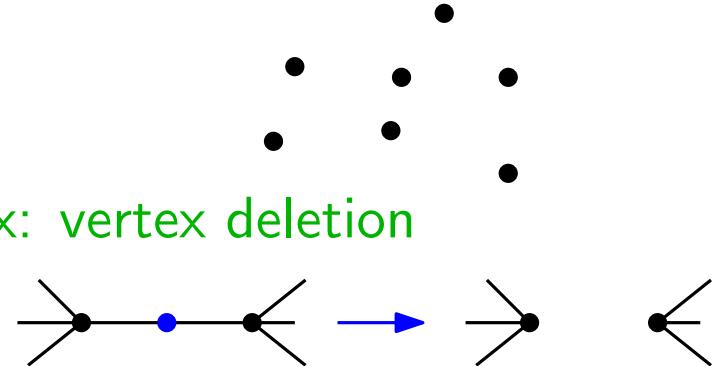
1. A **target graph class \mathcal{H}** ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion



Graph modification problems

Require:

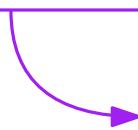
1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator

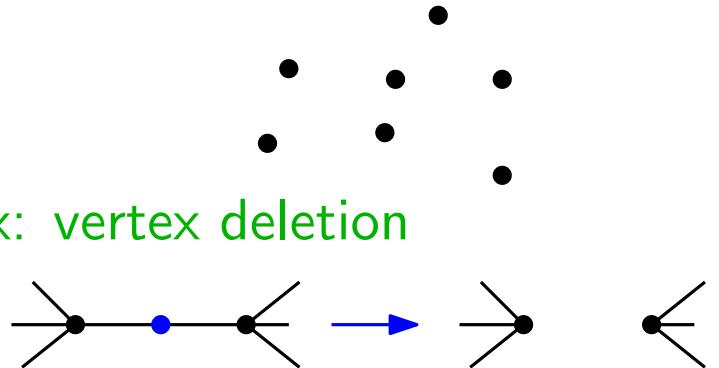


Graph modification problems

Require:

1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator

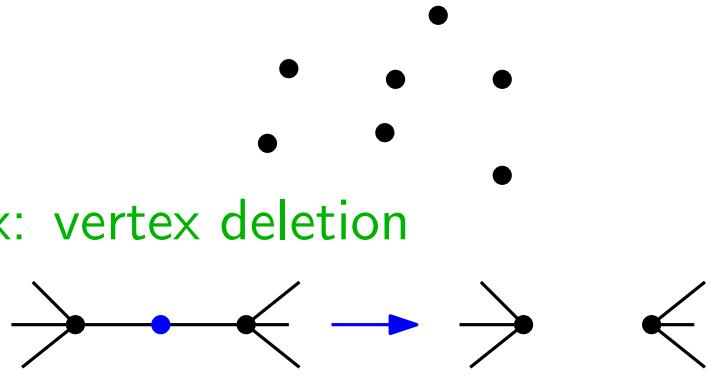
 set of the **vertices** that are involved in the **modification**



Graph modification problems

Require:

1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator ex: its size

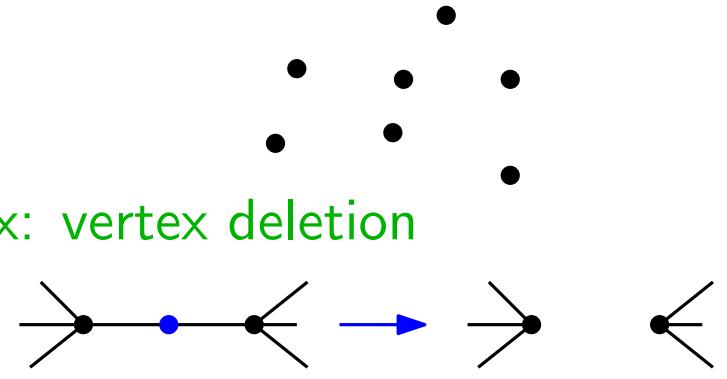


set of the vertices that are involved in the modification

Graph modification problems

Require:

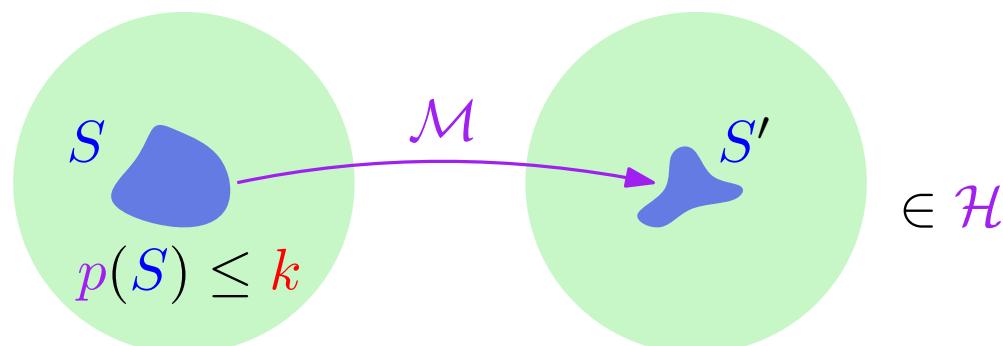
1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator ex: its size



set of the vertices that are involved in the modification

Input: A graph G and an integer k .

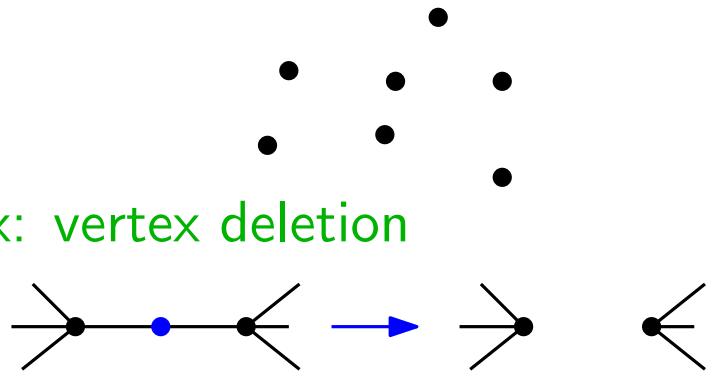
Output: Is there a modulator S of measure p at most k s.t. the graph obtained from G after applying to S modifications from \mathcal{M} is in \mathcal{H} ?



Graph modification problems

Require:

1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator ex: its size



set of the **vertices** that are involved
in the **modification**

Input: A graph G and an integer k .

Output: Is there a modulator S of measure p at most k s.t. the graph obtained from G after applying to S modifications from \mathcal{M} is in \mathcal{H} ?

VERTEX COVER

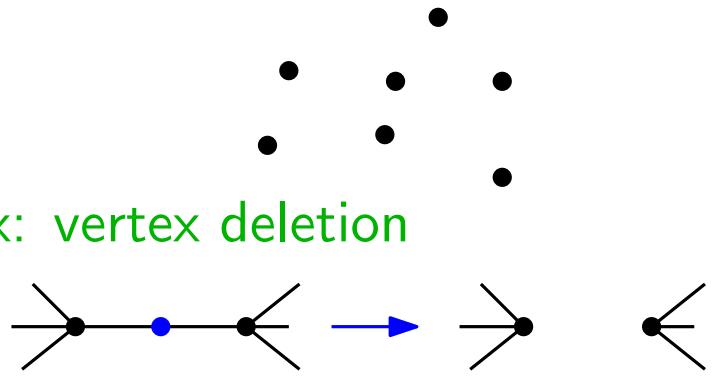
Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S$ has no edges?

Graph modification problems

Require:

1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator ex: its size

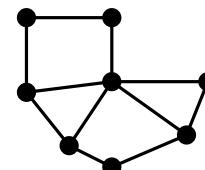


set of the **vertices** that are involved in the **modification**

Input: A graph G and an integer k .

Output: Is there a modulator S of measure p at most k s.t. the graph obtained from G after applying to S modifications from \mathcal{M} is in \mathcal{H} ?

VERTEX COVER



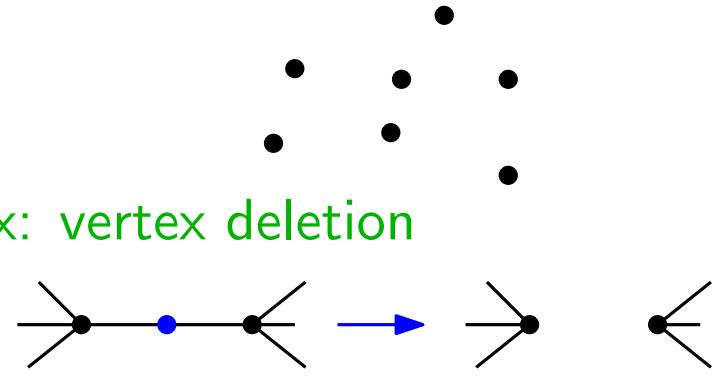
Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S$ has no edges?

Graph modification problems

Require:

1. A **target graph class** \mathcal{H} ex: edgeless graphs
2. A set \mathcal{M} of allowed **graph modifications** ex: vertex deletion
3. A **measure** p on the modulator ex: its size



set of the **vertices** that are involved in the **modification**

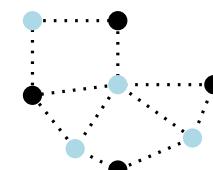
Input: A graph G and an integer k .

Output: Is there a modulator S of measure p at most k s.t. the graph obtained from G after applying to S modifications from \mathcal{M} is in \mathcal{H} ?

VERTEX COVER

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S$ has no edges?



Parameterized complexity

Parameterized complexity

Graph modification problems are usually **NP-hard**.

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time $n^{\mathcal{O}(1)}$

nb of vertices of
the input graph

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time $n^{\mathcal{O}(1)}$

nb of vertices of
the input graph

→ fix a parameter k (here the measure on the modulator)

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time $n^{\mathcal{O}(1)}$

→ fix a parameter k (here the measure on the modulator)

and search for **FPT algorithms**

nb of vertices of
the input graph

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time $n^{\mathcal{O}(1)}$

→ fix a parameter k (here the measure on the modulator)

and search for FPT algorithms

running in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Parameterized complexity

Graph modification problems are usually NP-hard.

unlikely to be solvable in time $n^{\mathcal{O}(1)}$

→ fix a parameter k (here the measure on the modulator)

and search for FPT algorithms

running in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

[Chen, Kanj, Jia, '06]

There is an algorithm solving VERTEX COVER in time $\mathcal{O}(1.2738^k + k \cdot n)$.

Graph modification problems = one of the most active areas of research

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(\mathbf{k}) \cdot n^c$ improve f and/or c

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(k) \cdot n^c$ improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once often at the cost of its efficiency.

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(k) \cdot n^c$ improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once often at the cost of its efficiency.

This thesis:

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(k) \cdot n^c$ improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once often at the cost of its efficiency.

This thesis:

Between efficiency and generality:

Find meta-algorithms with an efficient running time.

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(k) \cdot n^c$ improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once often at the cost of its efficiency.

This thesis:

Between efficiency and generality:

Find meta-algorithms with an efficient running time.

Beyond generality:

Solve problems that escape the scope of known meta-algorithms.

Graph modification problems = one of the most active areas of research

Goal: Solve everything, efficiently.

↳ not realistic

2 main lines of research:

Efficiency: solving a specific problem as fast as possible.

$f(k) \cdot n^c$ improve f and/or c

Generality: finding a meta-algorithm that solves many problems at once often at the cost of its efficiency.

This thesis:

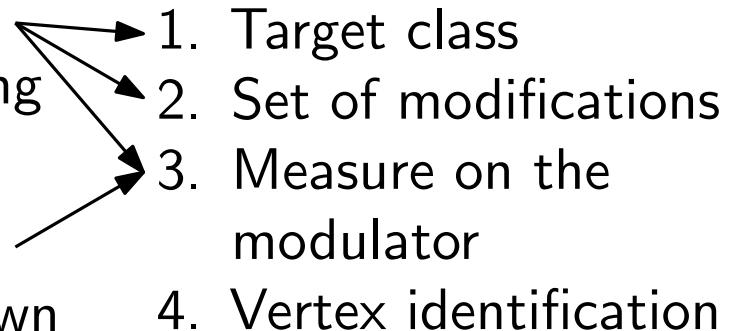
Between efficiency and generality:

Find meta-algorithms with an efficient running time.

Beyond generality:

Solve problems that escape the scope of known meta-algorithms.

Organization



1. Target class
2. Set of modifications
3. Measure on the modulator
4. Vertex identification

1. Target graph class \mathcal{H}

Modification = vertex deletion

Measure = size of the modulator

Modification = vertex deletion

Measure = size of the modulator

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

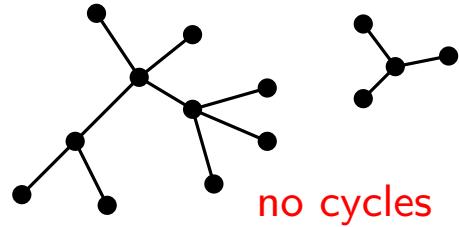
Modification = vertex deletion
Measure = size of the modulator

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = forests



FEEDBACK VERTEX SET

[Li, Nederlof, '22]

solvable in time $\mathcal{O}(2.7^k \cdot n)$

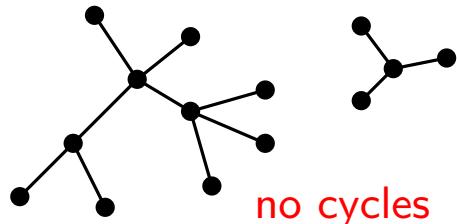
Modification = vertex deletion
Measure = size of the modulator

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = forests



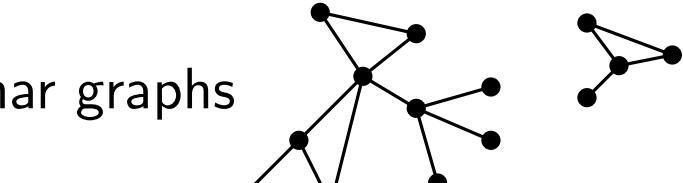
FEEDBACK VERTEX SET

[Li, Nederlof, '22]

solvable in time $\mathcal{O}(2.7^k \cdot n)$

\cap

\mathcal{H} = planar graphs



embeddable on the sphere =

can be drawn on the sphere with no edges crossing

PLANARIZATION

[Jansen, Lokshtanov, Saurabh, '14]

solvable in time $2^{\mathcal{O}(k \log k)} \cdot n$

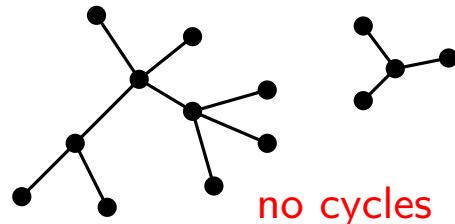
Modification = vertex deletion
 Measure = size of the modulator

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = forests

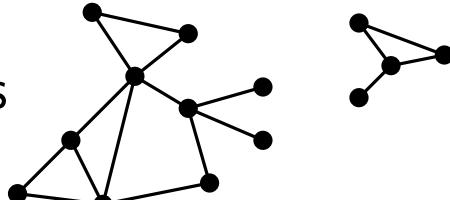


FEEDBACK VERTEX SET

[Li, Nederlof, '22]

solvable in time $\mathcal{O}(2.7^k \cdot n)$

\mathcal{H} = planar graphs



PLANARIZATION

[Jansen, Lokshtanov, Saurabh, '14]

solvable in time $2^{\mathcal{O}(k \log k)} \cdot n$

\mathcal{H} = graphs embeddable on the surface Σ

[Kociumaka, Pilipczuk, '19]

solvable in time

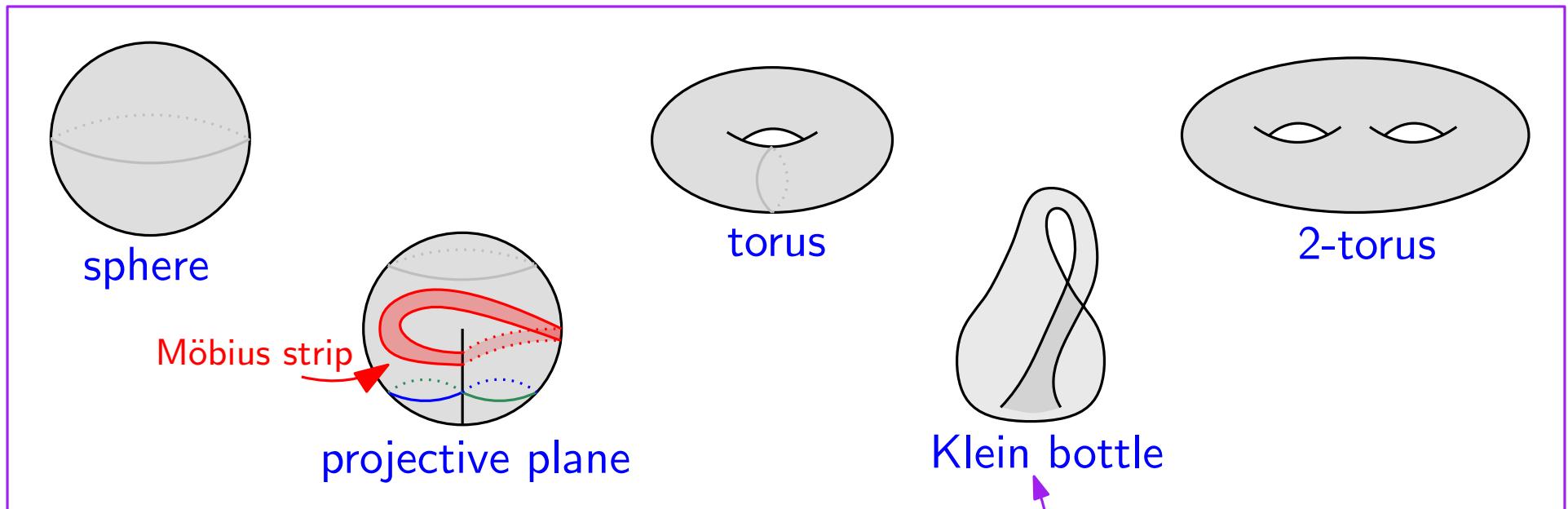
$2^{\mathcal{O}_\Sigma(k^2 \log k)} \cdot n^{\mathcal{O}(1)}$

Modification = vertex deletion
Measure = size of the modulator

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?



\mathcal{H} = graphs embeddable on the surface Σ

[Kociumaka, Pilipzuk, '19]

solvable in time

$2^{\mathcal{O}_\Sigma(k^2 \log k)} \cdot n^{\mathcal{O}(1)}$

Target graph class \mathcal{H}

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = **minor-closed** graph class

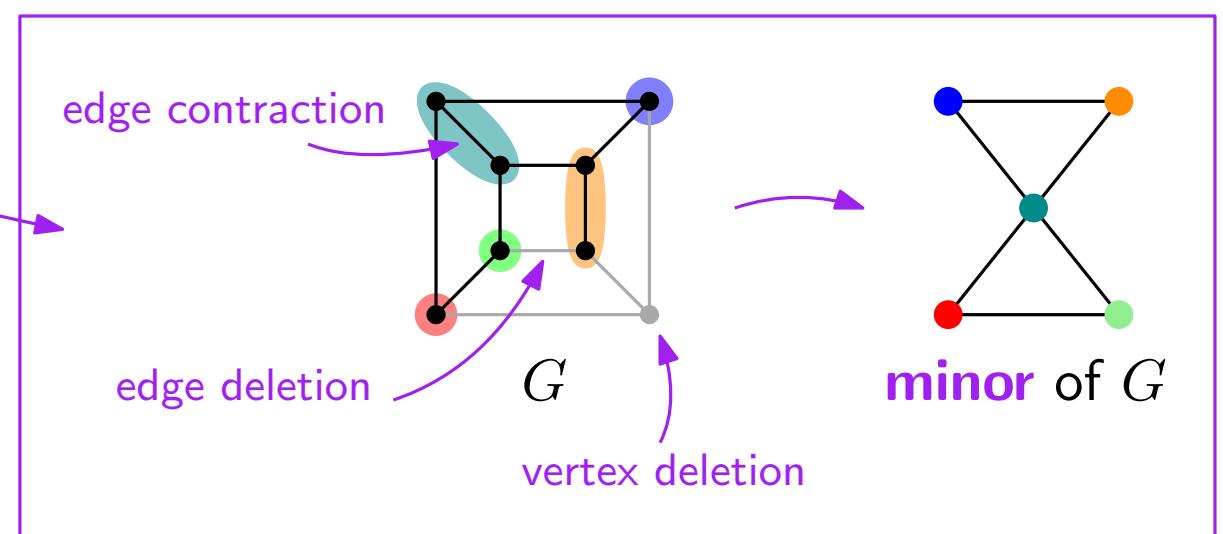
Target graph class \mathcal{H}

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = minor-closed graph class



Target graph class \mathcal{H}

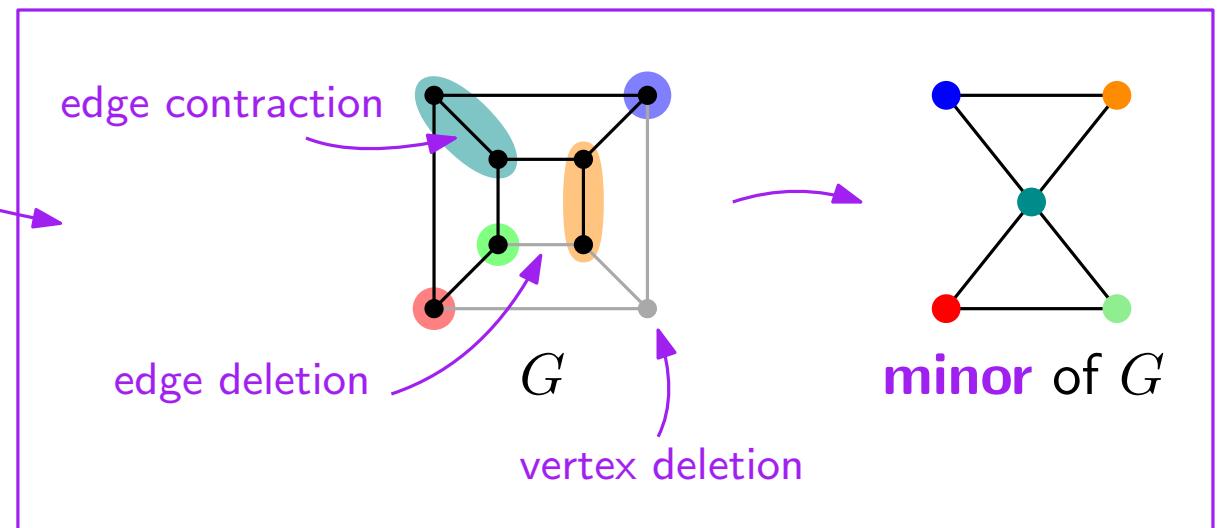
VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = minor-closed graph class

If $G \in \mathcal{H}$, then minors of G in \mathcal{H} .



Target graph class \mathcal{H}

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = **minor-closed** graph class

- [Robertson, Seymour, '04] + [Adler, Grohe, Kreutzer, '08] + [Kawarabayashi, Kobayashi, Reed, '12]
solvable in time $f(k) \cdot n^2$ for some computable function f
- [Sau, Stamoulis, Thilikos, '22]
solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^3$

Target graph class \mathcal{H}

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = **minor-closed** graph class

- [Robertson, Seymour, '04] + [Adler, Grohe, Kreutzer, '08] + [Kawarabayashi, '12] → solvable in time $f(k) \cdot n^2$ for some computable function f
- [Sau, Stamoulis, Thilikos, '22] solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^3$
- [Morelle, Sau, Stamoulis, Thilikos] solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$

Target graph class \mathcal{H}

VERTEX DELETION TO \mathcal{H}

Input: A graph G and an integer k .

Output: Is there a vertex set S of size at most k s.t. $G - S \in \mathcal{H}$?

\mathcal{H} = **minor-closed** graph class

- [Robertson, Seymour, '04] + [Adler, Grohe, Kreutzer, '08] + [Kawarabayashi, '12] → solvable in time $f(k) \cdot n^2$ for some computable function f
- [Sau, Stamoulis, Thilikos, '22] solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^3$
- [Morelle, Sau, Stamoulis, Thilikos] solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$

Target graph class \mathcal{H}

Sketch of the proof

Target graph class \mathcal{H}

Sketch of the proof

originates from [Robertson, Seymour, '95]

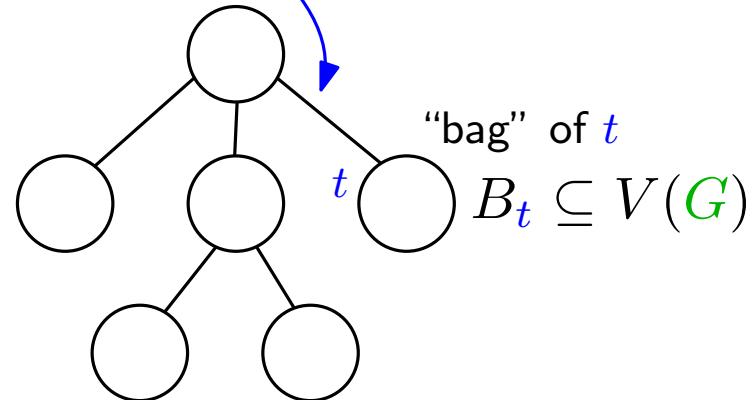
Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the treewidth $\text{tw}(G)$ of G :

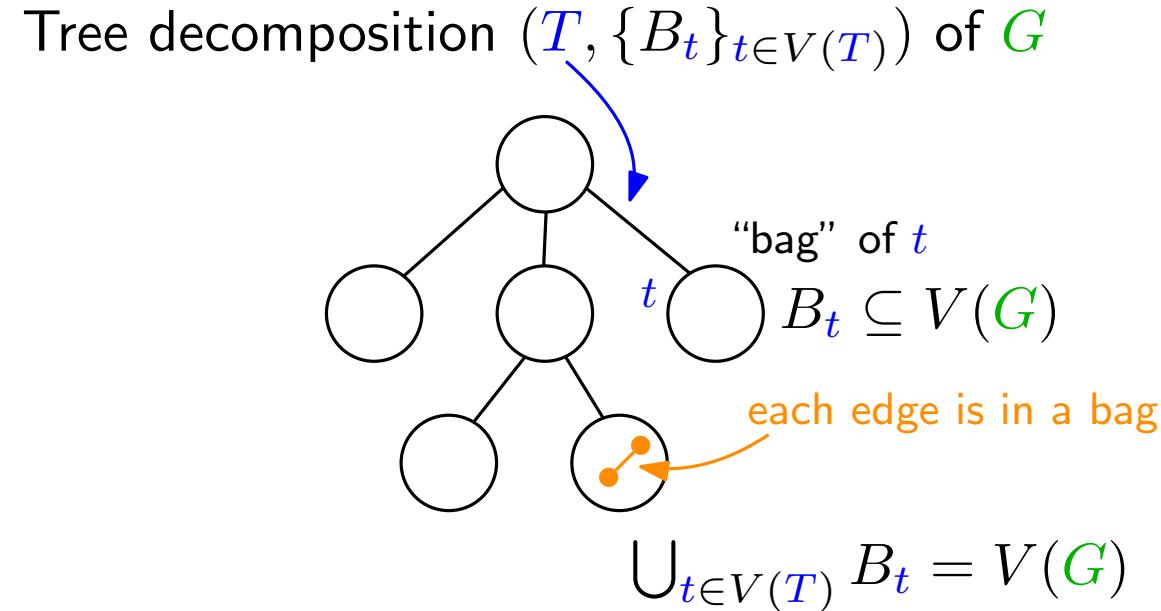
Tree decomposition $(T, \{B_t\}_{t \in V(T)})$ of G



Target graph class \mathcal{H}

Sketch of the proof

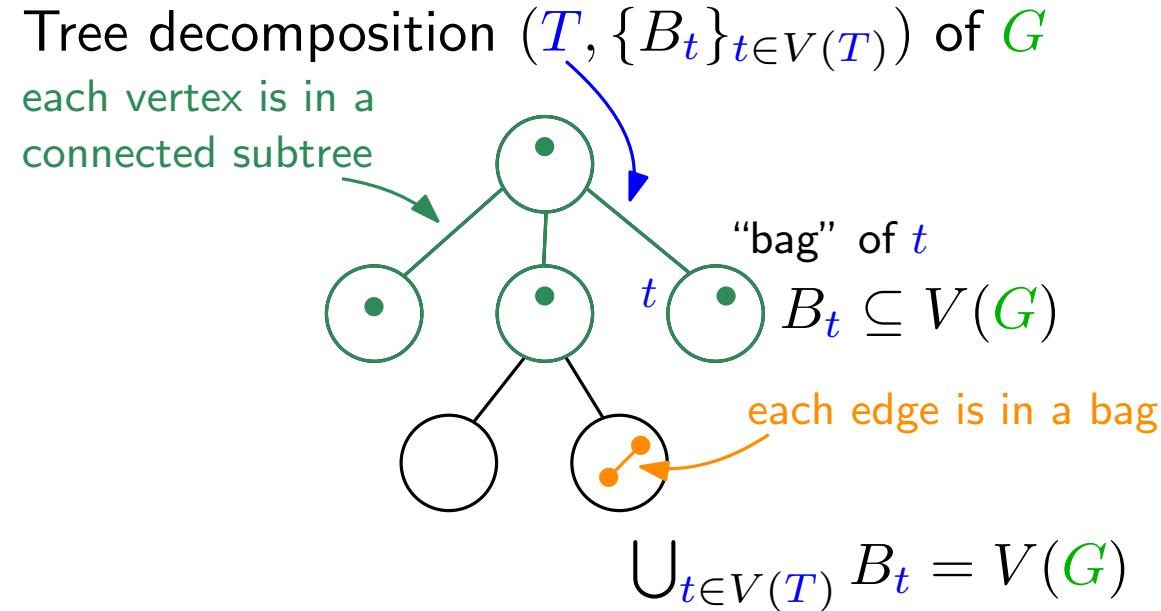
Win/Win strategy on the treewidth $\text{tw}(G)$ of G :



Target graph class \mathcal{H}

Sketch of the proof

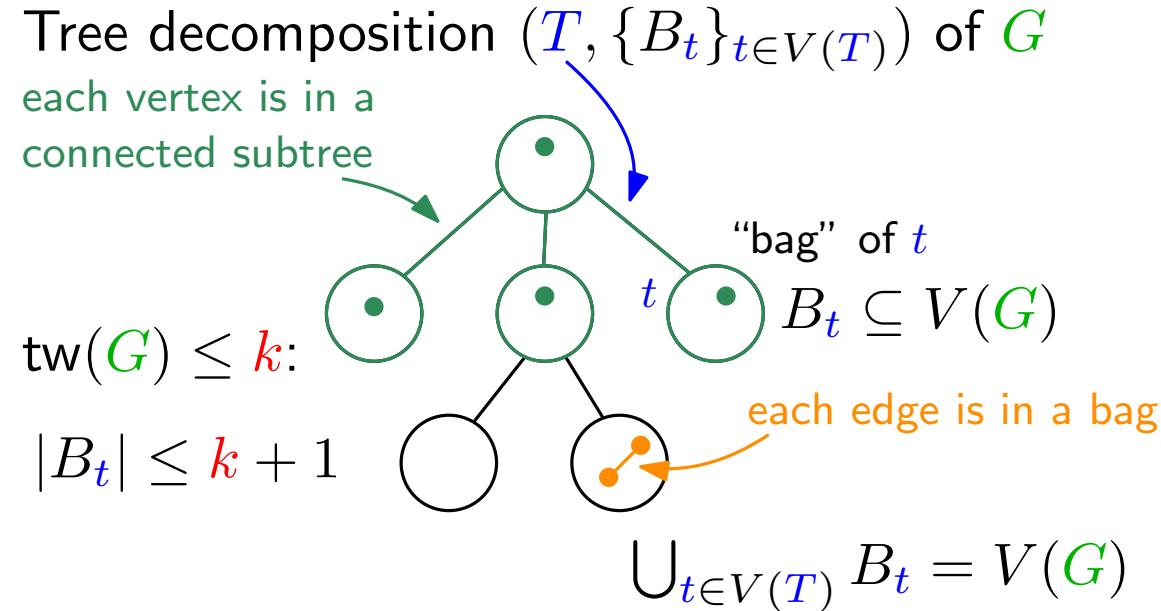
Win/Win strategy on the treewidth $\text{tw}(G)$ of G :



Target graph class \mathcal{H}

Sketch of the proof

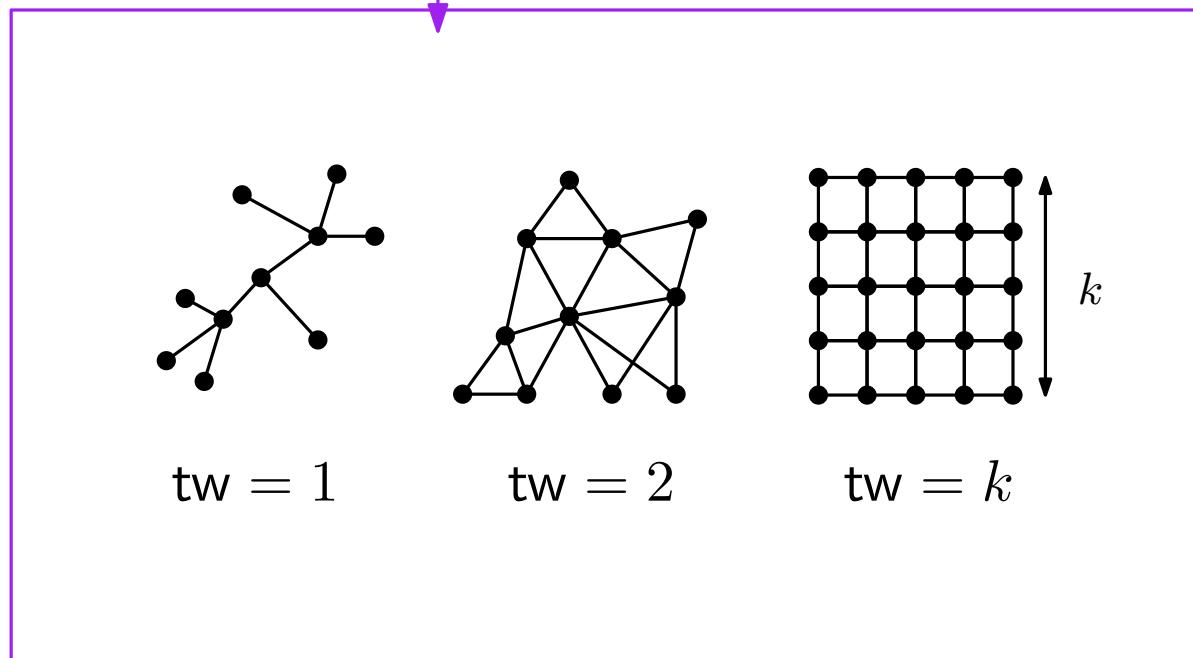
Win/Win strategy on the treewidth $\text{tw}(G)$ of G :



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the treewidth $\text{tw}(G)$ of G :



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

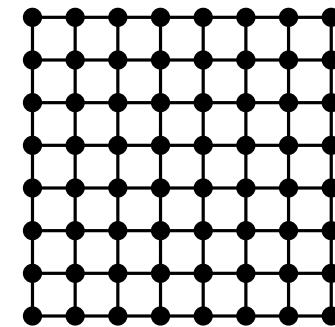
Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big** grid as a minor.



Target graph class \mathcal{H}

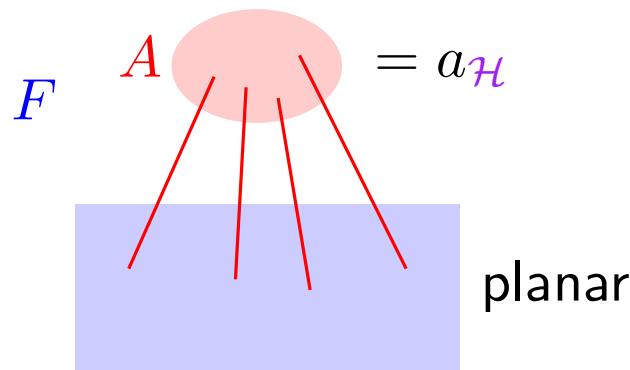
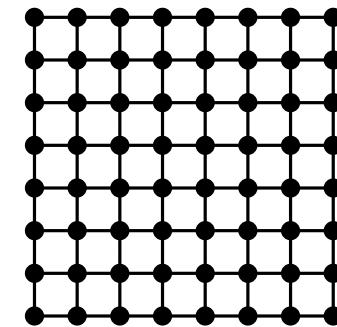
Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

there is an “obstruction” $F \notin \mathcal{H}$:



Target graph class \mathcal{H}

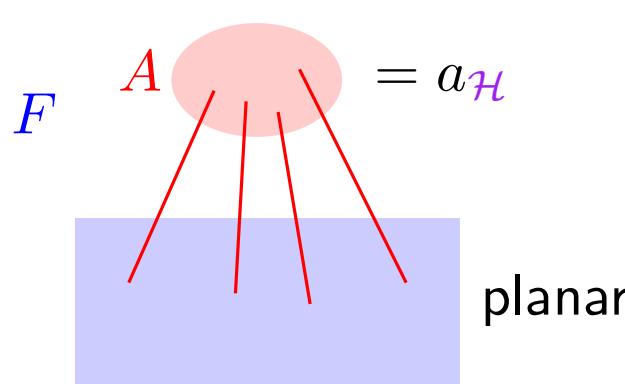
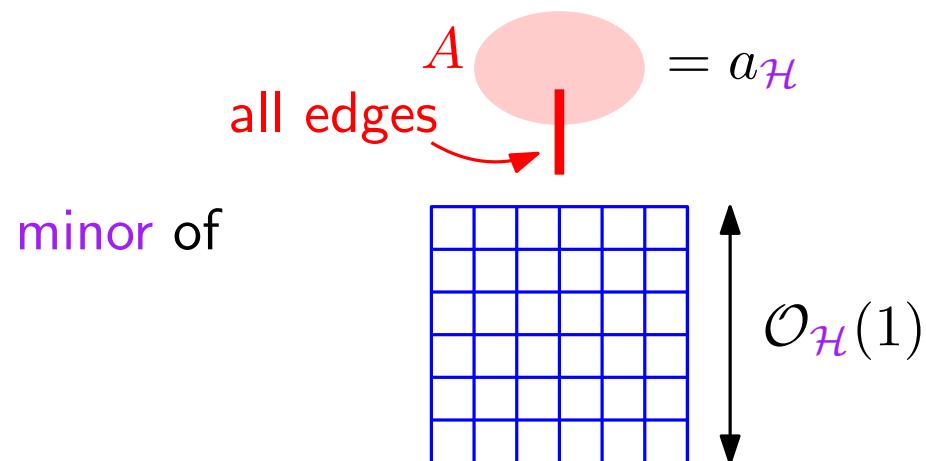
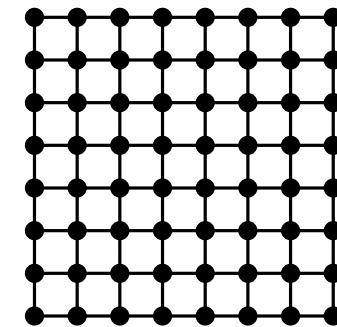
Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big** grid as a minor.

there is an “obstruction” $F \notin \mathcal{H}$:



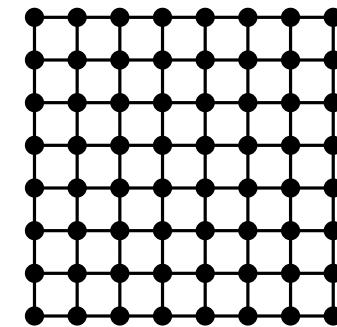
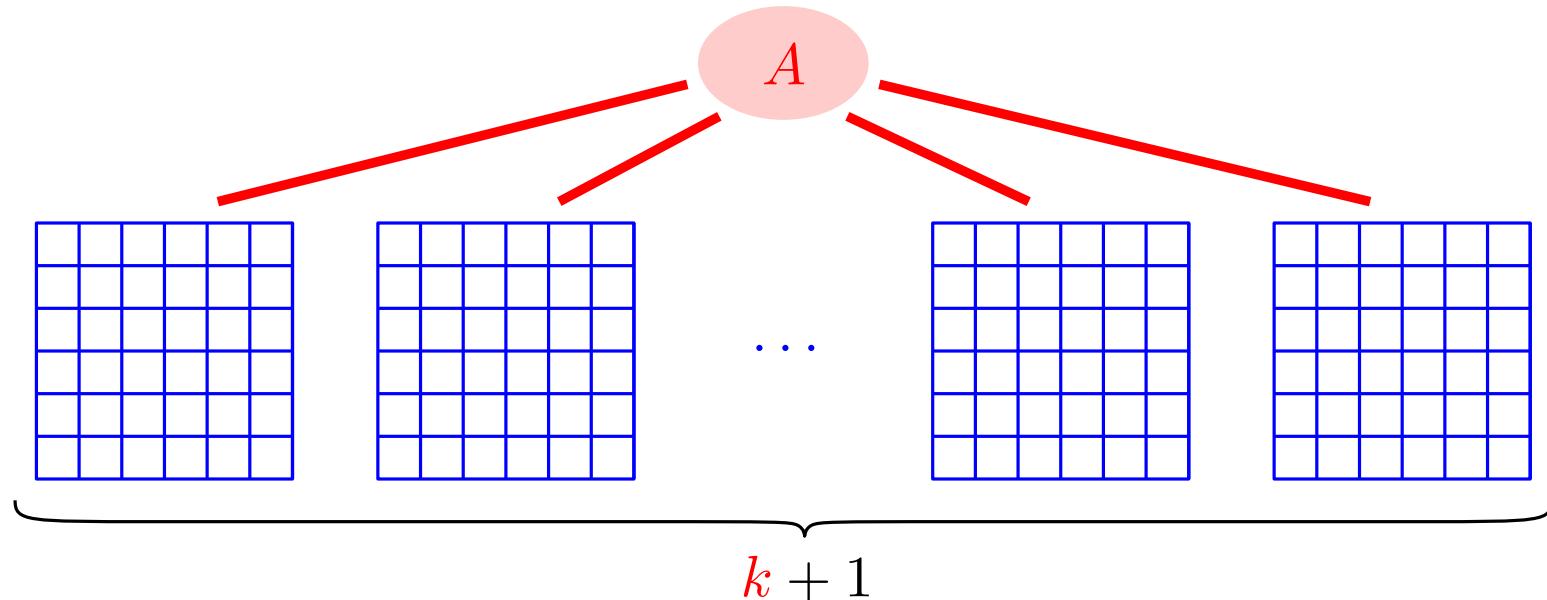
Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big** grid as a minor.



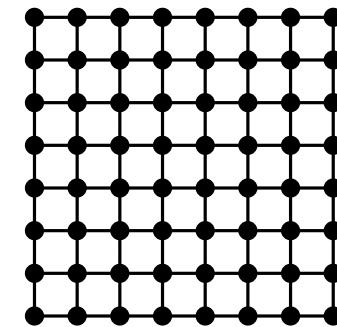
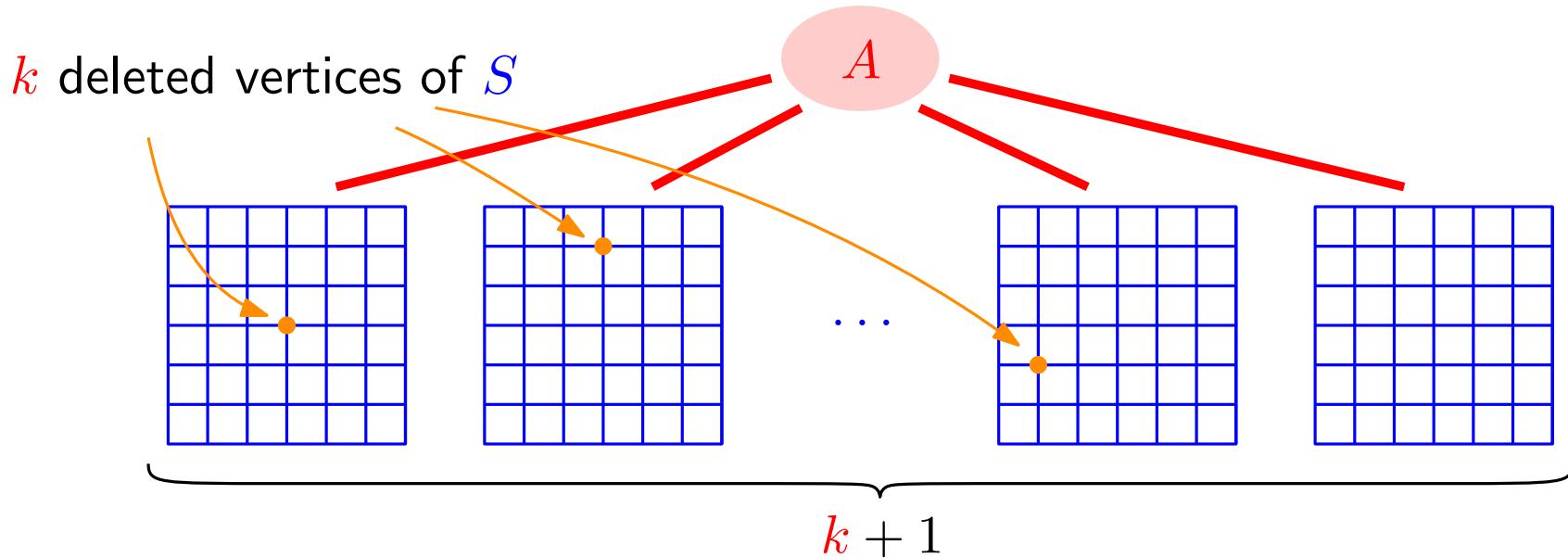
Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big** grid as a minor.



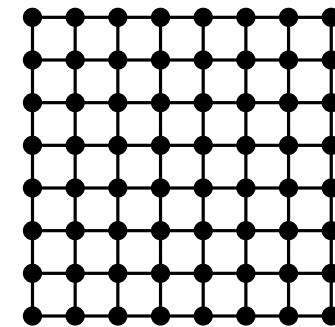
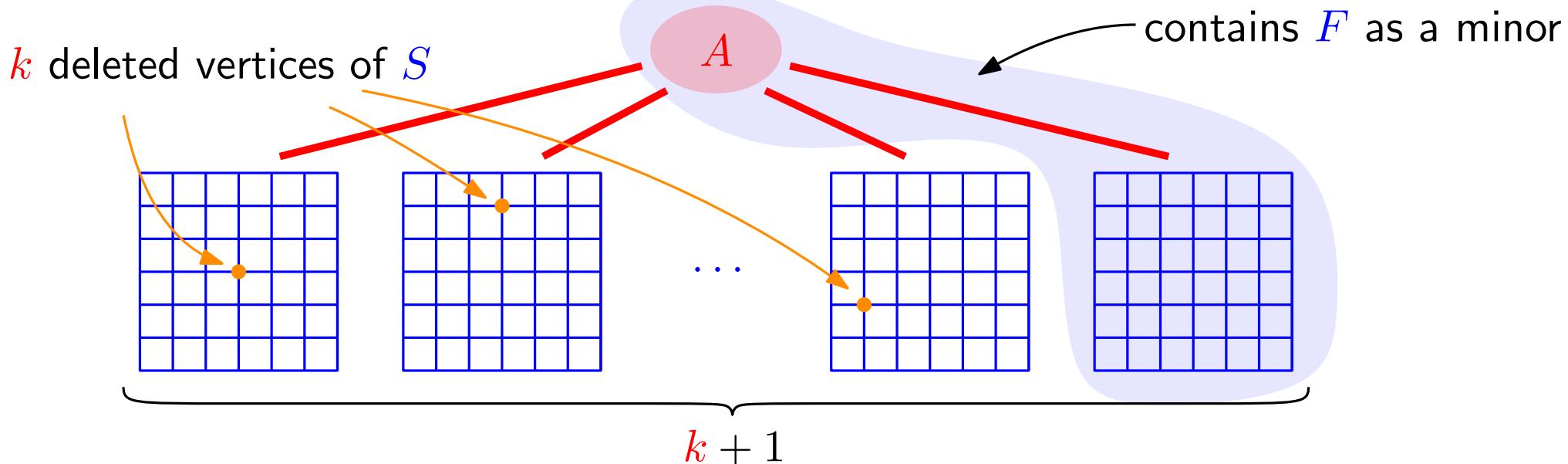
Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.



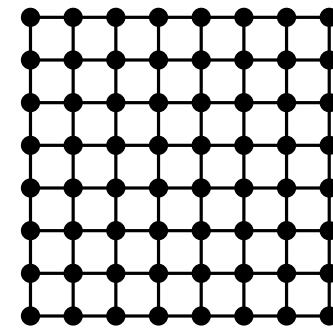
Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

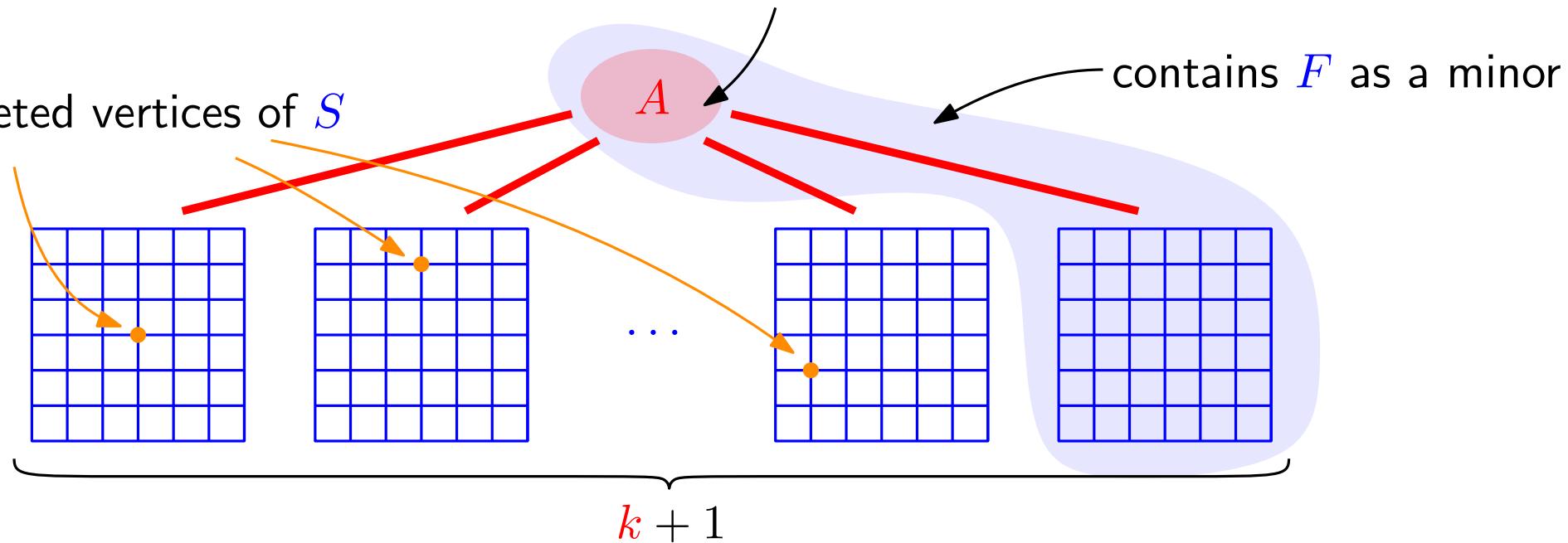
If G has **big** treewidth:

then G contains a **big grid** as a minor.



unless $S \cap A \neq \emptyset$

k deleted vertices of S



Target graph class \mathcal{H}

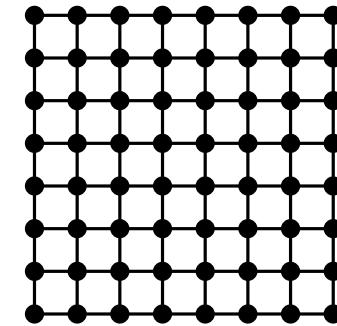
Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

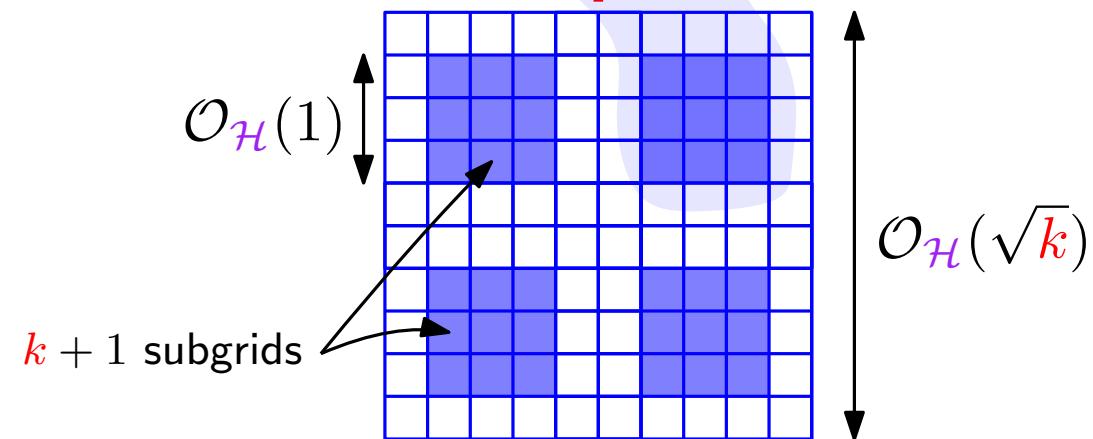
then G contains a **big** grid as a minor.

unless $S \cap A \neq \emptyset$



A

contains F as a minor



Target graph class \mathcal{H}

Sketch of the proof

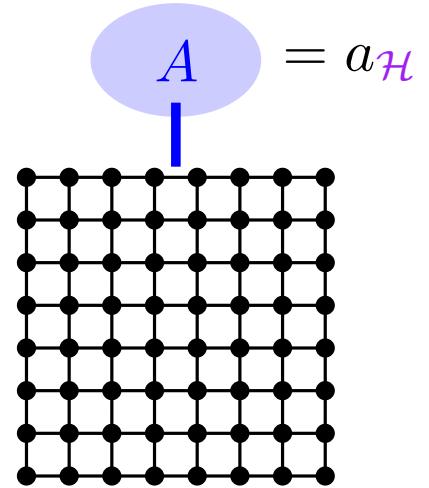
Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

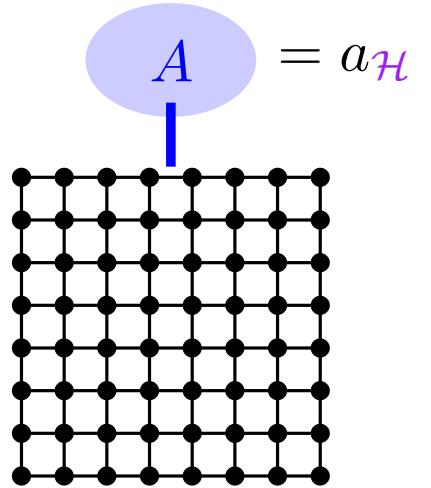
If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

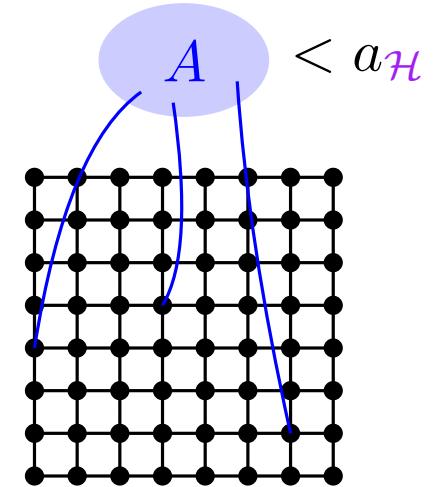
then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

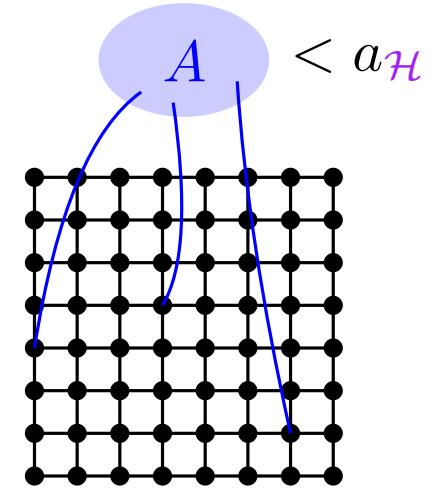
If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

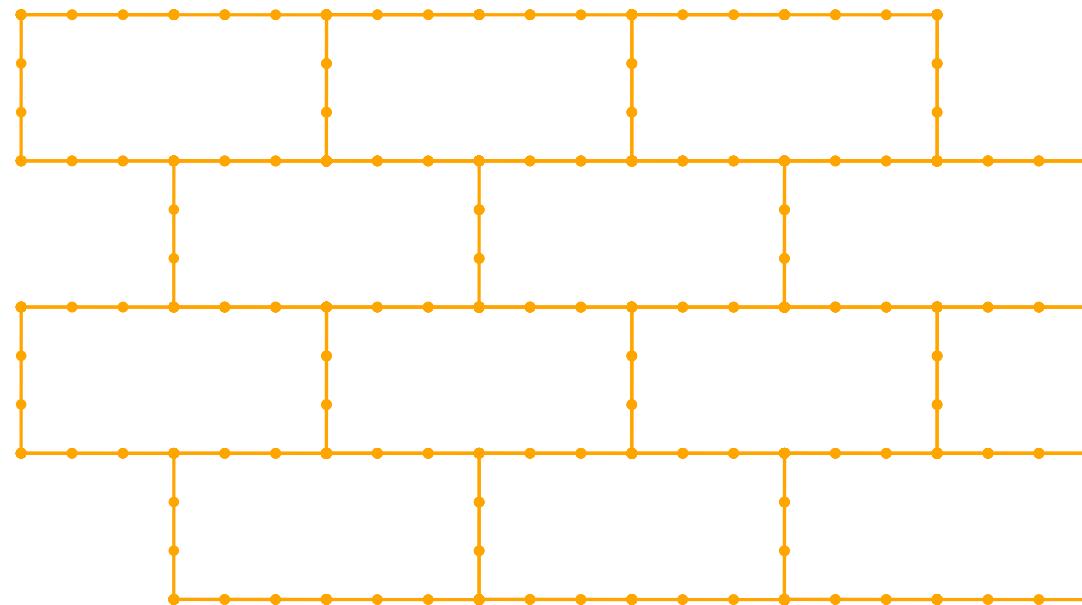
Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**



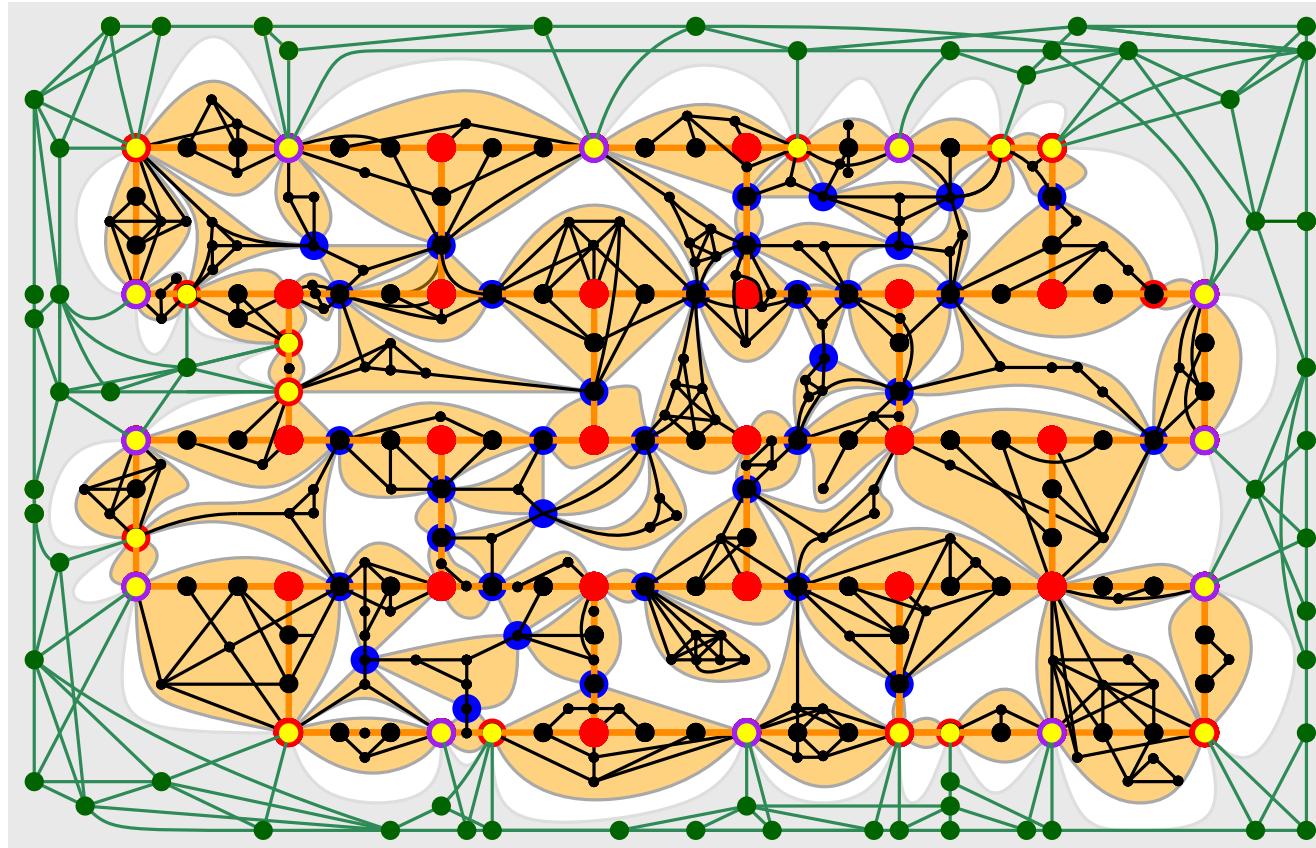
Target graph class \mathcal{H}

A **wall**:



Target graph class \mathcal{H}

A **flat** wall:



[figure by Dimitrios M. Thilikos]

Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

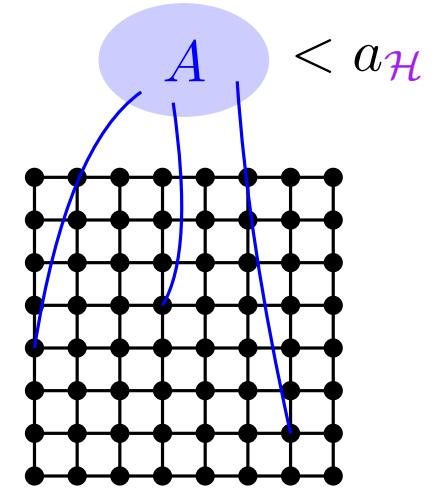
then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t. (G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

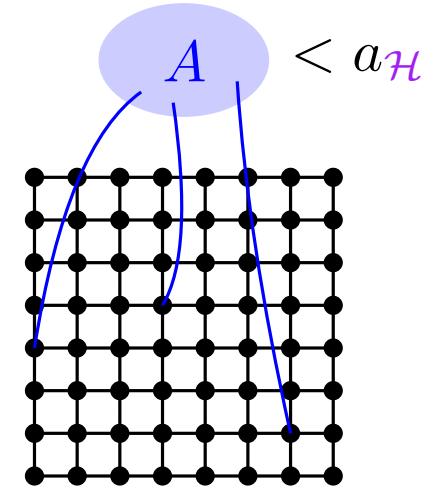
Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t. (G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:



Target graph class \mathcal{H}

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

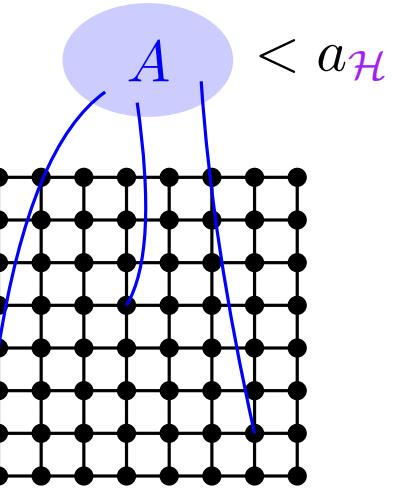
Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t. (G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.



2. Set of modifications \mathcal{M}

Measure = size of the modulator

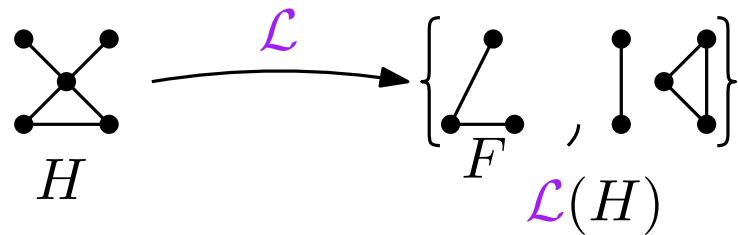
Measure = size of the modulator

Model of abstraction to represent many modifications at once?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

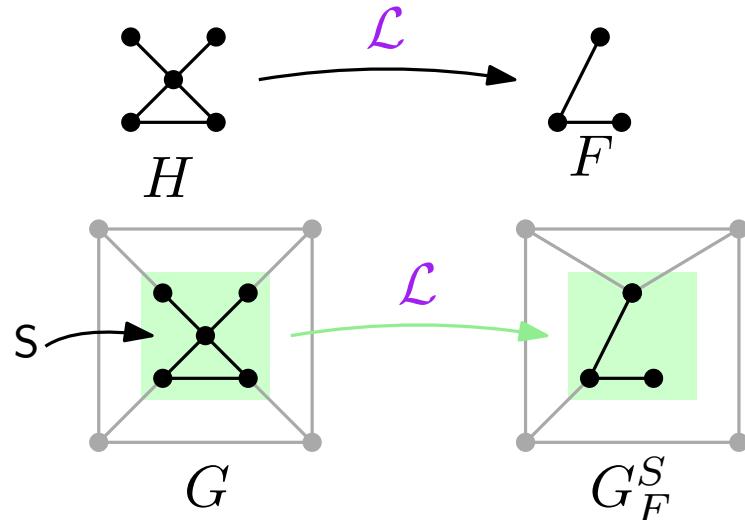
R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size. [Fomin, Golovach, Thilikos, '19]



Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size. [Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .

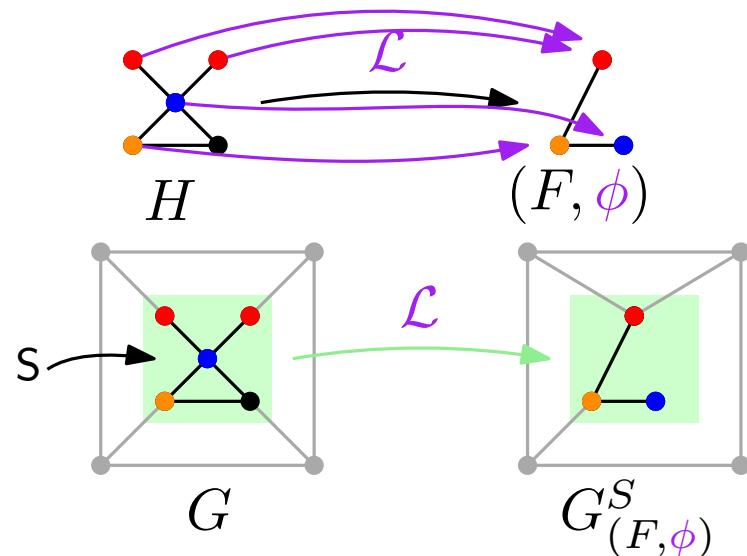
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G_F^S \in \mathcal{H}$?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size.

[Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .

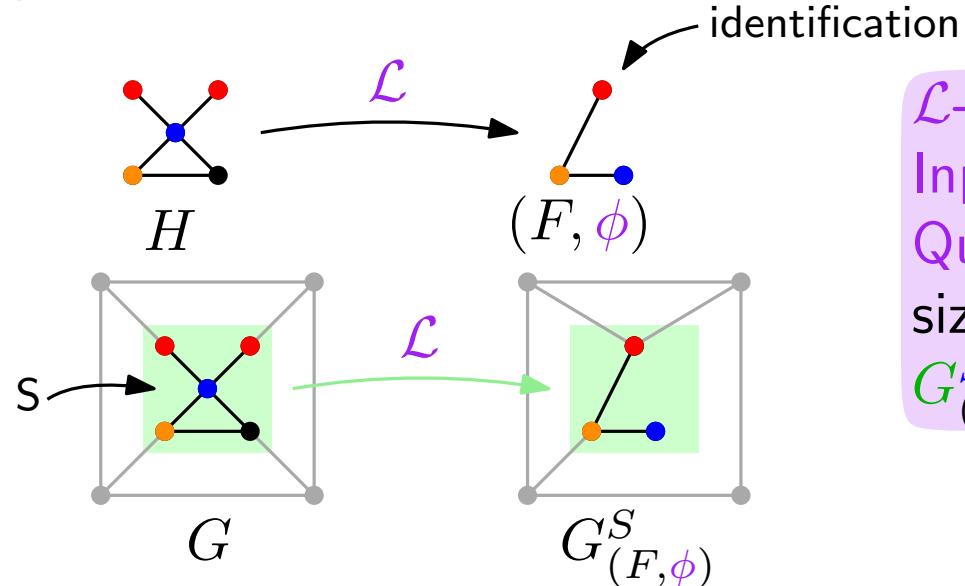
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G_{(F, \phi)}^S \in \mathcal{H}$?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size.

[Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .

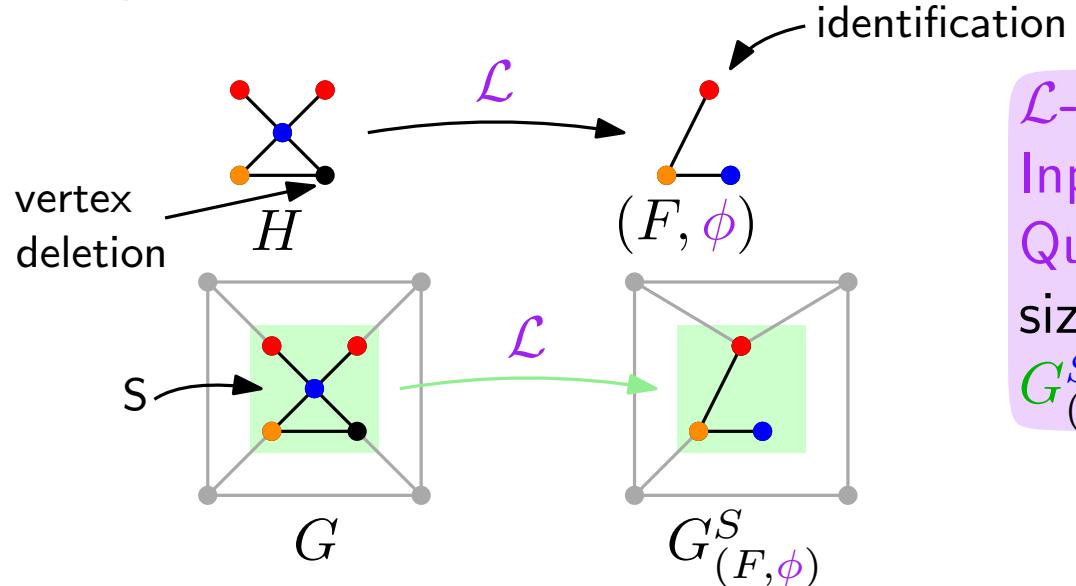
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G_{(F, \phi)}^S \in \mathcal{H}$?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size.

[Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .

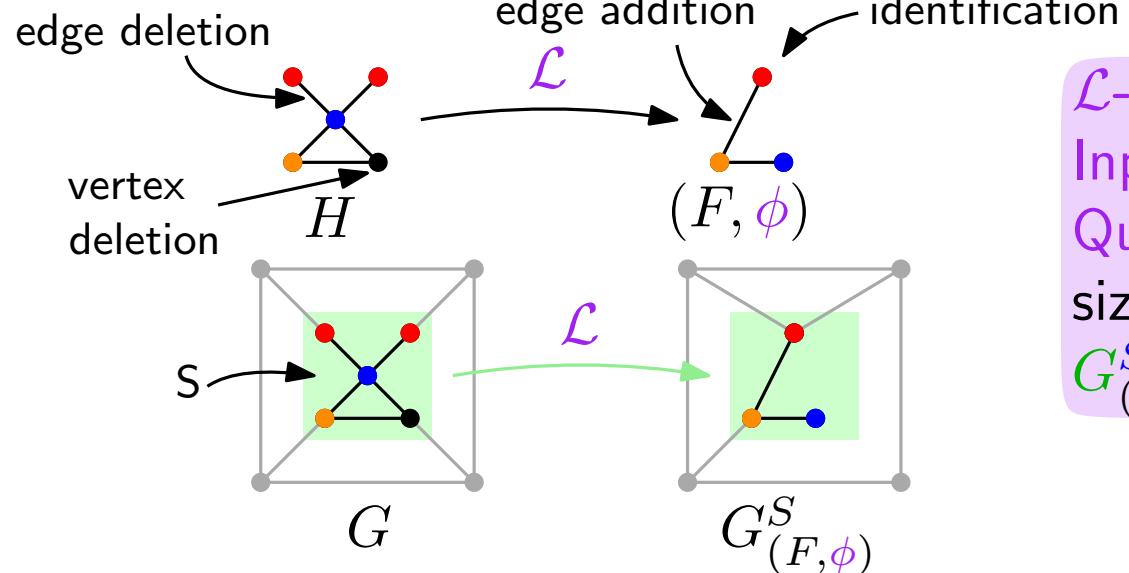
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G_{(F, \phi)}^S \in \mathcal{H}$?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of equal or smaller size.

[Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .

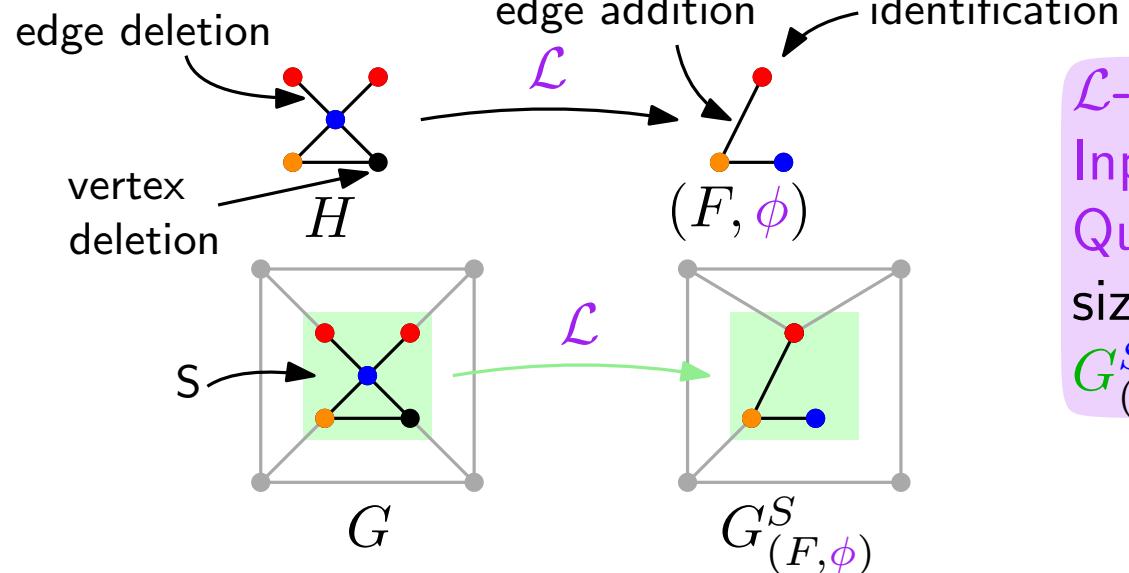
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G^S_{(F, \phi)} \in \mathcal{H}$?

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

R-action: function \mathcal{L} mapping each graph H to a collection $\mathcal{L}(H)$ of graphs of **equal or smaller size**.

[Fomin, Golovach, Thilikos, '19]



\mathcal{L} -Replacement to \mathcal{H}

Input: A graph G and an integer k .
Question: Is there a vertex set S of size at most k and $F \in \mathcal{L}(G[S])$ s.t. $G^S_{(F, \phi)} \in \mathcal{H}$?

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

- VERTEX DELETION TO \mathcal{H}
- EDGE DELETION TO \mathcal{H}
- EDGE CONTRACTION TO \mathcal{H}
- MATCHING DELETION TO \mathcal{H}
- MATCHING CONTRACTION TO \mathcal{H}
- INDEPENDENT SET DELETION TO \mathcal{H}
- CONNECTED VERTEX DELETION TO \mathcal{H}
- SUBGRAPH COMPLEMENTATION TO \mathcal{H}
- etc.

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

Measure = size of the modulator

Model of abstraction to represent many modifications at once?

- VERTEX DELETION TO \mathcal{H}
- EDGE DELETION TO \mathcal{H}
- EDGE CONTRACTION TO \mathcal{H}
- MATCHING DELETION TO \mathcal{H}
- MATCHING CONTRACTION TO \mathcal{H}
- INDEPENDENT SET DELETION TO \mathcal{H}
- CONNECTED VERTEX DELETION TO \mathcal{H}
- SUBGRAPH COMPLEMENTATION TO \mathcal{H}
- etc.

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

Sketch of the proof

Sketch of the proof for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

Sketch of the proof

for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Generalize to R-actions

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

Sketch of the proof

for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Generalize to R-actions

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

$2^{\mathcal{O}_{\mathcal{H}}(k^2 + (k + \text{tw}) \log(k + \text{tw}))} \cdot n$

new dynamic programming

Representative-based technique [Baste, Sau, Thilikos , '19]

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(\mathfrak{k})} \cdot \mathfrak{n}^2$ for \mathcal{L} hereditary.

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(\mathfrak{k})} \cdot \textcolor{violet}{n}^2$ for \mathcal{L} hereditary.

\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(\mathfrak{k}^9)} \cdot \textcolor{violet}{n}^2$ for \mathcal{L} hereditary.

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(\mathfrak{k})} \cdot \textcolor{violet}{n}^2$ for \mathcal{L} hereditary.

\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(\mathfrak{k}^9)} \cdot \textcolor{violet}{n}^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(\mathfrak{k})} \cdot \mathfrak{n}^2$ for \mathcal{L} hereditary.

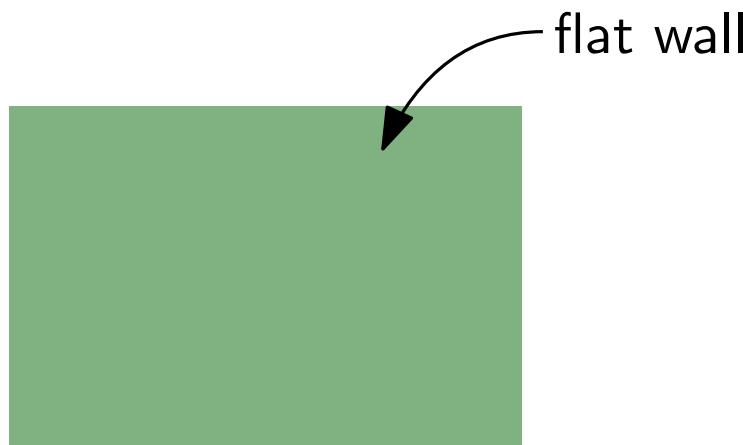
\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(\mathfrak{k}^9)} \cdot \mathfrak{n}^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:



\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

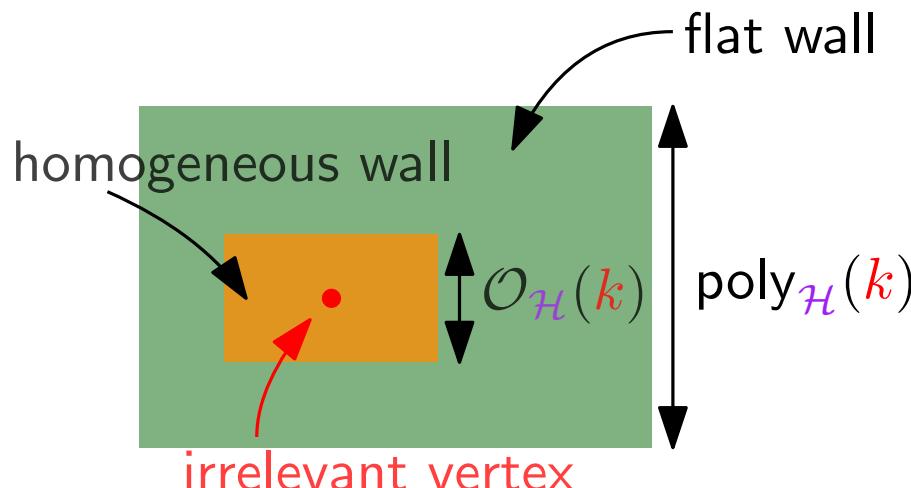
\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:



\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

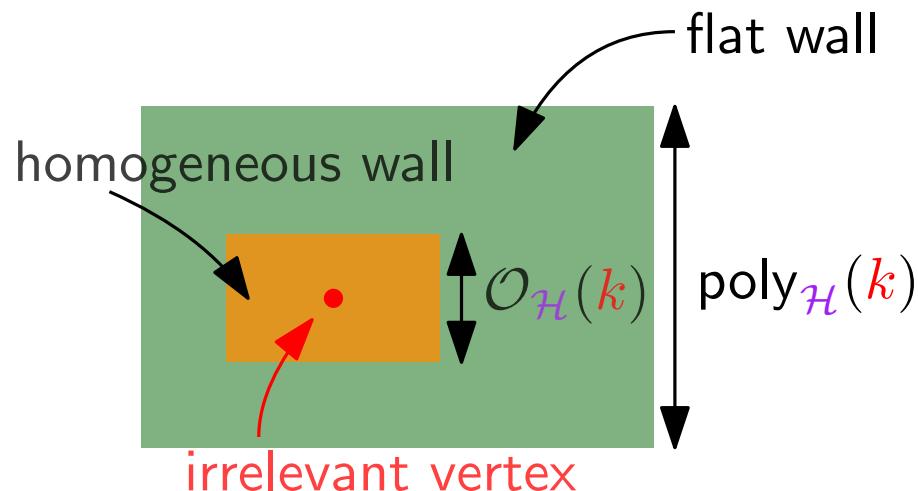
\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

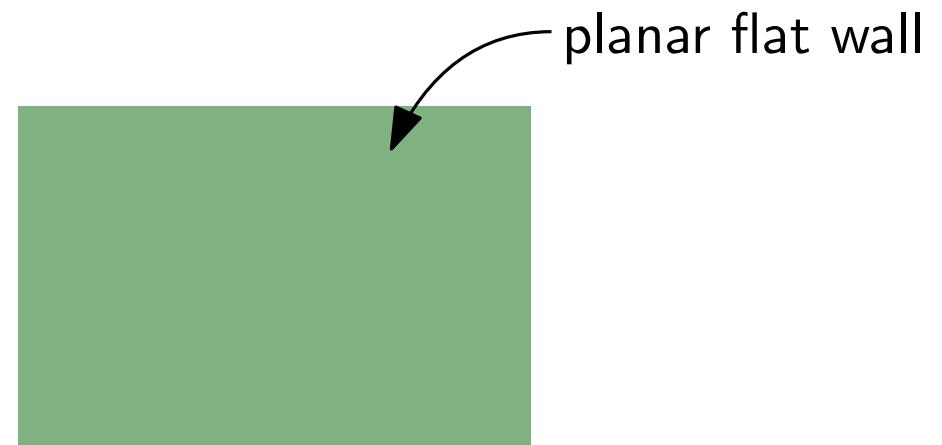
\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:



Case of surfaces:



\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

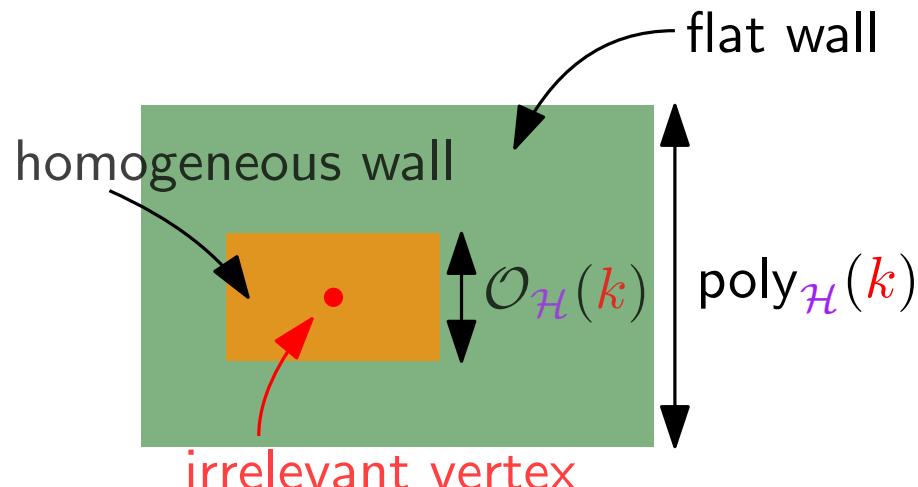
\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

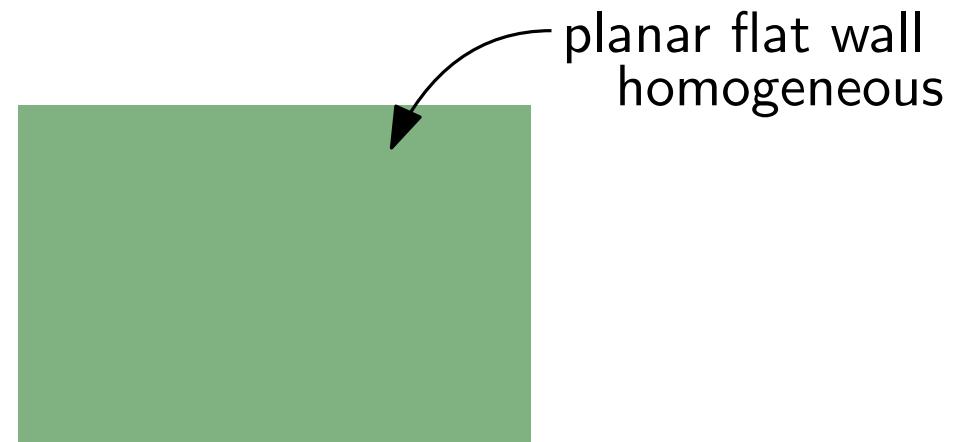
\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:



Case of surfaces:



\mathcal{H} minor-closed

[Morelle, Sau, Thilikos]

\mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

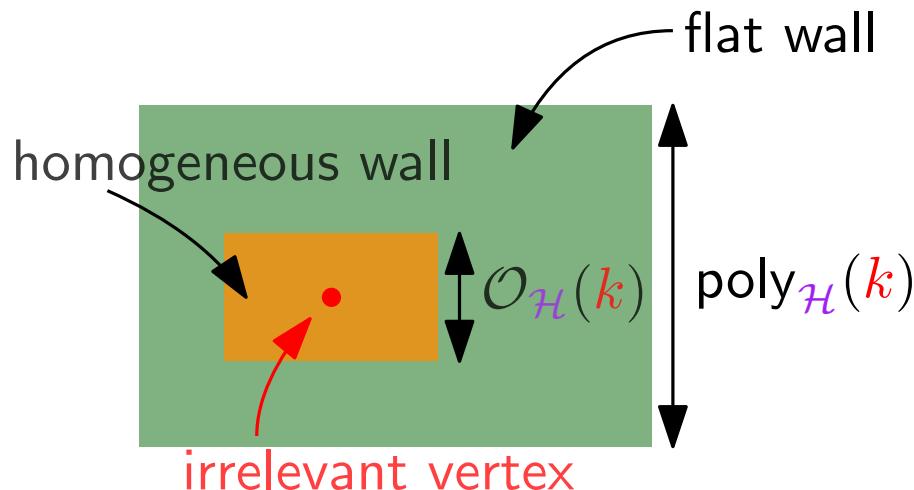
\mathcal{H}_Σ = graphs embeddable on a surface Σ

[Morelle, Sau, Thilikos]

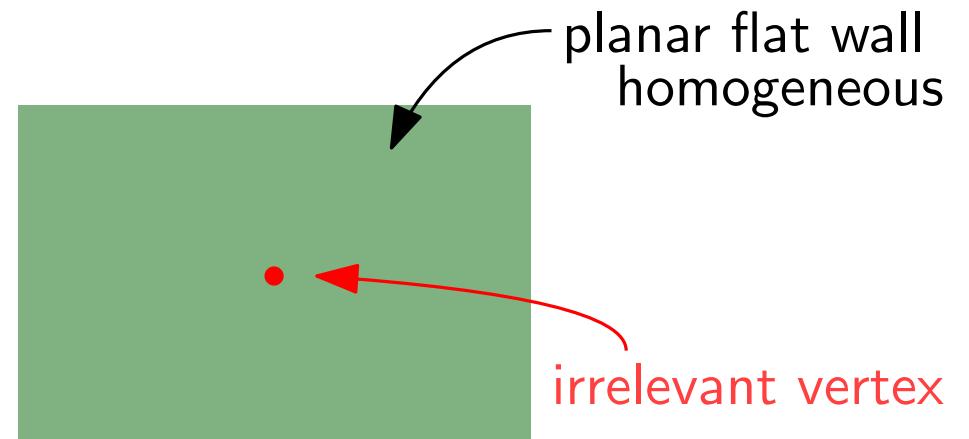
\mathcal{L} -REPLACEMENT TO \mathcal{H}_Σ is solvable in time $2^{\mathcal{O}_\Sigma(k^9)} \cdot n^2$ for \mathcal{L} hereditary.

Irrelevant vertex technique

General case:

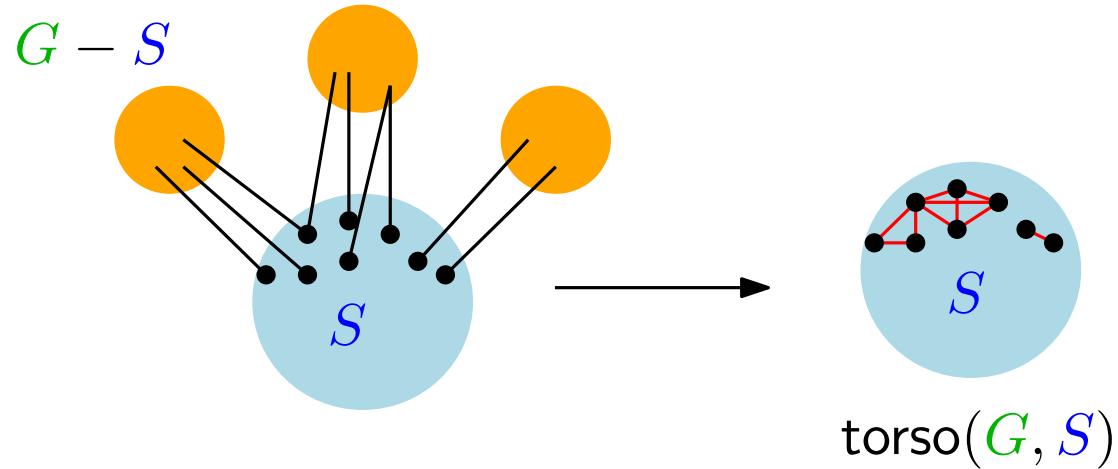


Case of surfaces:

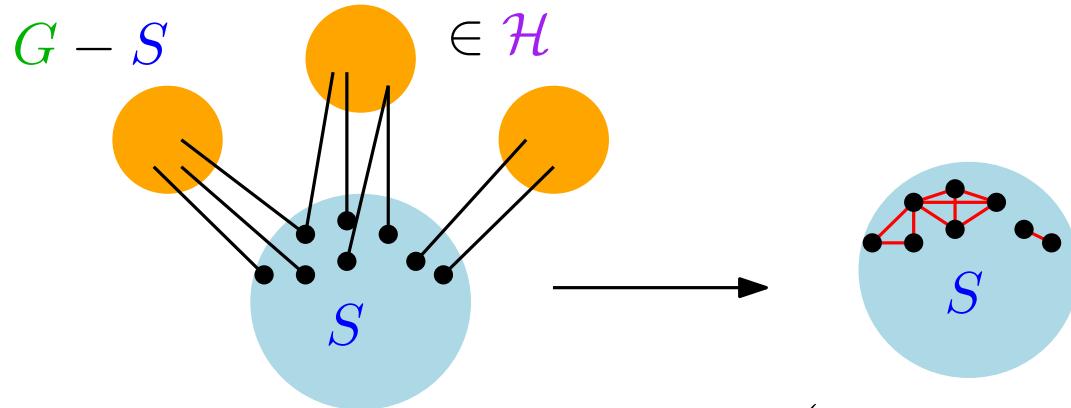


3. Measure p on the modulator

Torso of a vertex set S in a graph G :



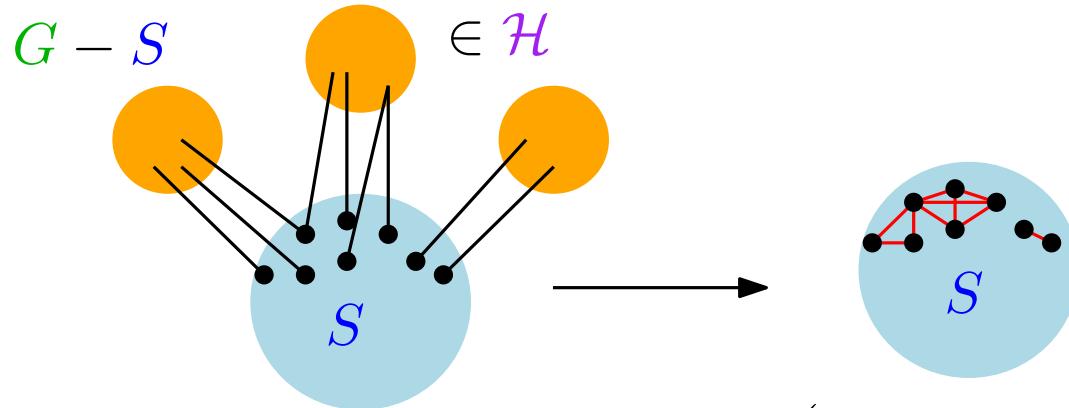
Torso of a vertex set S in a graph G :



Parameter p

$\mathcal{H}\text{-}p(G) = \min\{k \mid \text{there is a vertex set } S \text{ s.t. } p(\text{torso}(G, S)) \leq k \text{ and the components of } G - S \text{ are in } \mathcal{H}\}$

Torso of a vertex set S in a graph G :



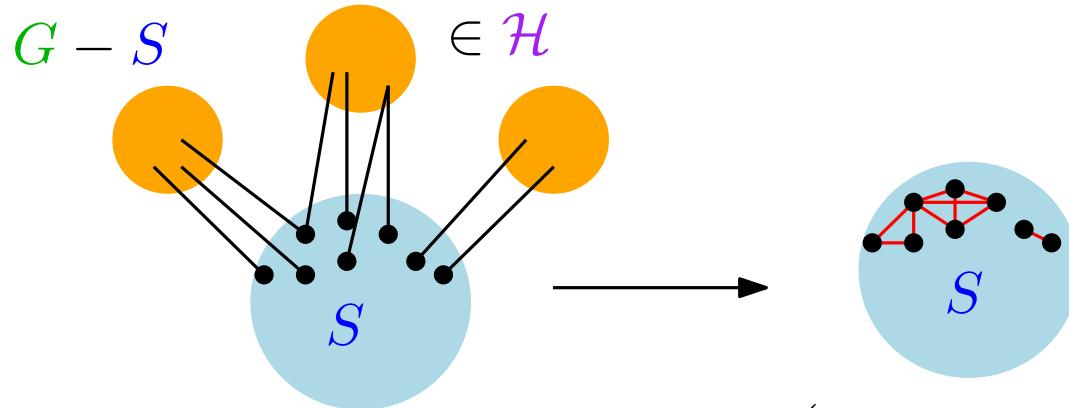
Parameter p

$\mathcal{H}\text{-}p(G) = \min\{k \mid \text{there is a vertex set } S \text{ s.t. } p(\text{torso}(G, S)) \leq k \text{ and the components of } G - S \text{ are in } \mathcal{H}\}$

Graph modification problem: **Input:** A graph G and an integer k .

Output: Is $\mathcal{H}\text{-}p(G) \leq k$?

Torso of a vertex set S in a graph G :

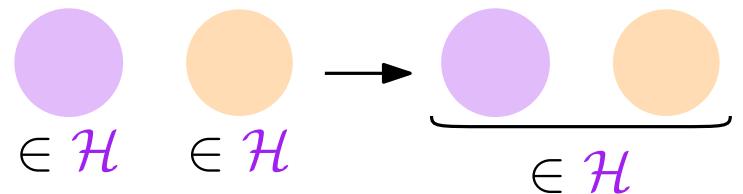


Parameter p

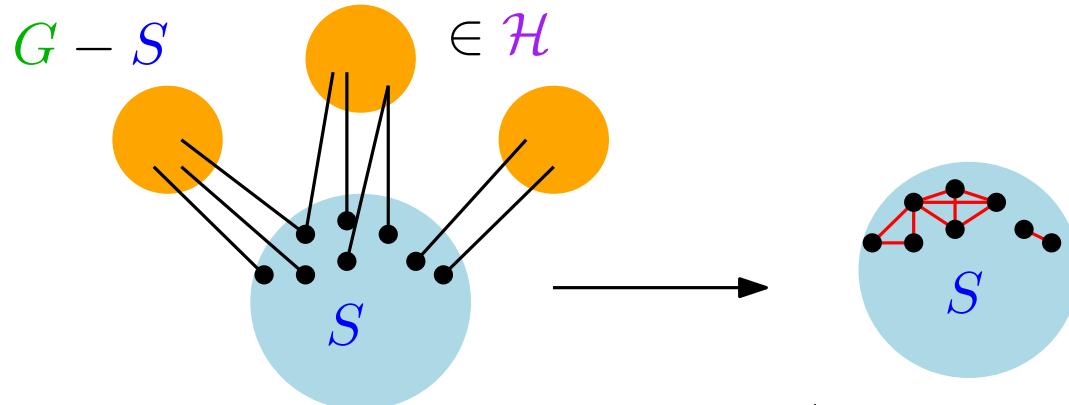
$\mathcal{H}\text{-}p(G) = \min\{k \mid \text{there is a vertex set } S \text{ s.t. } p(\text{torso}(G, S)) \leq k \text{ and the components of } G - S \text{ are in } \mathcal{H}\}$

Graph modification problem: **Input:** A graph G and an integer k .
Output: Is $\mathcal{H}\text{-}p(G) \leq k$?

\mathcal{H} -size \rightarrow VERTEX DELETION TO \mathcal{H} if \mathcal{H} is closed under disjoint union



Torso of a vertex set S in a graph G :



$$p(\text{torso}(G, S)) \leq k$$

Parameter p

\mathcal{H} - $p(G) = \min\{k \mid \text{there is a vertex set } S \text{ s.t. } p(\text{torso}(G, S)) \leq k$
and the components of $G - S$ are in $\mathcal{H}\}$

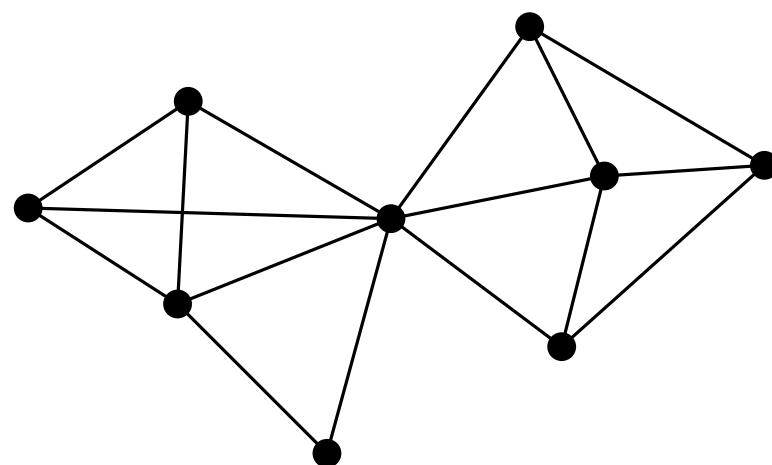
Graph modification problem: Input: A graph G and an integer k .
Output: Is \mathcal{H} - $p(G) \leq k$?

\mathcal{H} -size \rightarrow VERTEX DELETION TO \mathcal{H}

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$:



Step 0

At each step, remove 1 vertex
from each component

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$:



Step 1

At each step, remove 1 vertex
from each component

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$:



Step 2

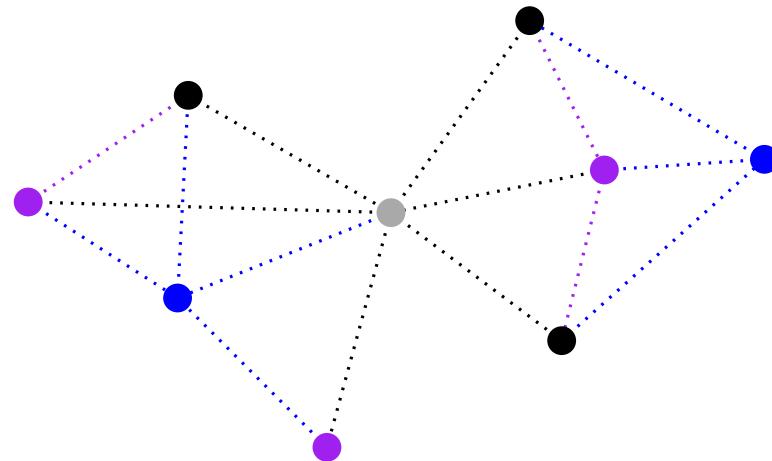
At each step, remove 1 vertex
from each component

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$:

Step 3



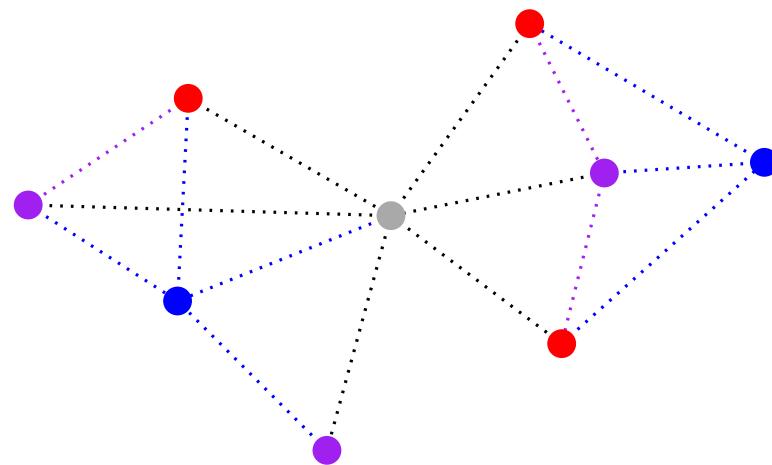
At each step, remove 1 vertex from each component

~~\mathcal{H} -td~~ → ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$:

Step 4



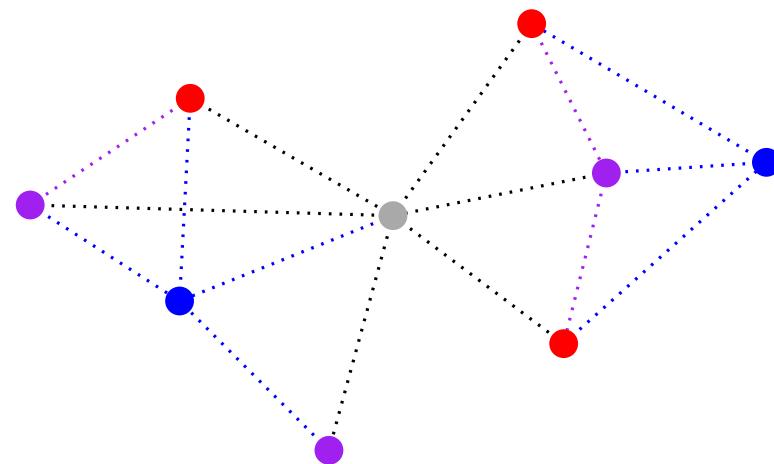
At each step, remove 1 vertex
from each component

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :

treedepth $\text{td}(G)$: min number of steps to remove all vertices

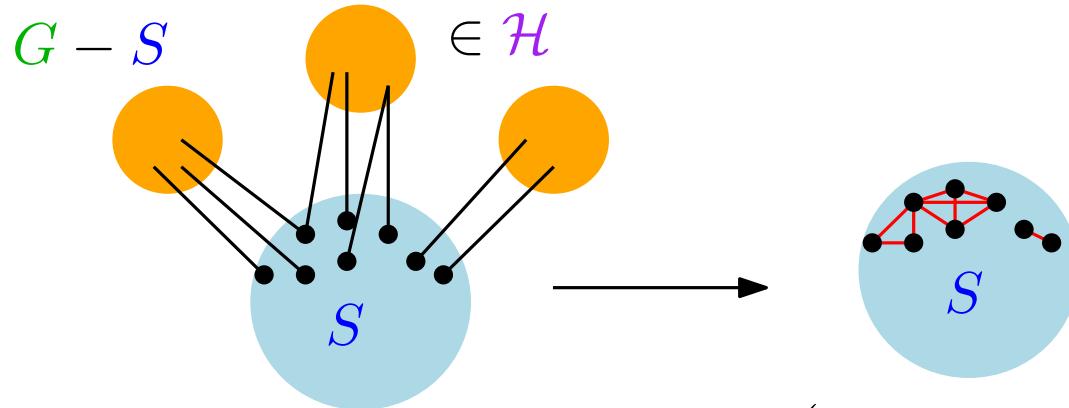
Step 4



At each step, remove 1 vertex
from each component

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

Torso of a vertex set S in a graph G :



Parameter p

$\mathcal{H}\text{-}p(G) = \min\{k \mid \text{there is a vertex set } S \text{ s.t. } p(\text{torso}(G, S)) \leq k \text{ and the components of } G - S \text{ are in } \mathcal{H}\}$

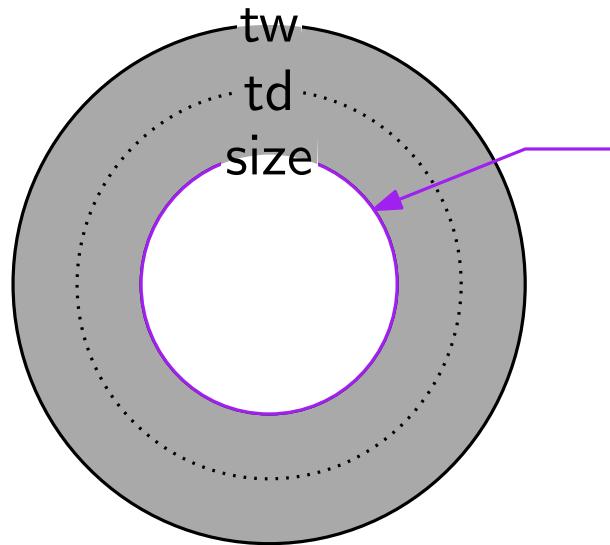
Graph modification problem:
 Input: A graph G and an integer k .
 Output: Is $\mathcal{H}\text{-}p(G) \leq k$?

\mathcal{H} -size \rightarrow VERTEX DELETION TO \mathcal{H}

\mathcal{H} -td \rightarrow ELIMINATION DISTANCE TO \mathcal{H} [Bulian, Dawar, '16]

\mathcal{H} -tw \rightarrow \mathcal{H} -TREEDWIDTH [Eiben, Ganian, Hamm, Kwon, '21]

for each G , $\text{tw}(G) \leq \text{td}(G) \leq \text{size}(G)$

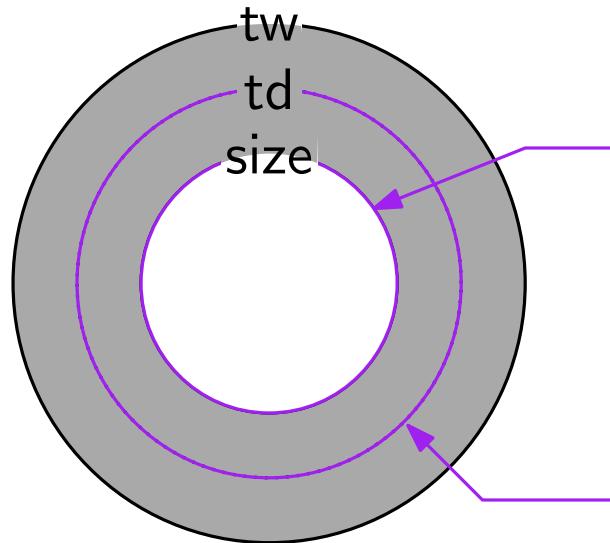


VERTEX DELETION TO \mathcal{H}

[Morelle, Sau, Stamoulis, Thilikos]

$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ \leftarrow \mathcal{H} minor-closed

for each G , $\text{tw}(G) \leq \text{td}(G) \leq \text{size}(G)$



VERTEX DELETION TO \mathcal{H}

[Morelle, Sau, Stamoulis, Thilikos]

$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ \leftarrow \mathcal{H} minor-closed

ELIMINATION DISTANCE TO \mathcal{H}

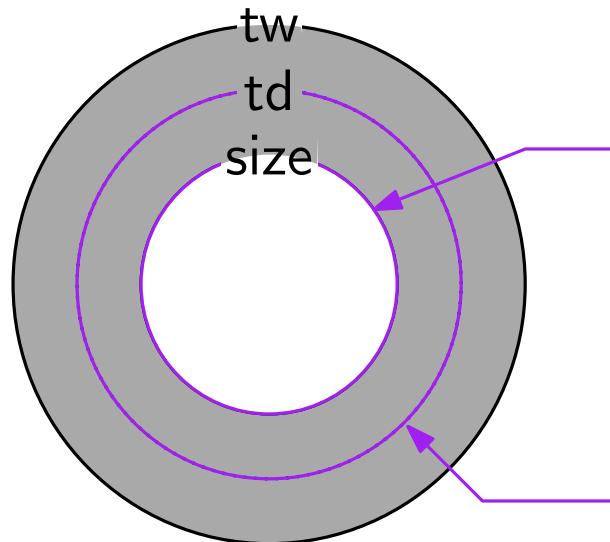
[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +

[Kawarabayashi, Kobayashi, Reed, '12]

$f(k) \cdot n^2$ for some computable f

\mathcal{H} minor-closed

for each G , $\text{tw}(G) \leq \text{td}(G) \leq \text{size}(G)$



VERTEX DELETION TO \mathcal{H}

[Morelle, Sau, Stamoulis, Thilikos]

$$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$$

$\leftarrow \mathcal{H}$ minor-closed

ELIMINATION DISTANCE TO \mathcal{H}

[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +

[Kawarabayashi, Kobayashi, Reed, '12]

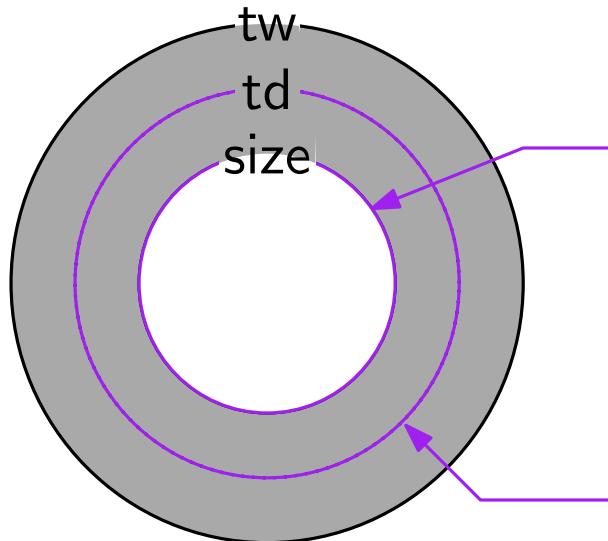
$f(k) \cdot n^2$ for some computable f

[Morelle, Sau, Stamoulis, Thilikos]

$$2^{2^{\text{poly}_{\mathcal{H}}(k)}} \cdot n^2$$

$\leftarrow \mathcal{H}$ minor-closed

for each G , $\text{tw}(G) \leq \text{td}(G) \leq \text{size}(G)$



VERTEX DELETION TO \mathcal{H}

[Morelle, Sau, Stamoulis, Thilikos]

$$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2 \quad \leftarrow \quad \mathcal{H} \text{ minor-closed}$$

ELIMINATION DISTANCE TO \mathcal{H}

[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +

[Kawarabayashi, Kobayashi, Reed, '12]

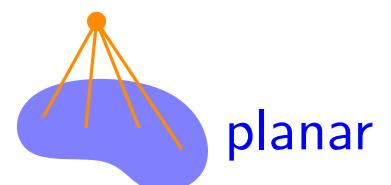
$f(k) \cdot n^2$ for some computable f

[Morelle, Sau, Stamoulis, Thilikos]

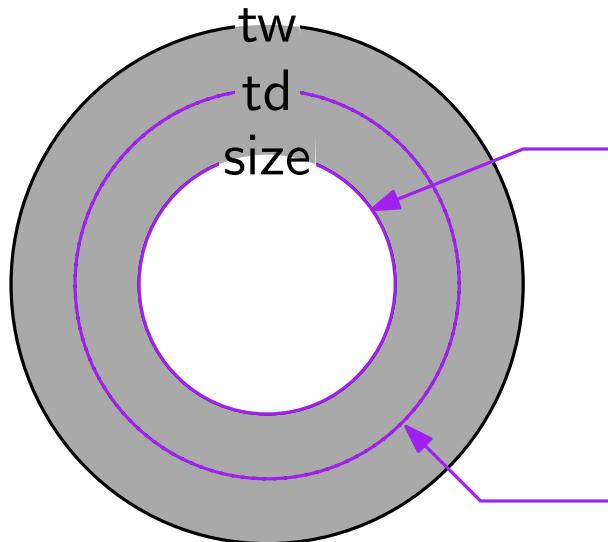
$$2^{2^{\text{poly}_{\mathcal{H}}(k)}} \cdot n^2 \quad \leftarrow \quad \mathcal{H} \text{ minor-closed}$$

$$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^3 \quad \leftarrow \quad \mathcal{H} \text{ excludes an apex graph}$$

as a minor



for each G , $\text{tw}(G) \leq \text{td}(G) \leq \text{size}(G)$



VERTEX DELETION TO \mathcal{H}

[Morelle, Sau, Stamoulis, Thilikos]

$$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2 \quad \leftarrow \mathcal{H} \text{ minor-closed}$$

ELIMINATION DISTANCE TO \mathcal{H}

[Robertson, Seymour, '04] + [Bulian, Dawar, '17] +

[Kawarabayashi, Kobayashi, Reed, '12]

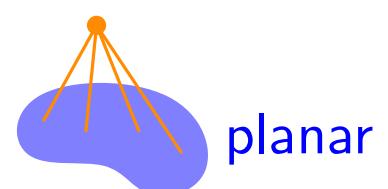
$f(k) \cdot n^2$ for some computable f

[Morelle, Sau, Stamoulis, Thilikos]

$$2^{2^{\text{poly}_{\mathcal{H}}(k)}} \cdot n^2 \quad \leftarrow \mathcal{H} \text{ minor-closed}$$

$$2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^3 \quad \leftarrow \mathcal{H} \text{ excludes an apex graph}$$

as a minor



Sketch of the proof for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”**

Irrelevant vertex technique: there is a vertex v in the wall s.t. (G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

Sketch of the proof for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”** works similarly

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

Sketch of the proof for VERTEX DELETION TO \mathcal{H} :

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a “**flat wall**” → works similarly

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “**irrelevant vertex**”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

→ new dynamic programming $2^{\mathcal{O}(k \cdot \text{tw} + \text{tw} \log \text{tw})} \cdot n$

Representative-based technique [Baste, Sau, Thilikos , '19]

17 - 3 DP for treedepth [Reidl, Roszmanith, Villaamil, Sikdar, '14]

ELIMINATION DISTANCE TO \mathcal{H} :

Is there a vertex set S s.t. $\text{td}(\text{torso}(G, S)) \leq k$ and the components of $G - S$ are in \mathcal{H} ?

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

If there is a **big flow** from a set A to the grid:

then $A \cap S \neq \emptyset$ “obligatory set”

Branching step: guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a “**flat wall**” works similarly

Irrelevant vertex technique: there is a vertex v in the wall s.t. (G, k) and $(G - v, k)$ are equivalent instances. “**irrelevant vertex**”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

 new dynamic programming $2^{\mathcal{O}(k \cdot \text{tw} + \text{tw} \log \text{tw})} \cdot n$

Representative-based technique [Baste, Sau, Thilikos , '19]

17 - 4 DP for treedepth [Reidl, Roszmanith, Villaamil, Sikdar, '14]

Sketch of the proof

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

~~If there is a **big flow** from a set A to the grid.~~

~~then $A \cap S \neq \emptyset$ “obligatory set”~~

~~Branching step.~~ guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”** **works similarly**

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. **“irrelevant vertex”**

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

 new dynamic programming $2^{\mathcal{O}(k \cdot \text{tw} + \text{tw} \log \text{tw})} \cdot n$

Representative-based technique [Baste, Sau, Thilikos , '19]

17 - 5 DP for treedepth [Reidl, Roszmanith, Villaamil, Sikdar, '14]

Sketch of the proof

$$2^{2^{2^{\text{poly}} \mathcal{H}(k)}} \cdot n^2$$

Win/Win strategy on the **treewidth** $\text{tw}(G)$ of G :

If G has **big** treewidth:

then G contains a **big grid** as a minor.

~~If there is a **big flow** from a set A to the grid.~~

~~then $A \cap S \neq \emptyset$ “obligatory set”~~

~~Branching step.~~ guess $v \in A$ s.t. $v \in S$ and recurse on $(G - v, k - 1)$.

Otherwise there is a **small flow** to the grid:

then G contains a **“flat wall”** works similarly

Irrelevant vertex technique: there is a vertex v in the wall s.t.

(G, k) and $(G - v, k)$ are equivalent instances. “irrelevant vertex”

Otherwise G has **small** treewidth:

then apply **dynamic programming** to conclude.

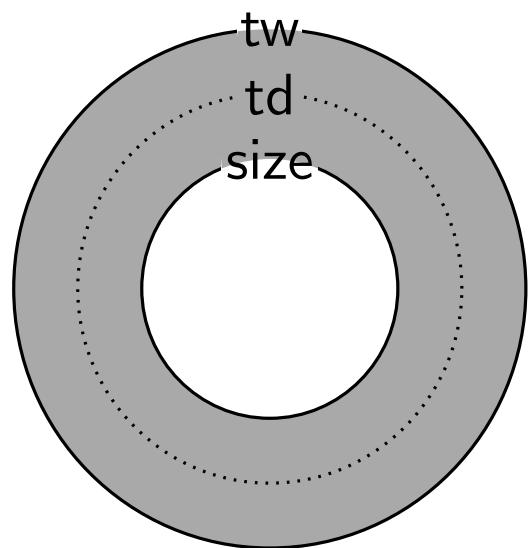
 new dynamic programming

$$2^{\mathcal{O}(k \cdot \text{tw} + \text{tw} \log \text{tw})} \cdot n$$

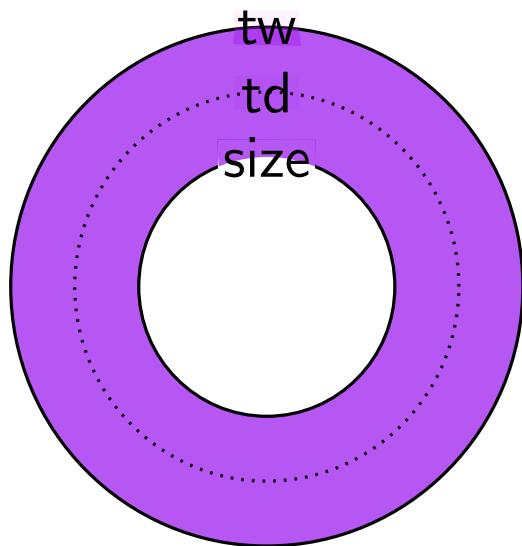
Representative-based technique [Baste, Sau, Thilikos , '19]

17 - 6 DP for treedepth [Reidl, Roszmanith, Villaamil, Sikdar, '14]

Limit of the irrelevant vertex technique



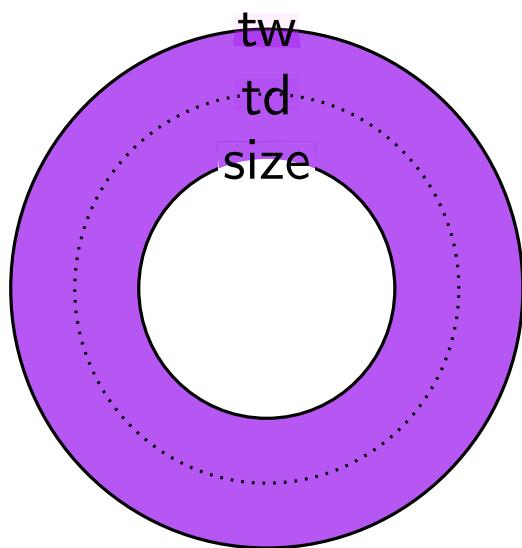
Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$.

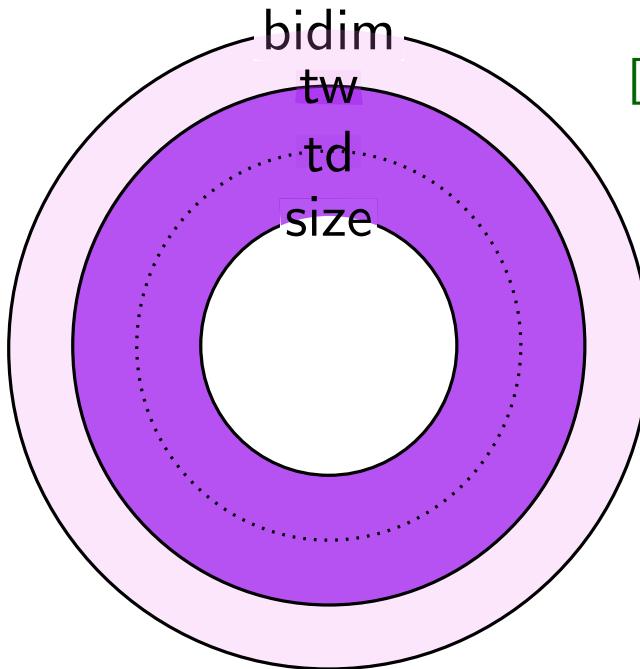
Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw ”

Limit of the irrelevant vertex technique



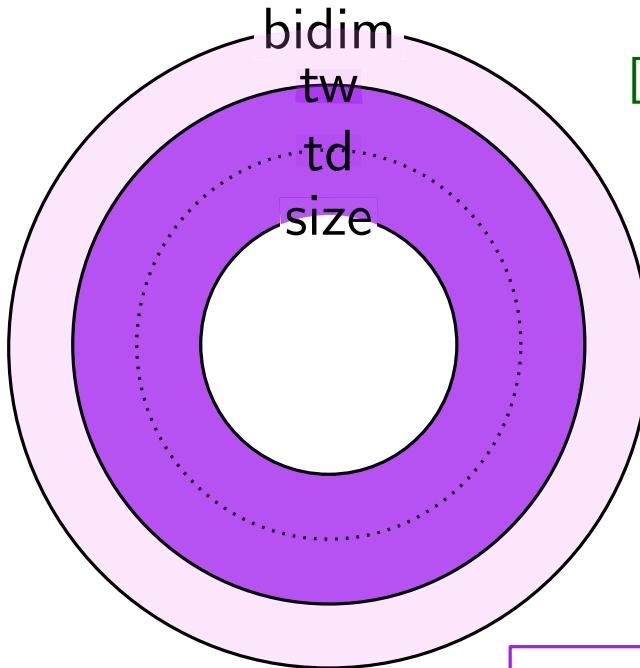
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw ”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Limit of the irrelevant vertex technique



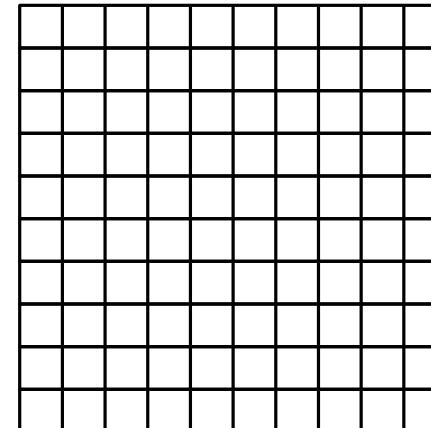
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

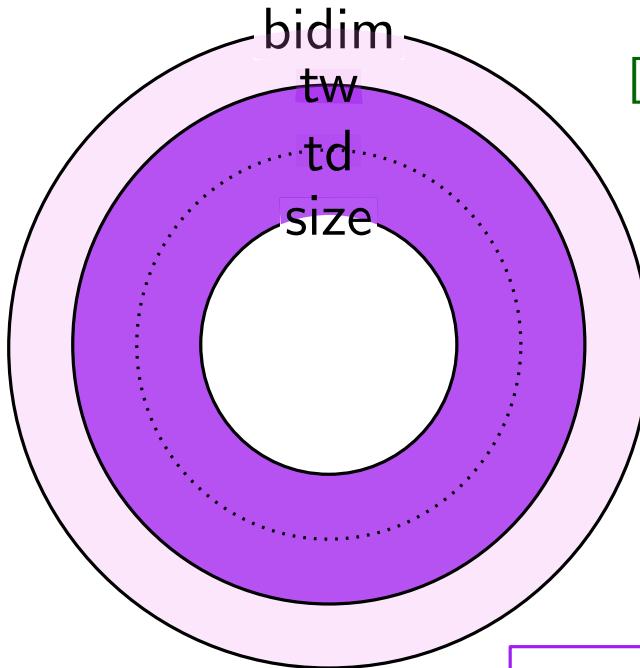
[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .



Limit of the irrelevant vertex technique



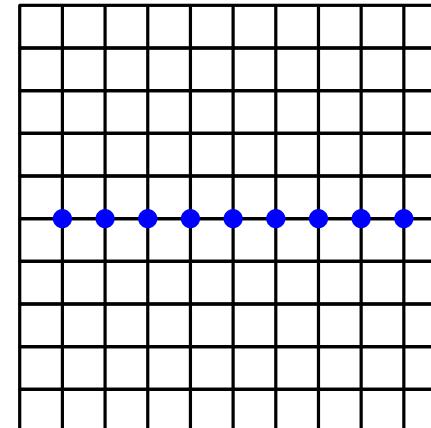
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

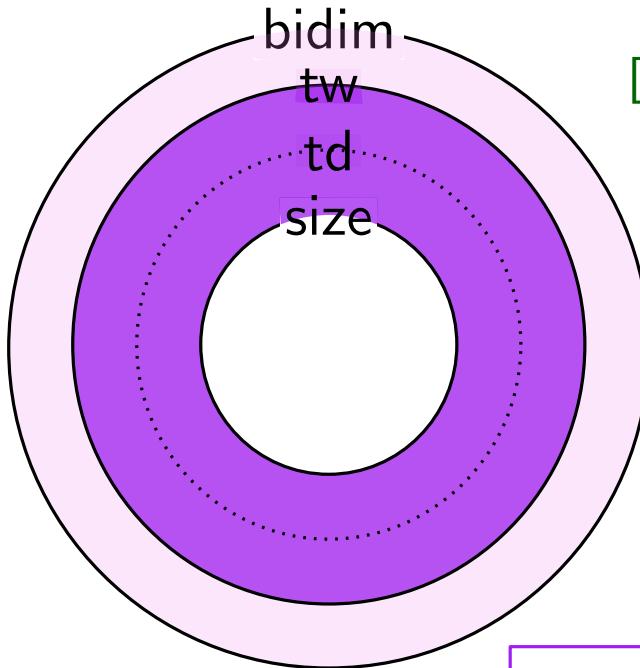
[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .



Limit of the irrelevant vertex technique



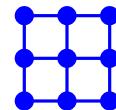
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

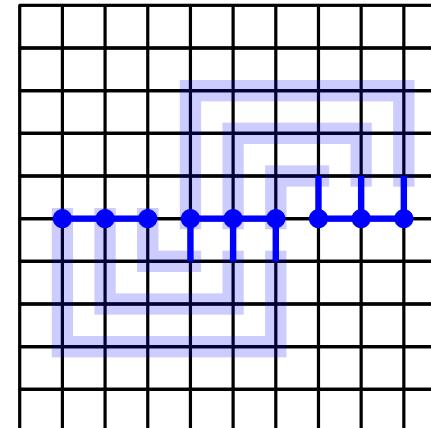
[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

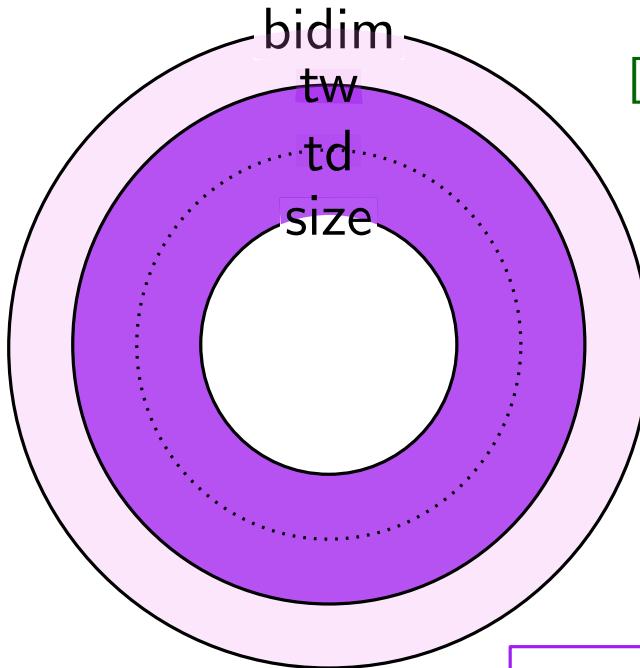
$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .



$\text{bidim}(G, S) = k$



Limit of the irrelevant vertex technique



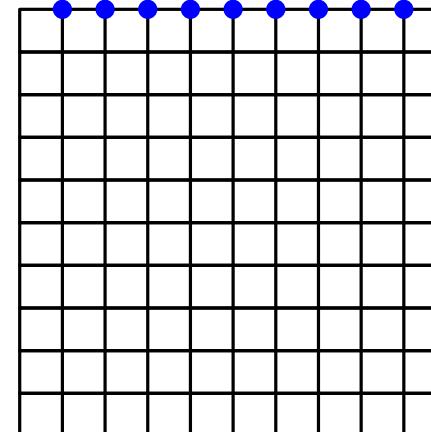
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

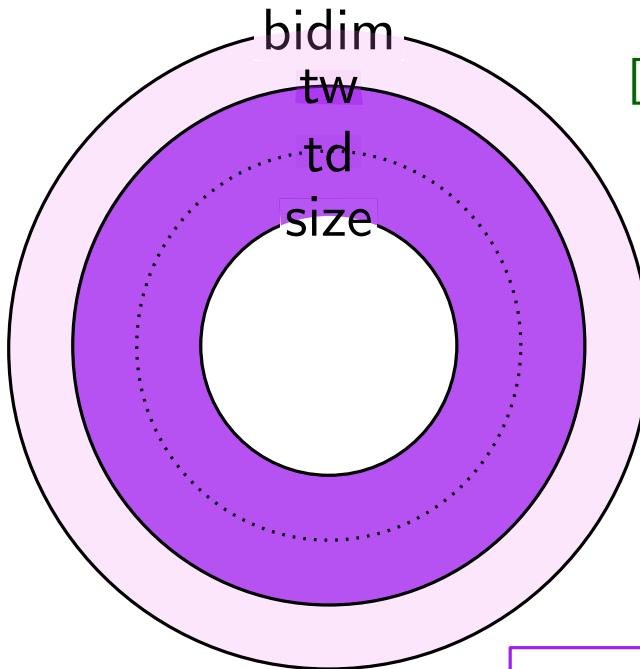
[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .



Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

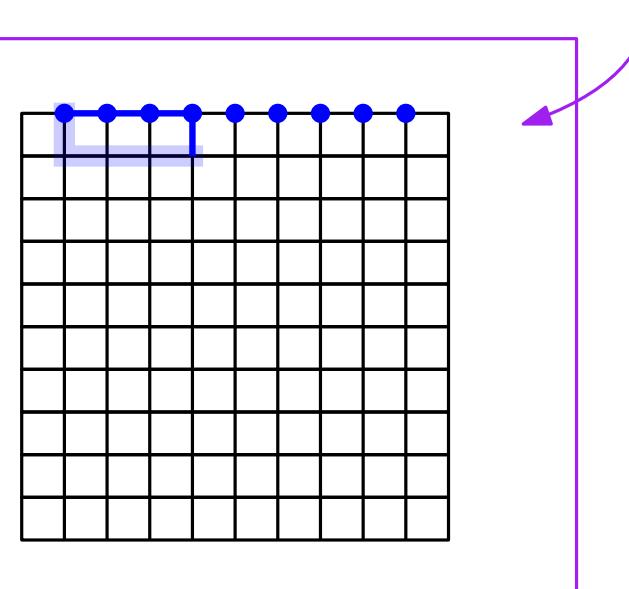
For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

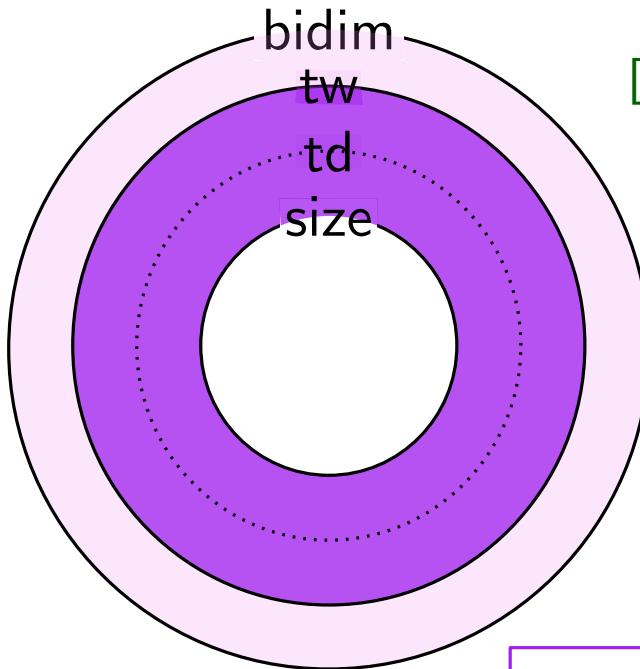
For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .

$\text{bidim}(G, S) = 2$



Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

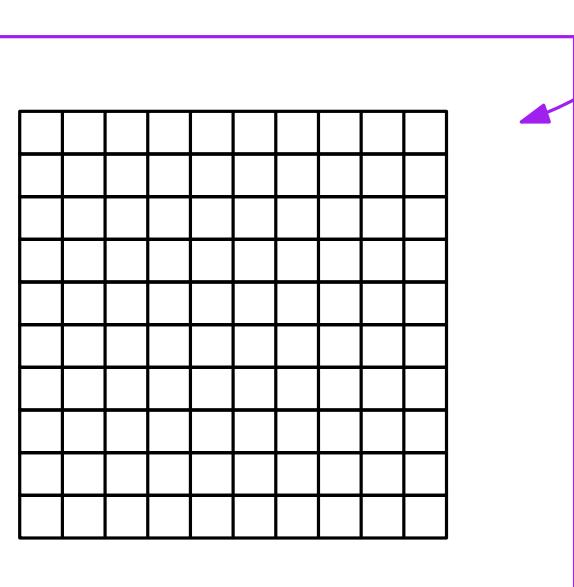
For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

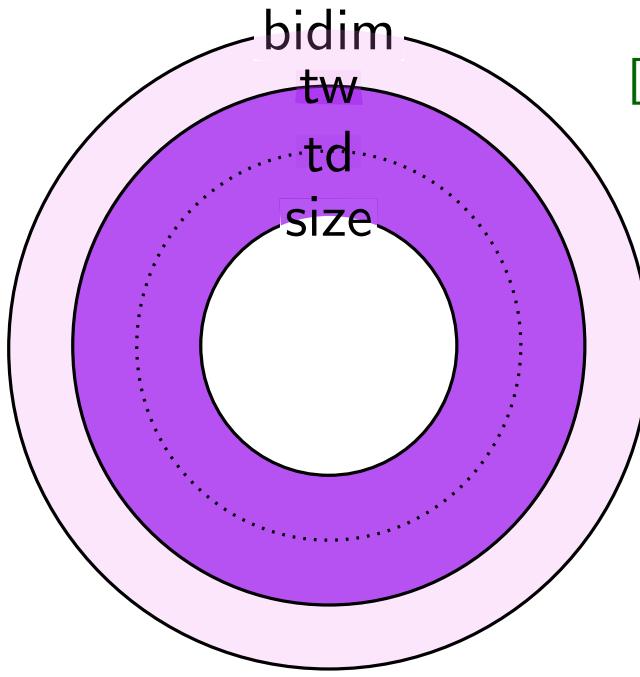
For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded bidimensionality.

$\text{bidim}(G, S) =$
max treewidth of an
 S -minor of G .

“max size of a grid
grasped by S ”



Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

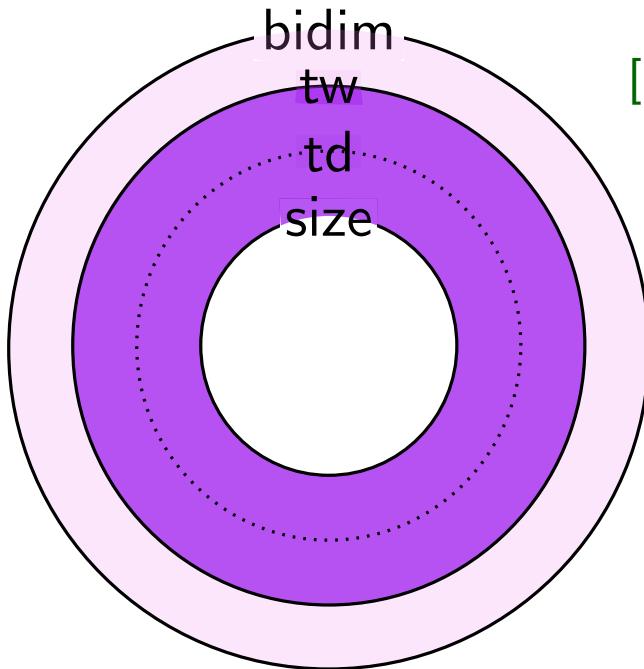
For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Any **graph modification problem** where:

- the **modulator** has bounded bidimensionality
- the **target class** is minor-closed
- the set of allowed **modifications** is expressible in CMSO logic

can be solved in time $f(k) \cdot n^2$, for some computable f .

Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

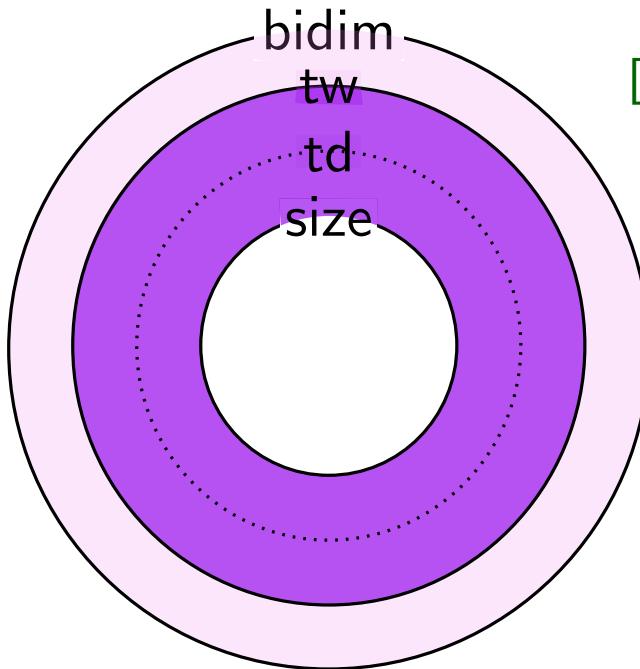
Any **graph modification problem** where:

- the **modulator** has **bounded bidimensionality**
- the **target class** is **minor-closed**
- the set of allowed **modifications** is expressible in **CMSO logic**

can be solved in time $f(k) \cdot n^2$, for some computable f .

variables v, e, V, E
quantifiers \forall, \exists
connectives $\wedge, \vee, \Rightarrow, \neg, \in$
relations $\text{inc}(\cdot), |\cdot| = q \pmod r$

Limit of the irrelevant vertex technique



[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

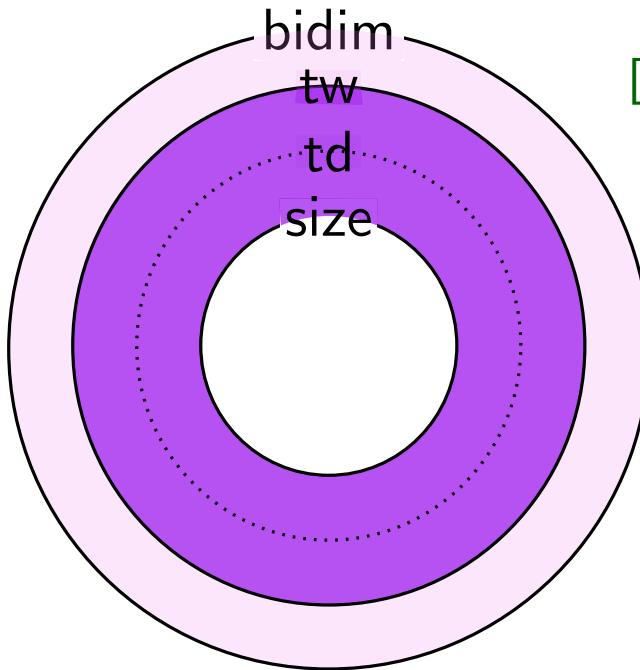
For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Irrelevant vertex technique **requires**:

Limit of the irrelevant vertex technique



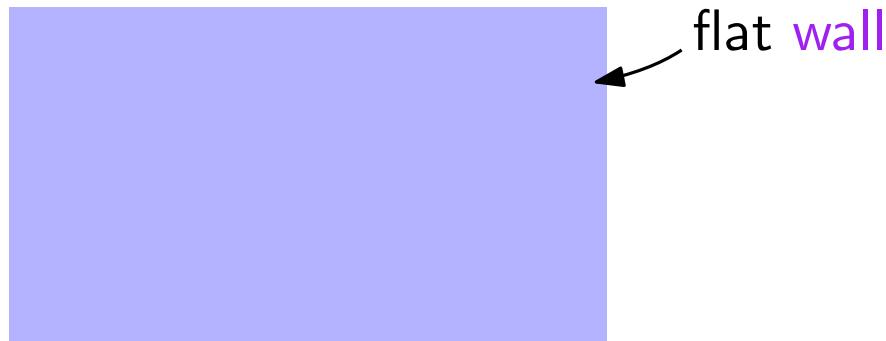
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-}p$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

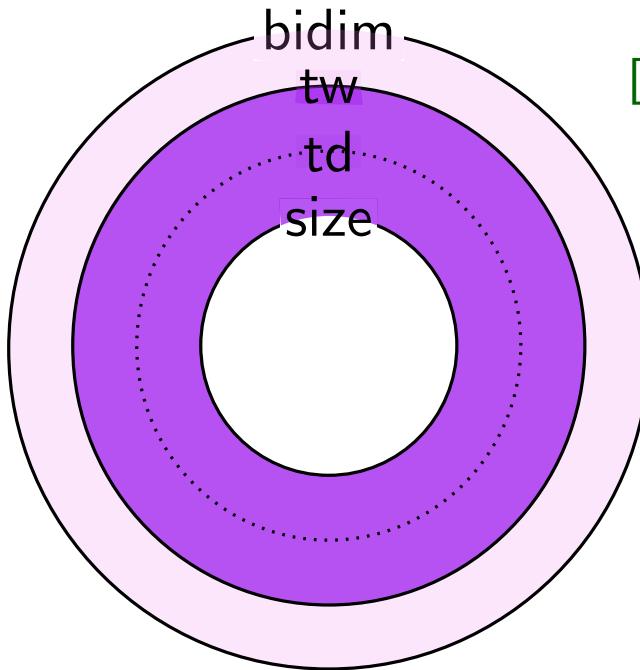
[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Irrelevant vertex technique **requires**:



Limit of the irrelevant vertex technique



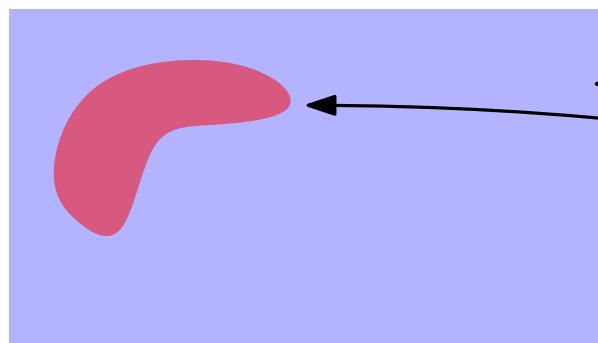
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

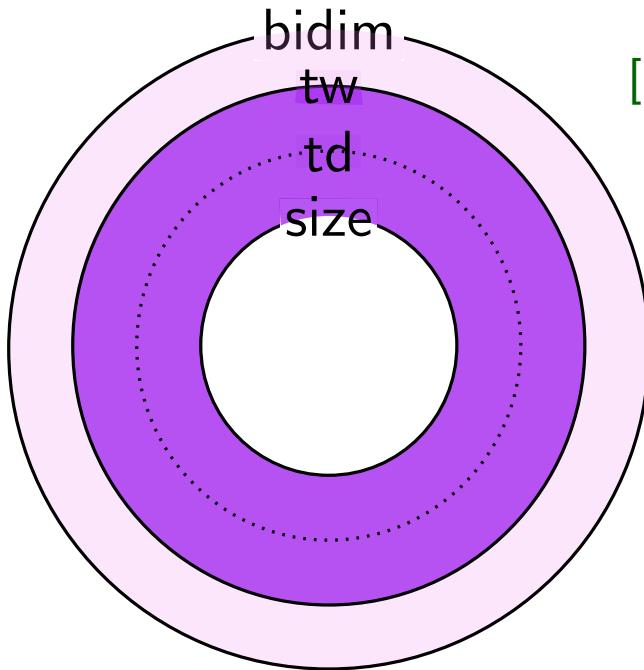
Irrelevant vertex technique **requires**:



flat wall

no matter how we delete/modify the modulator

Limit of the irrelevant vertex technique



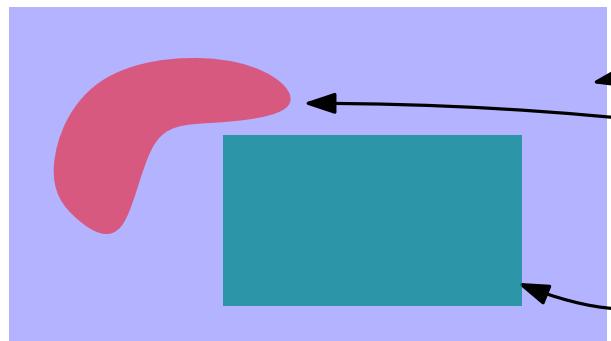
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Irrelevant vertex technique **requires**:

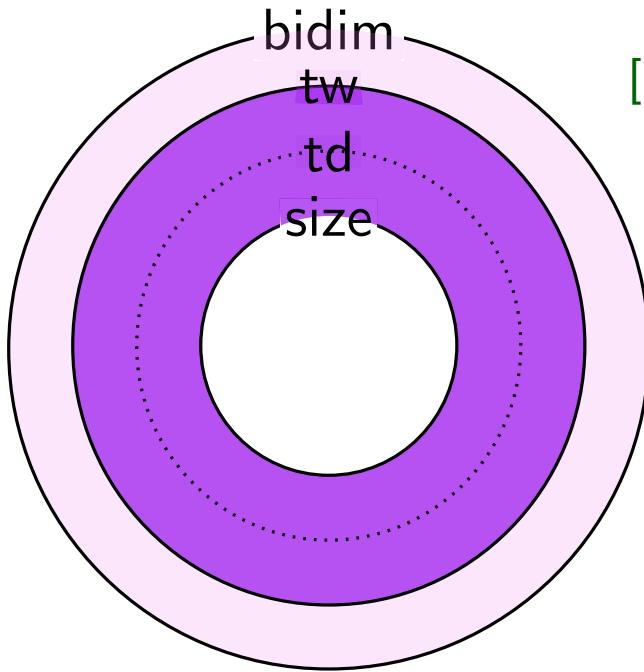


flat wall

no matter how we delete/modify the modulator

there is a big enough subwall that is not modified.

Limit of the irrelevant vertex technique



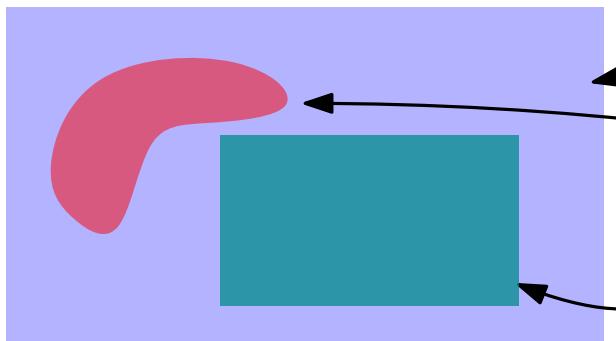
[Fomin, Golovach, Sau, Stamoulis, Thilikos, '23]

For \mathcal{H} minor-closed, the irrelevant vertex technique works for any parameter $\mathcal{H}\text{-p}$ such that $\text{size} \geq p \geq \text{tw}$. “up to modulators of bounded tw”

[Sau, Stamoulis, Thilikos, '25]

For \mathcal{H} minor-closed, the irrelevant vertex technique works up to modulators of bounded **bidimensionality**.

Irrelevant vertex technique **requires**:



flat wall

no matter how we delete/modify the modulator

there is a big enough subwall that is not modified. **false** when **unbounded bidimensionality**

Breaking the limit

Breaking the limit

How to solve a graph modification problem where the modulator has unbounded bidimensionality?

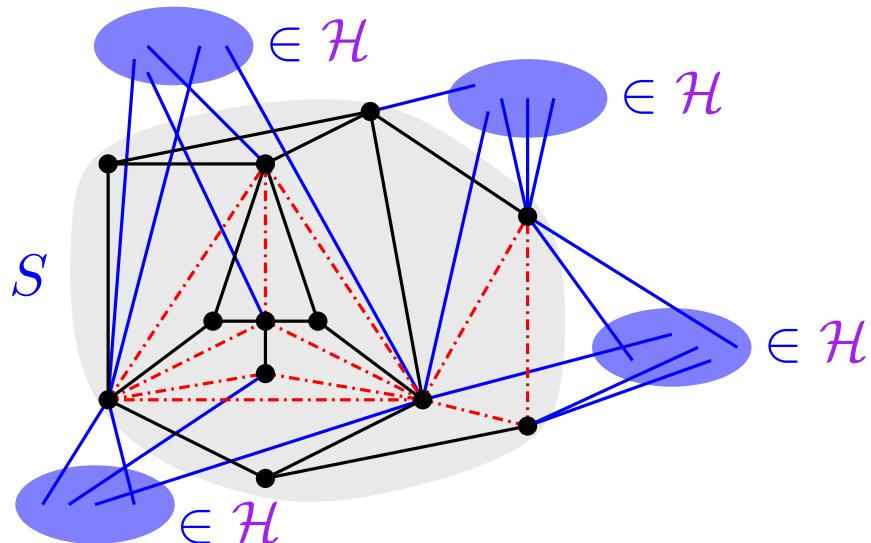
Breaking the limit

How to solve a graph modification problem where the modulator has unbounded bidimensionality?

\mathcal{H} -PLANARITY

Input: A graph G .

Output: Is there a vertex set S whose torso is **planar** and s.t. the connected components of $G - S$ are in \mathcal{H} ?



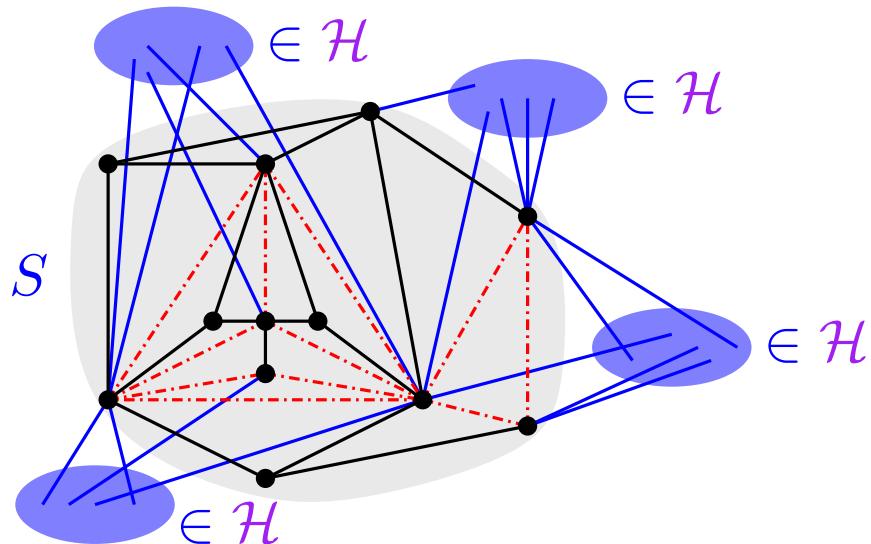
Breaking the limit

How to solve a graph modification problem where the modulator has unbounded bidimensionality?

\mathcal{H} -PLANARITY

Input: A graph G .

Output: Is there a vertex set S whose torso is **planar** and s.t. the connected components of $G - S$ are in \mathcal{H} ?



[Fomin, Golovach, Morelle, Thilikos]

If \mathcal{H} is hereditary, CMSO-definable, and decidable in time $\mathcal{O}(n^c)$, then \mathcal{H} -PLANARITY is solvable in time $\mathcal{O}(n^4 + n^c \log n)$.

Breaking the limit

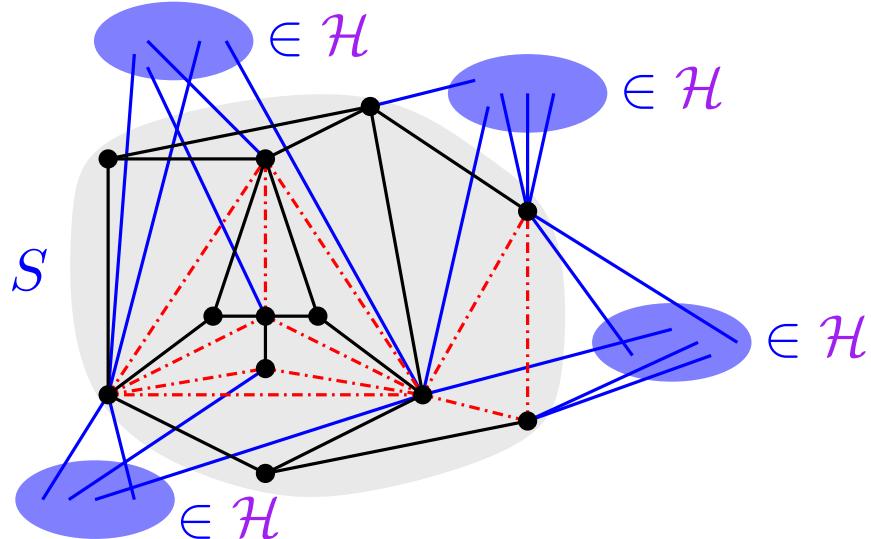
How to solve a graph modification problem where the modulator has unbounded bidimensionality?

\mathcal{H} -PLANARITY

Input: A graph G .

Output: Is there a vertex set S whose torso is **planar** and s.t. the connected components of $G - S$ are in \mathcal{H} ?

if $G \in \mathcal{H}$, then $G - v \in \mathcal{H}$



[Fomin, Golovach, Morelle, Thilikos]

If \mathcal{H} is hereditary, CMSO-definable, and decidable in time $\mathcal{O}(n^c)$, then \mathcal{H} -PLANARITY is solvable in time $\mathcal{O}(n^4 + n^c \log n)$.

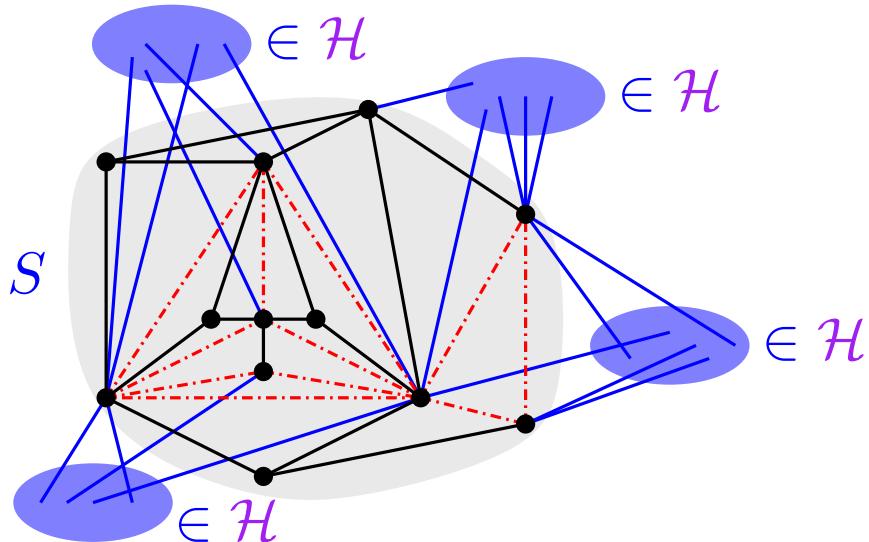
Breaking the limit

How to solve a graph modification problem where the modulator has unbounded bidimensionality?

\mathcal{H} -PLANARITY

Input: A graph G .

Output: Is there a vertex set S whose torso is **planar** and s.t. the connected components of $G - S$ are in \mathcal{H} ?



more general than minor-closed
[Fomin, Golovach, Morelle, Thilikos]
If \mathcal{H} is hereditary, CMSO-definable, and
decidable in time $\mathcal{O}(n^c)$,
then \mathcal{H} -PLANARITY is solvable in time
 $\mathcal{O}(n^4 + n^c \log n)$.

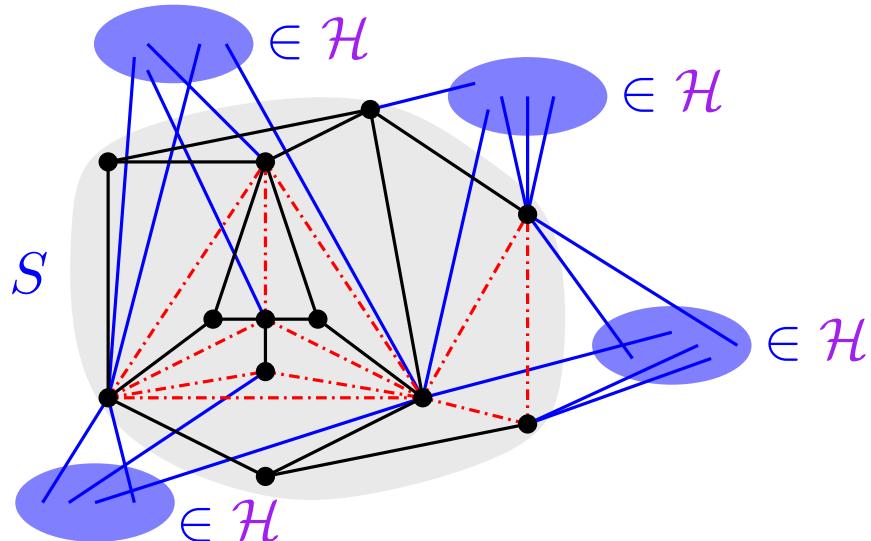
Breaking the limit

How to solve a graph modification problem where the modulator has unbounded bidimensionality?

\mathcal{H} -PLANARITY

Input: A graph G .

Output: Is there a vertex set S whose torso is **planar** and s.t. the connected components of $G - S$ are in \mathcal{H} ?



more general than minor-closed
[Fomin, Golovach, Morelle, Thilikos]

If \mathcal{H} is hereditary, CMSO-definable, and decidable in time $\mathcal{O}(n^c)$, then \mathcal{H} -PLANARITY is solvable in time $\mathcal{O}(n^4 + n^c \log n)$.

→ new irrelevant vertex technique

Sketch of the proof

Sketch of the proof

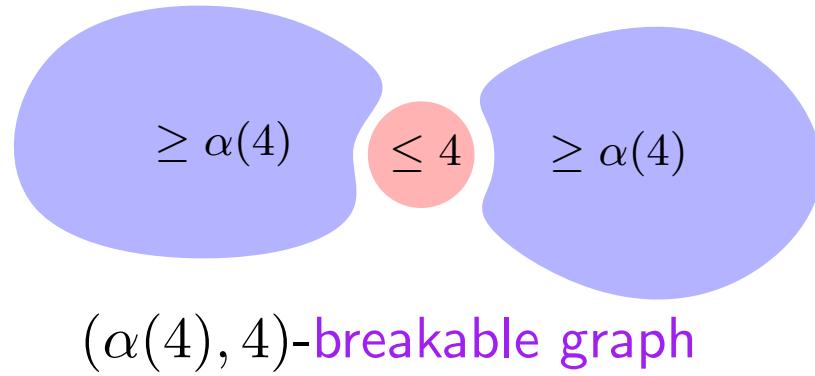
[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

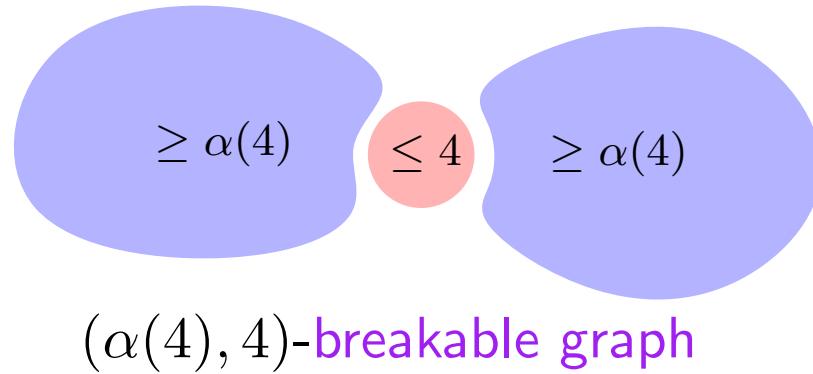
It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



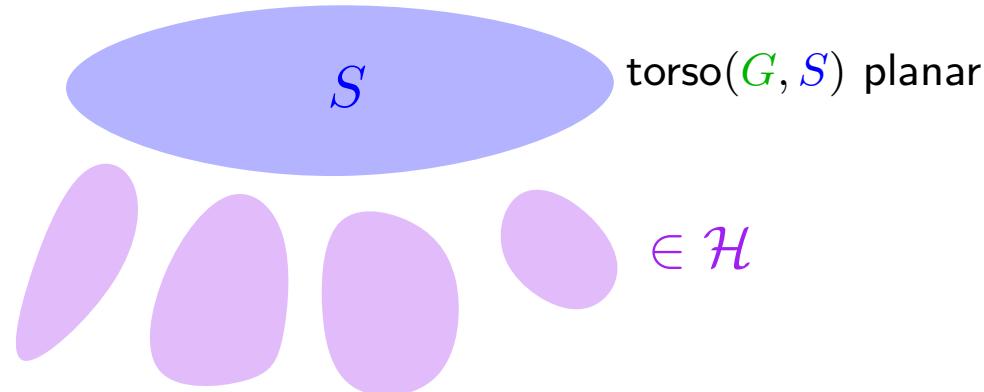
Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



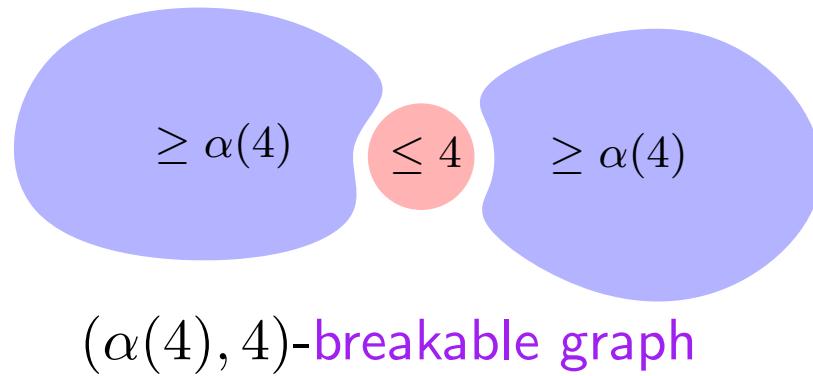
\mathcal{H} -planar graph



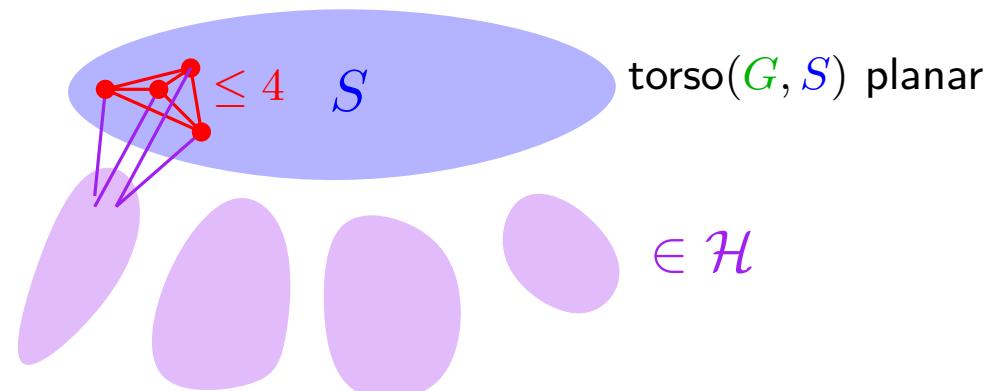
Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



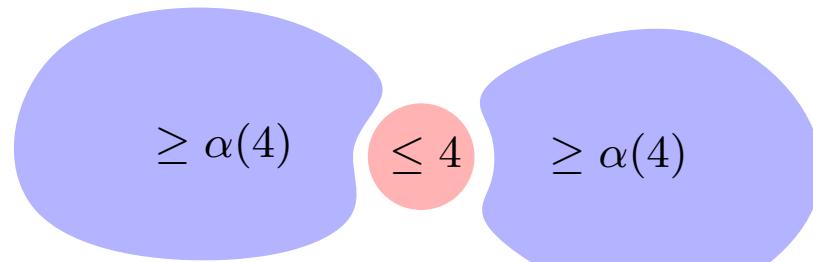
\mathcal{H} -**planar** graph



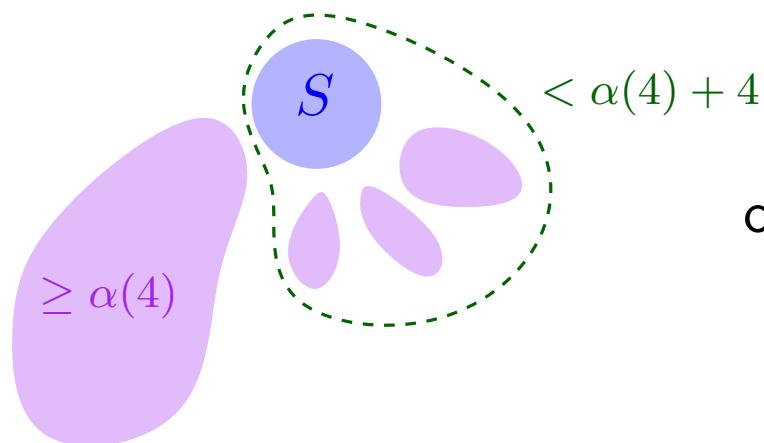
Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

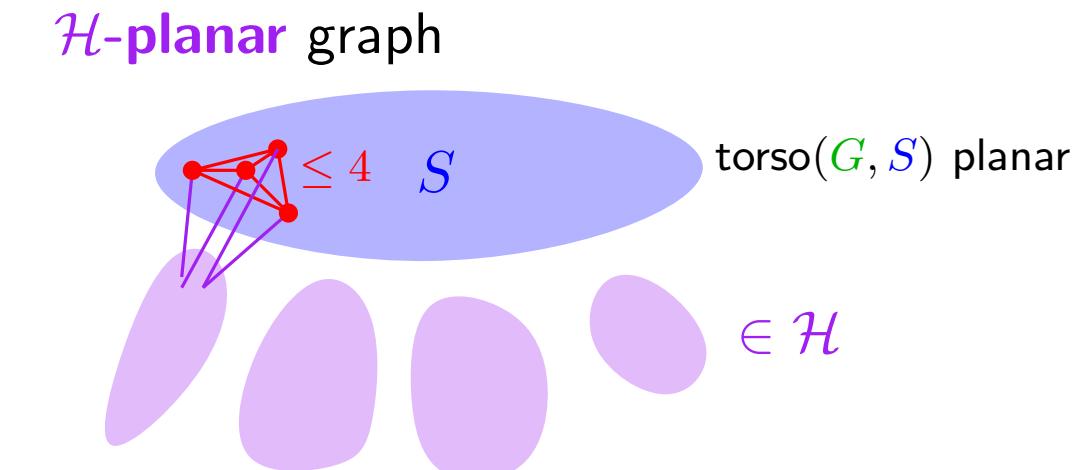
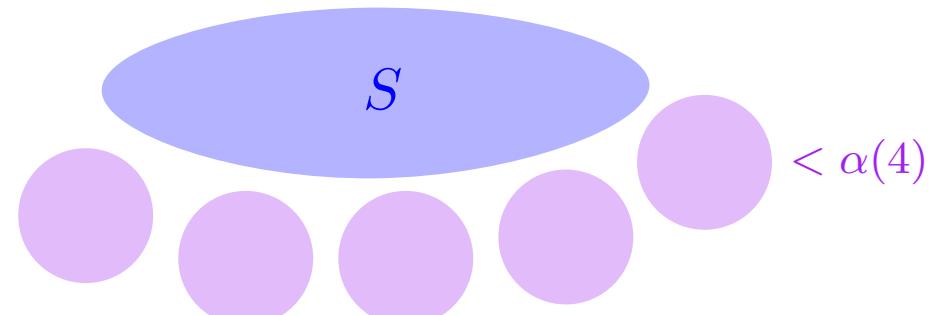
It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



$(\alpha(4), 4)$ -breakable graph



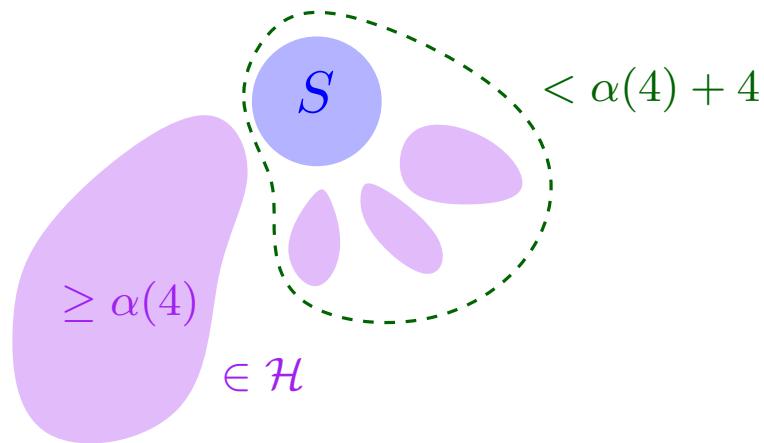
or



Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

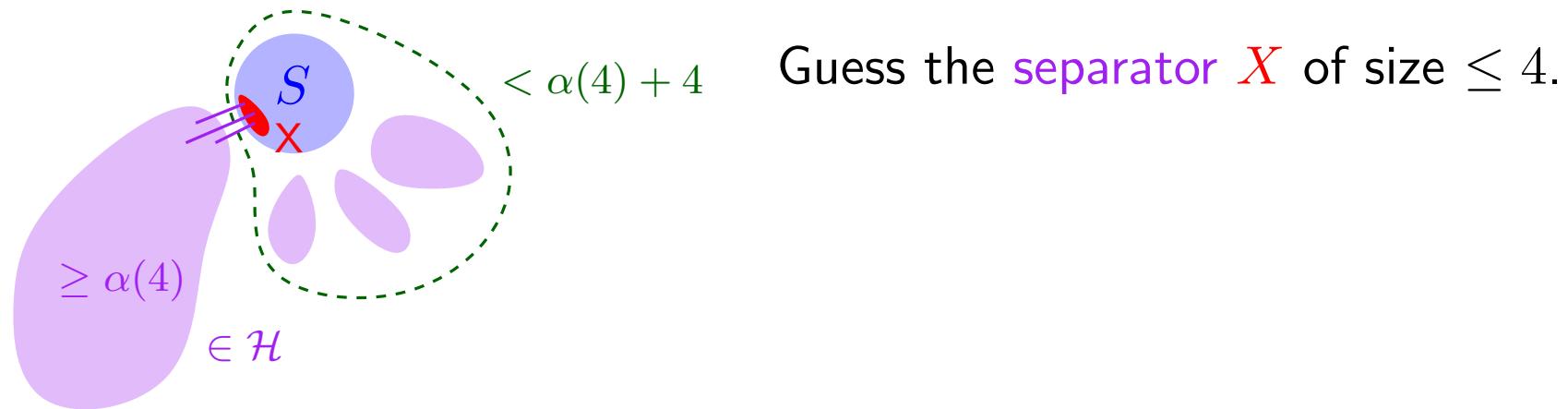
It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

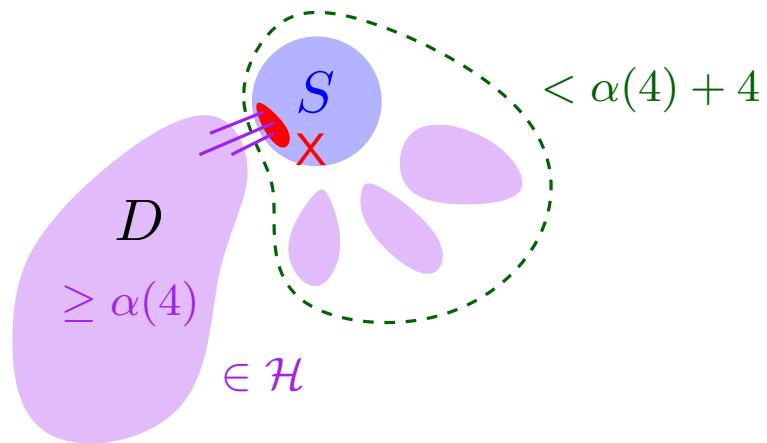
It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

It suffices to prove the result on $(\alpha(4), 4)$ -**unbreakable graphs**.



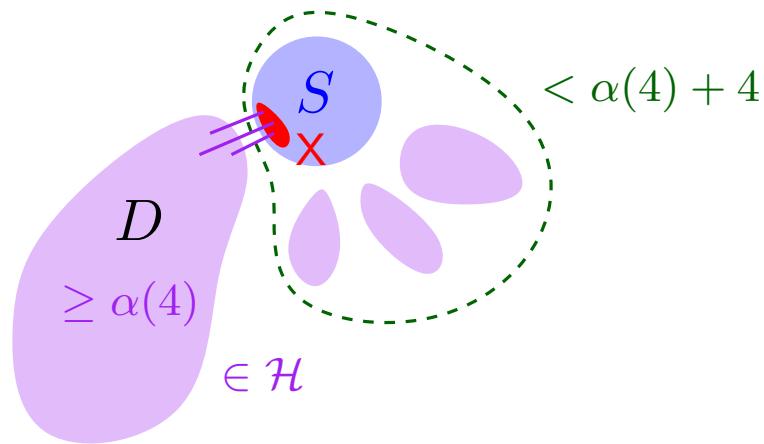
Guess the separator X of size ≤ 4 .

Check if there is a unique component D in $G - X$ of size $\geq \alpha(4)$.

Sketch of the proof

[Lokshtanov, Ramanujan, Saurabh, Zehavi, '18]

It suffices to prove the result on $(\alpha(4), 4)$ -unbreakable graphs.

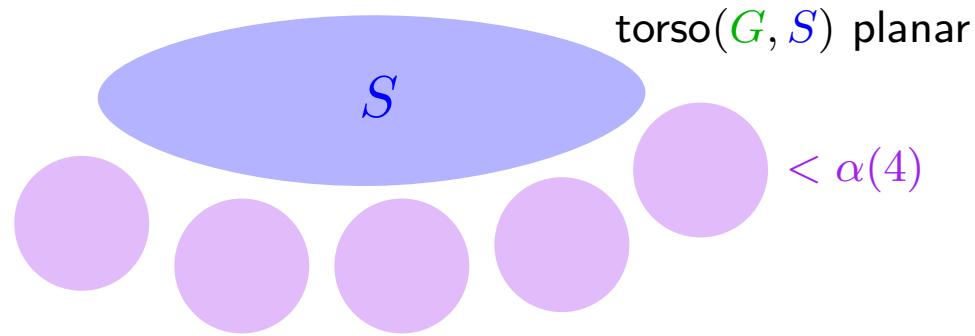


Guess the separator X of size ≤ 4 .

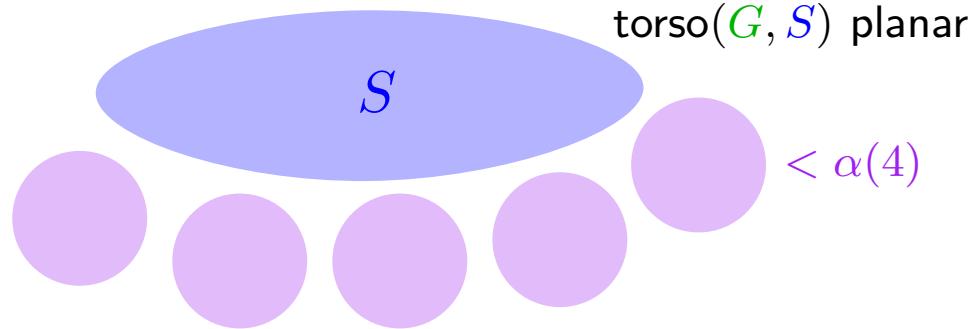
Check if there is a unique component D in $G - X$ of size $\geq \alpha(4)$.

Guess the set $S \supseteq X$ in $G - D$ and check if the torso of S is planar and if the components of $G - S$ are in \mathcal{H} .

Sketch of the proof

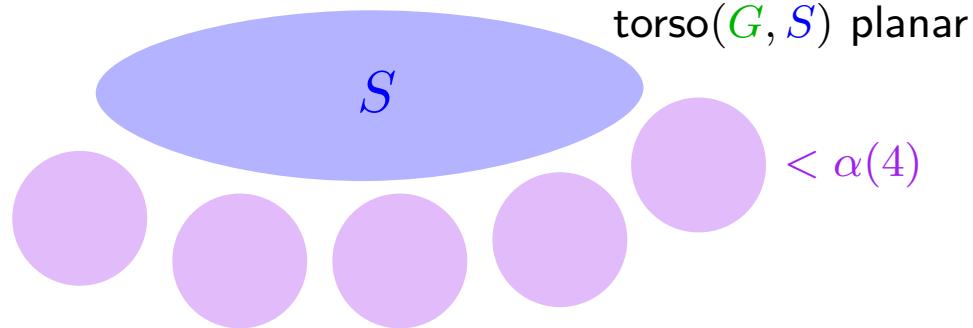


Sketch of the proof



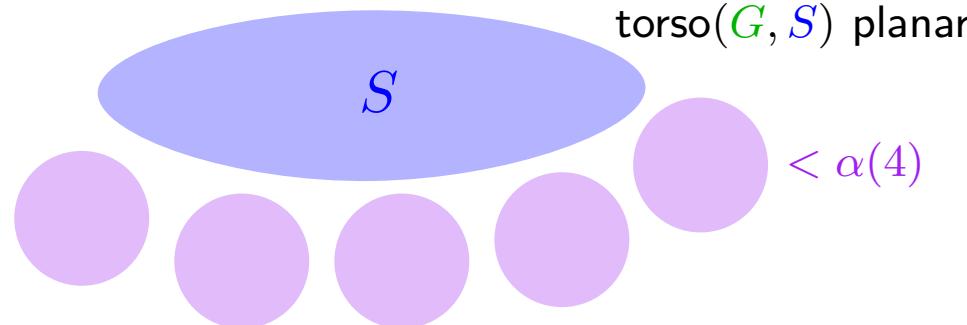
SMALL-LEAVES \mathcal{H} -PLANARITY

Sketch of the proof



SMALL-LEAVES \mathcal{H} -PLANARITY
Restate the problem

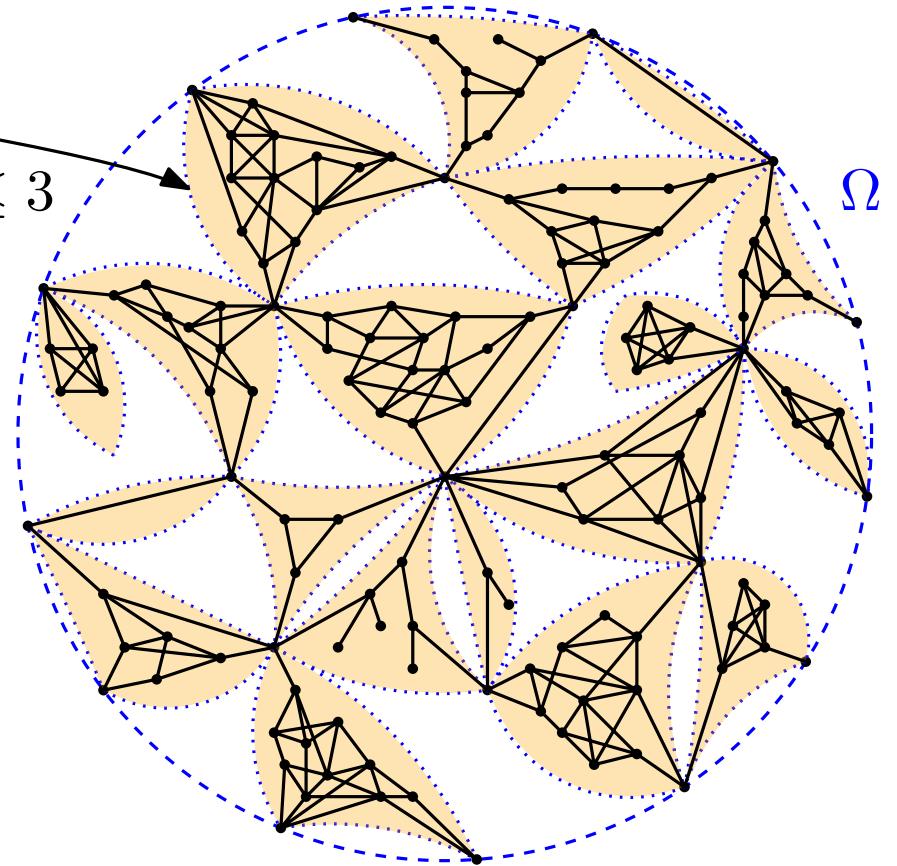
Sketch of the proof



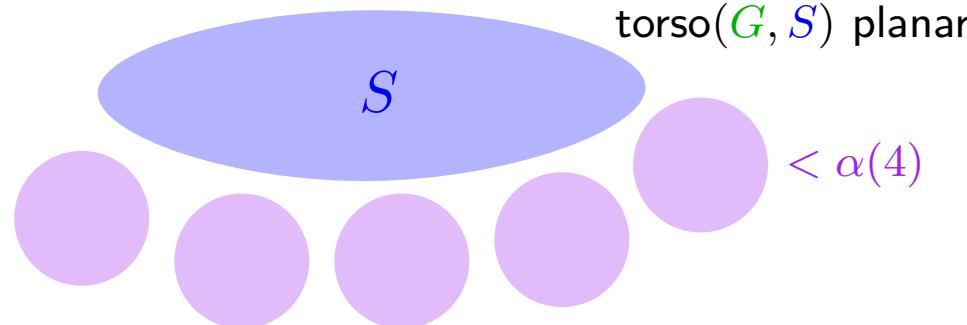
SMALL-LEAVES \mathcal{H} -PLANARITY
Restate the problem

Rendition of (G, Ω)

cell
boundary ≤ 3



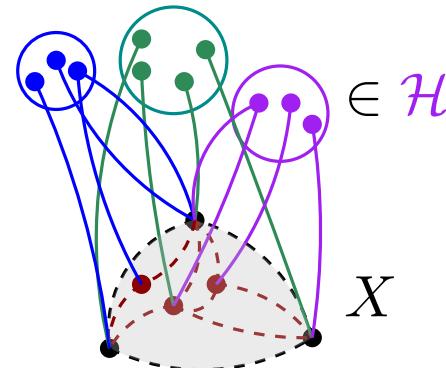
Sketch of the proof



G is a yes-instance

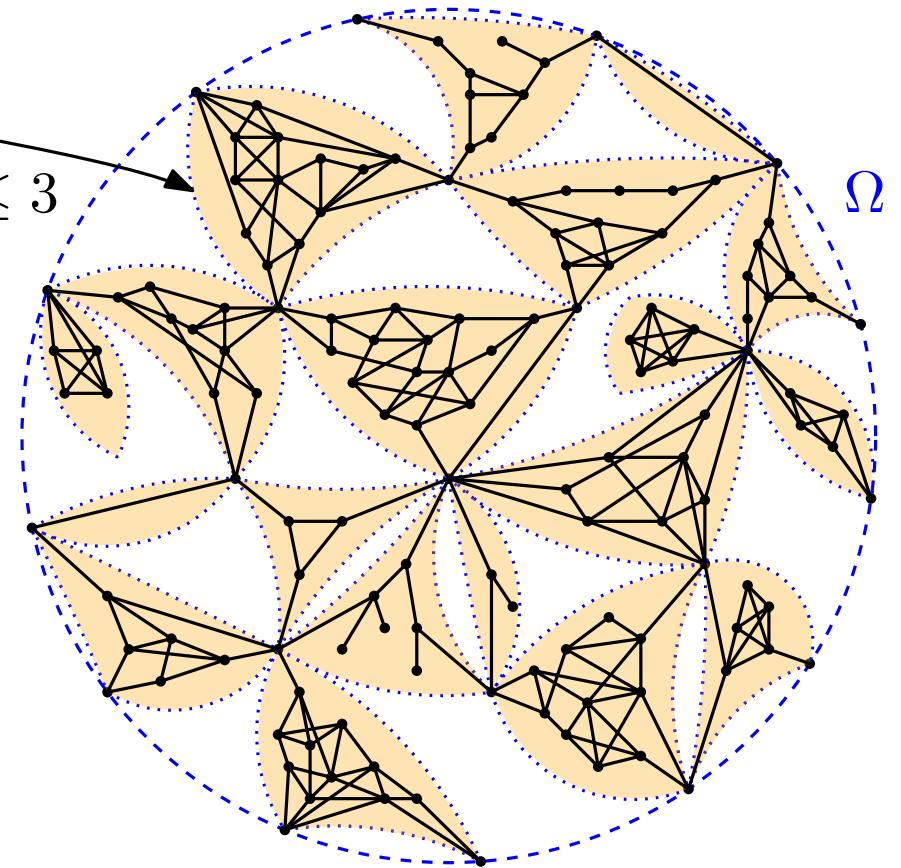
\Leftrightarrow

G has a rendition whose cells are **\mathcal{H} -compatible**.

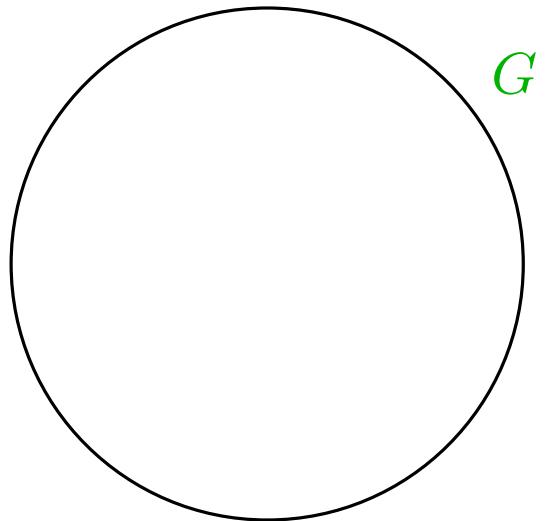


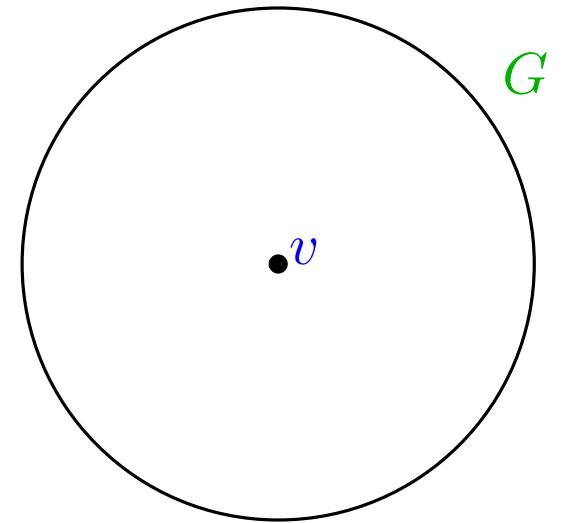
SMALL-LEAVES \mathcal{H} -PLANARITY
Restate the problem

Rendition of (G, Ω)



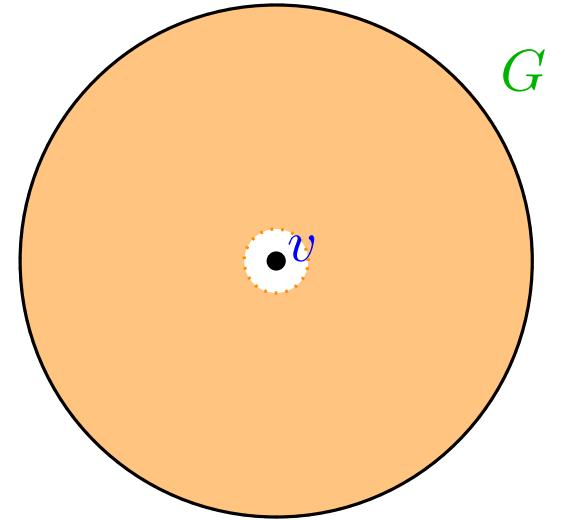
Idea:





Idea:

Pick a vertex v .

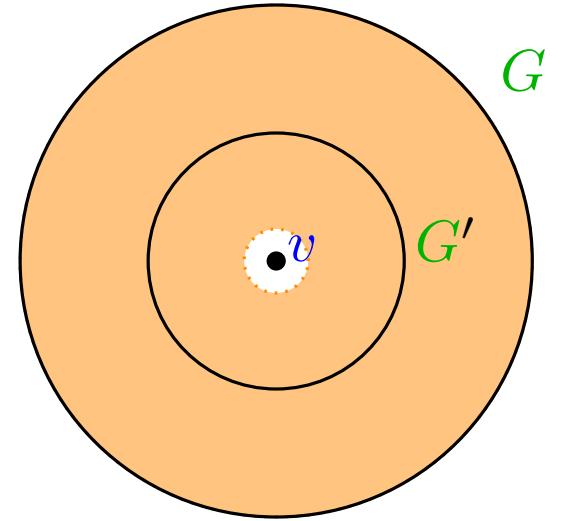


Idea:

Pick a vertex v .

Solve recursively on $G - v$.

Rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.



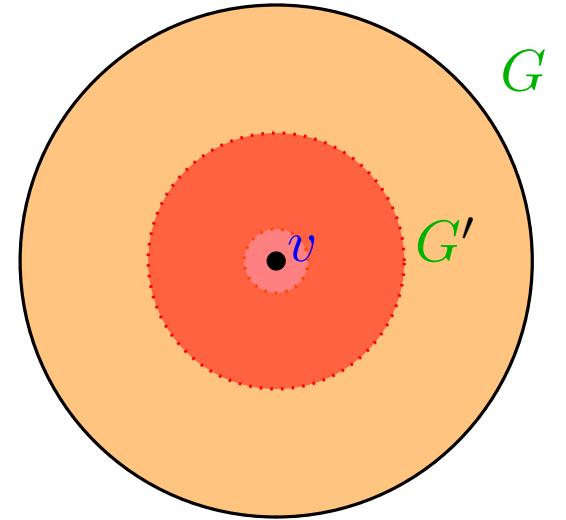
Idea:

Pick a vertex v .

Solve recursively on $G - v$.

Rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.



Idea:

Pick a vertex v .

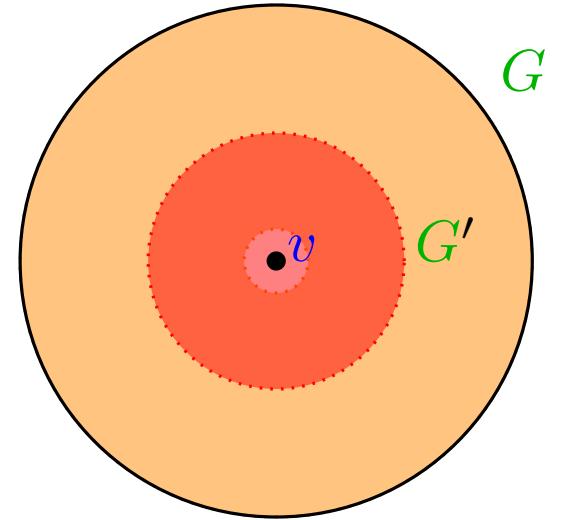
Solve recursively on $G - v$.

Rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Idea:

Pick a vertex v .

Solve recursively on $G - v$.

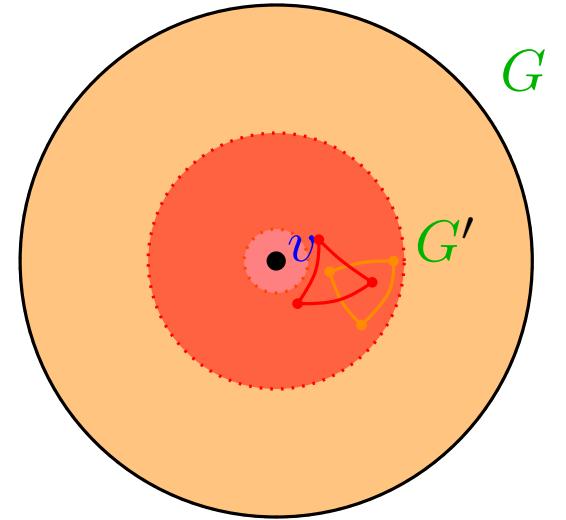
Rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

→ want to combine ρ_1 and ρ_2 into a rendition of G whose cells are \mathcal{H} -compatible.



Idea:

Pick a vertex v .

Solve recursively on $G - v$.

Rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

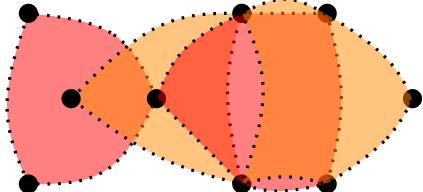
Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

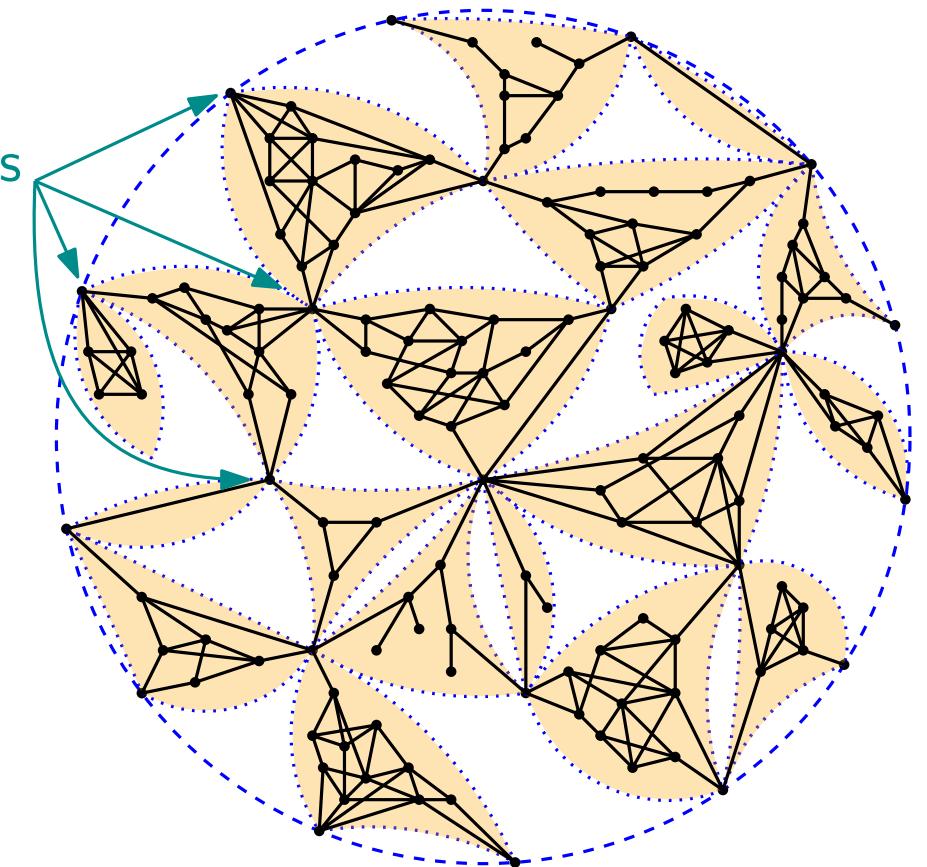
→ want to combine ρ_1 and ρ_2 into a rendition of G whose cells are \mathcal{H} -compatible.

Problem: How to glue correctly?

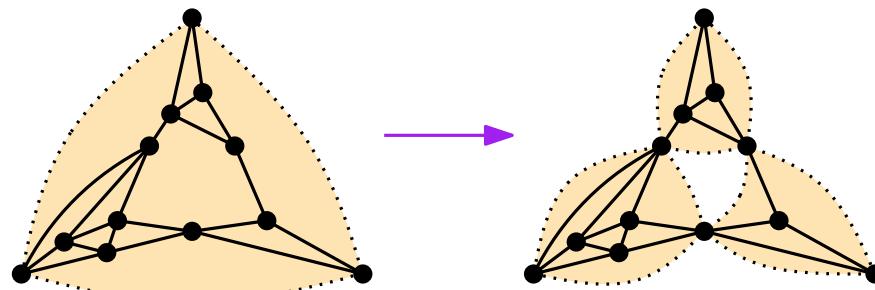


no “canonical rendition” of a graph

ground vertices



ground-maximal rendition:
cannot add more vertices to the ground

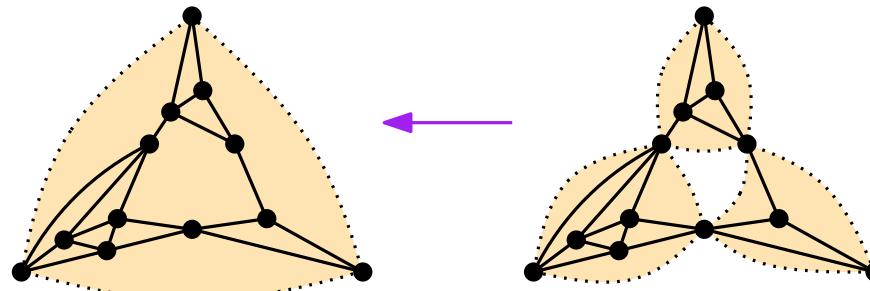
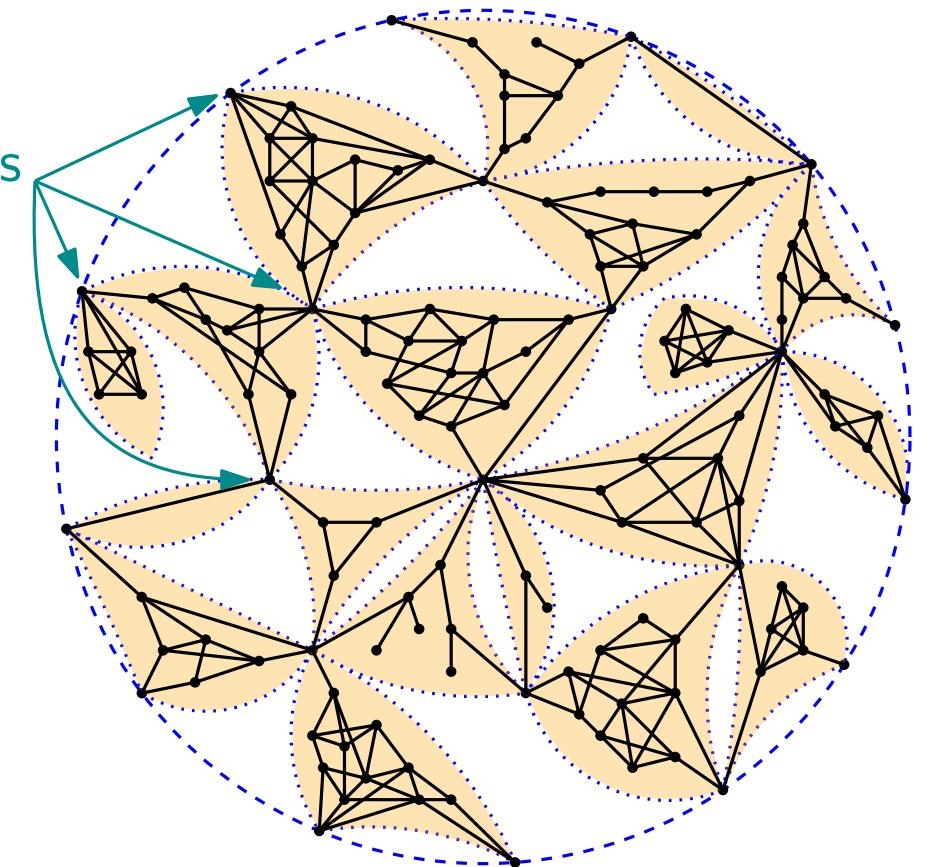


ground vertices



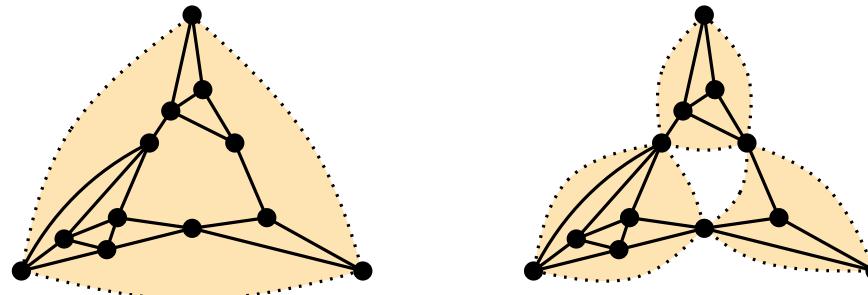
ground vertices

ground-maximal rendition:
cannot add more vertices to the ground

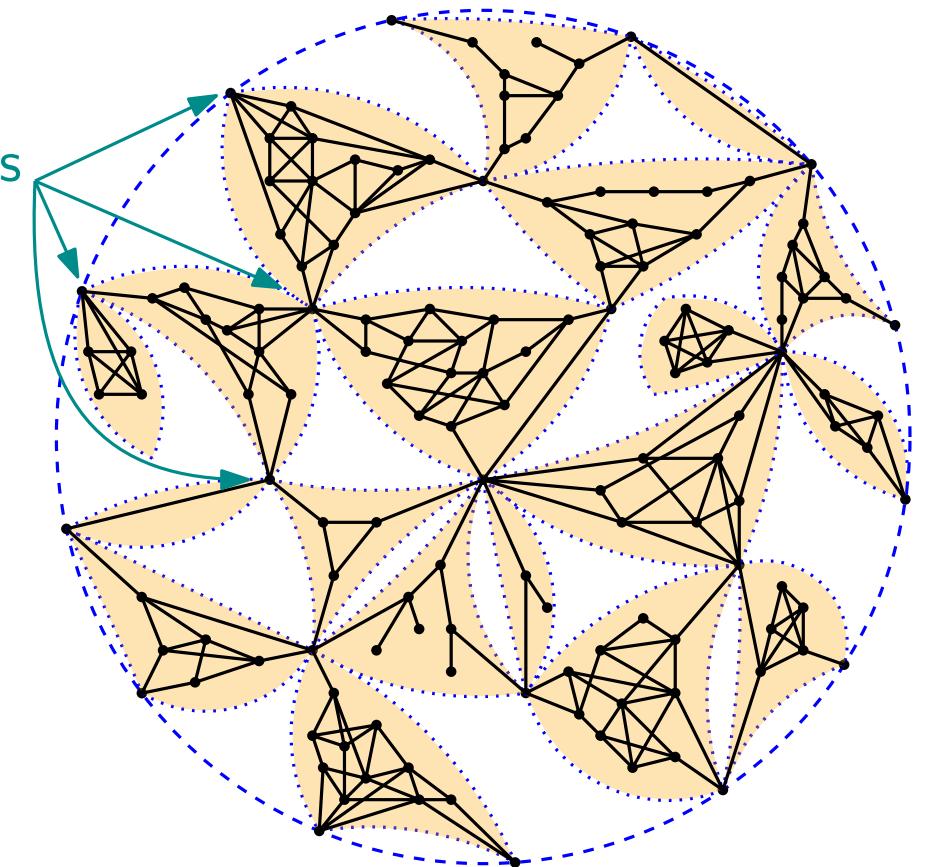


ground-minimal rendition:
cannot remove more vertices from the ground

ground-maximal rendition:
cannot add more vertices to the ground

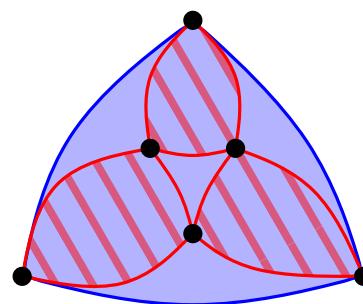


ground vertices



ground-minimal rendition:
cannot remove more vertices from the ground

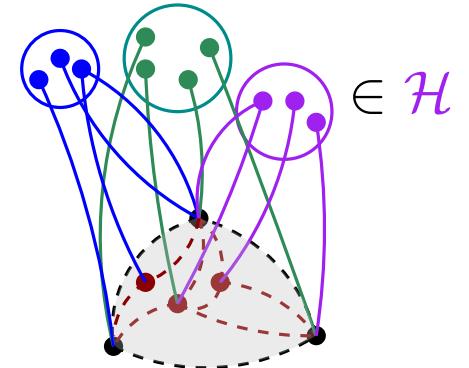
Every cell of **ground-maximal** rendition is **contained** in a cell of a **ground-minimal** rendition.



G is a **yes**-instance of SMALL-LEAVES \mathcal{H} -PLANARITY

\Leftrightarrow

G has a **rendition** whose cells are \mathcal{H} -**compatible**.



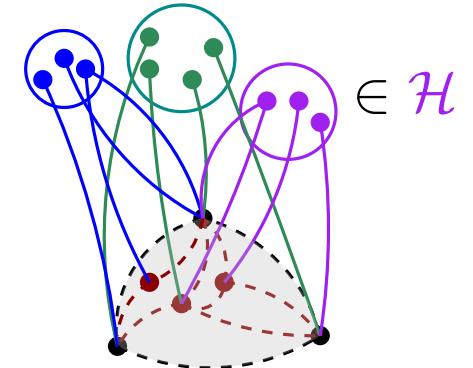
G is a yes-instance of SMALL-LEAVES \mathcal{H} -PLANARITY

\Leftrightarrow

G has a rendition whose cells are \mathcal{H} -compatible.

\Leftrightarrow

G has a ground-maximal rendition whose cells are \mathcal{H} -compatible.



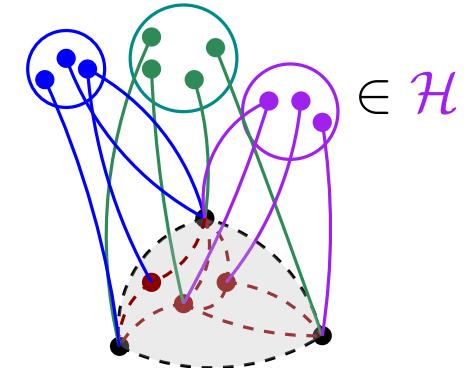
G is a **yes**-instance of SMALL-LEAVES \mathcal{H} -PLANARITY

\Leftrightarrow

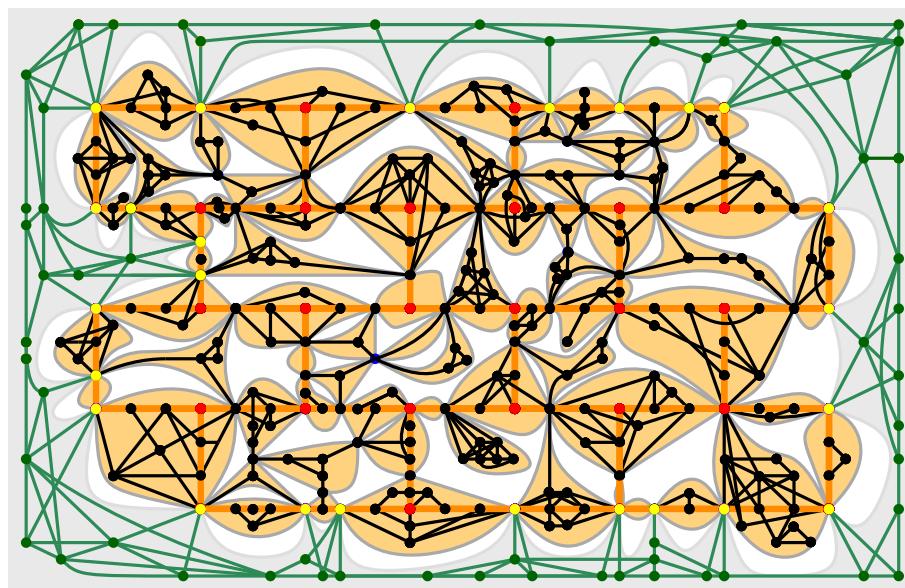
G has a **rendition** whose cells are \mathcal{H} -**compatible**.

\Leftrightarrow

G has a **ground-maximal rendition** whose cells are \mathcal{H} -**compatible**.



flat wall



[figure by Dimitrios M. Thilikos]

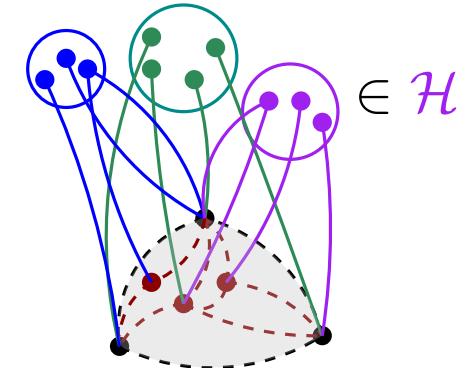
G is a **yes**-instance of SMALL-LEAVES \mathcal{H} -PLANARITY

\Leftrightarrow

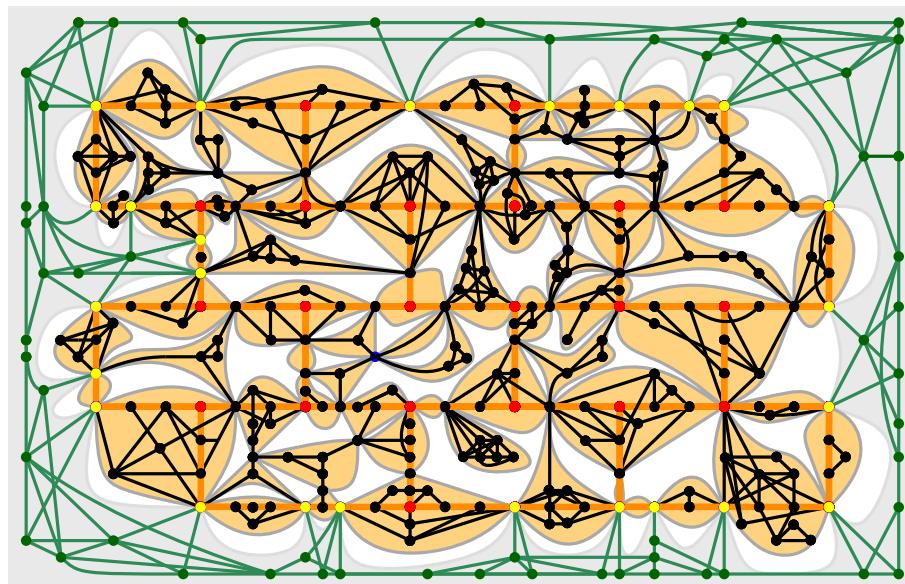
G has a **rendition** whose cells are \mathcal{H} -**compatible**.

\Leftrightarrow

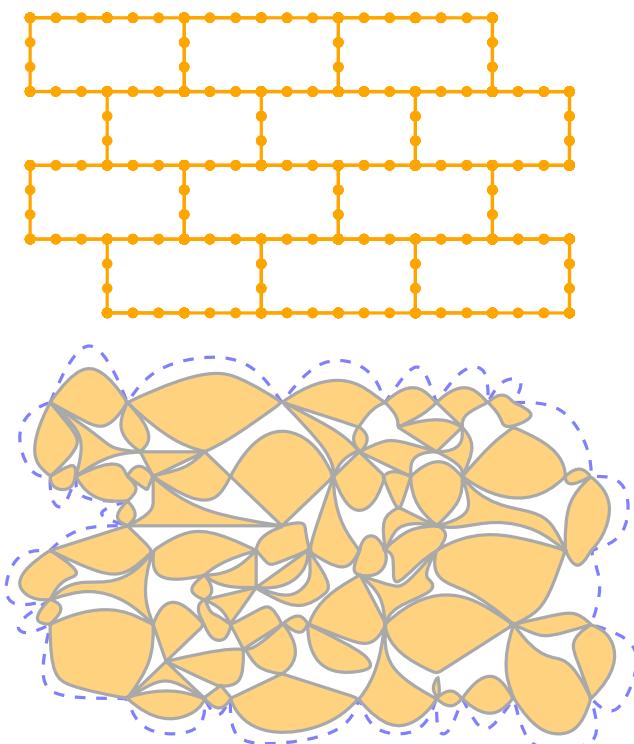
G has a **ground-maximal rendition** whose cells are \mathcal{H} -**compatible**.



flat wall = wall + rendition



[figure by Dimitrios M. Thilikos]



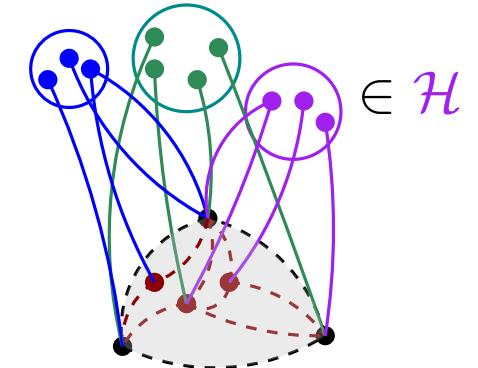
G is a **yes**-instance of SMALL-LEAVES \mathcal{H} -PLANARITY

\Leftrightarrow

G has a **rendition** whose cells are \mathcal{H} -**compatible**.

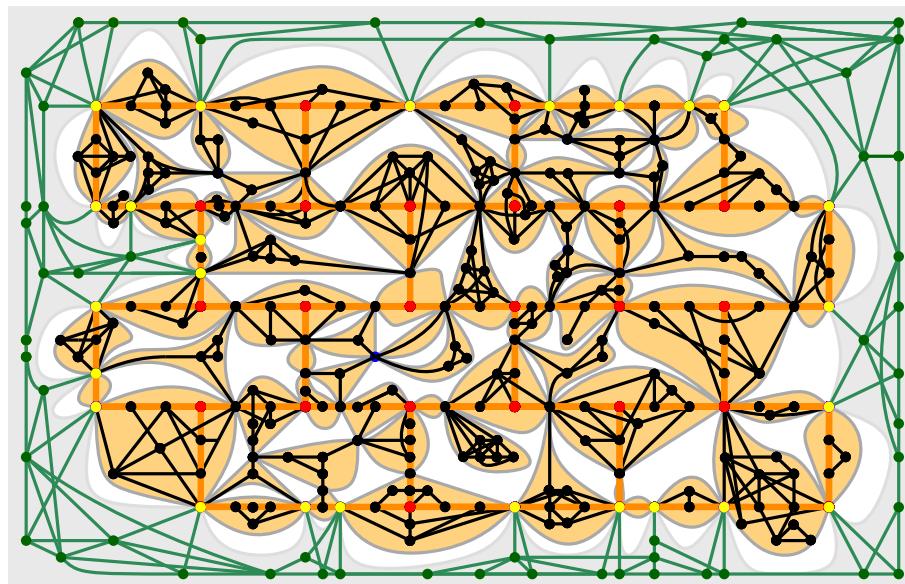
\Leftrightarrow

G has a **ground-maximal rendition** whose cells are \mathcal{H} -**compatible**.

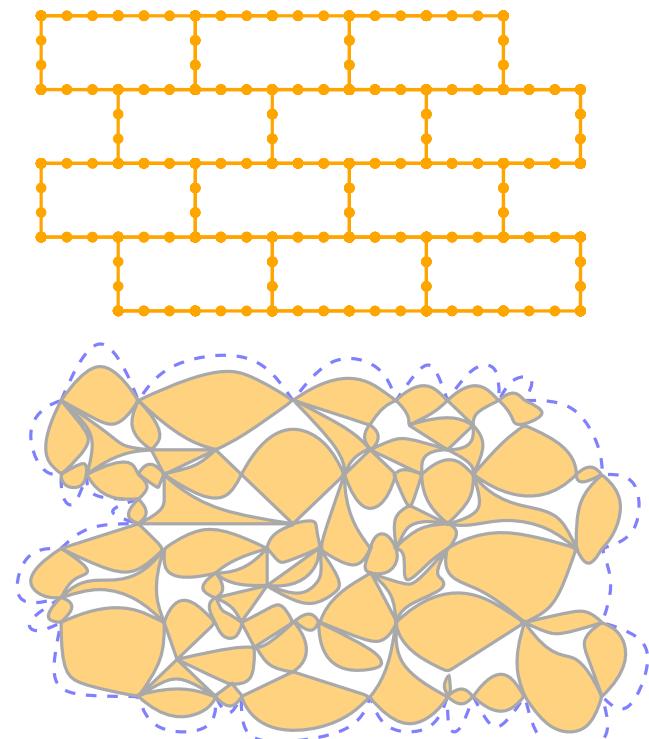


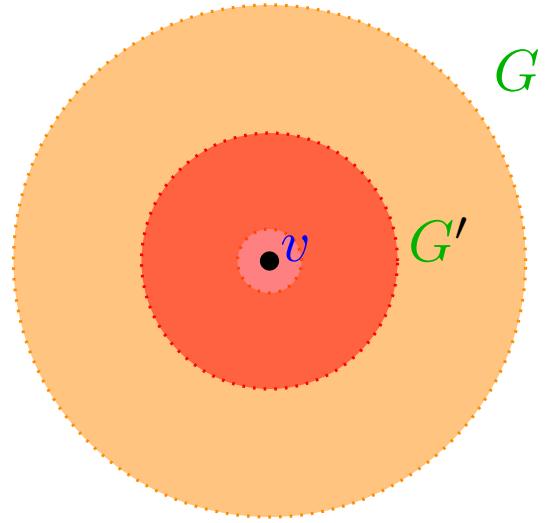
flat wall = wall + rendition

can choose ground-minimal



[figure by Dimitrios M. Thilikos]





Pick a vertex v

Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v

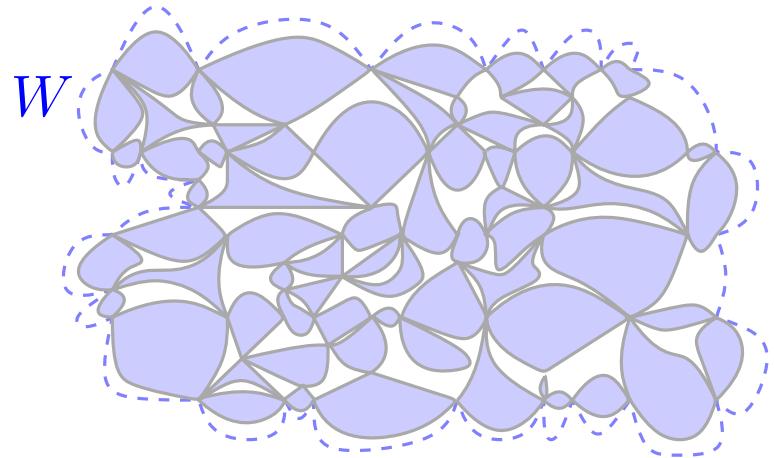
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

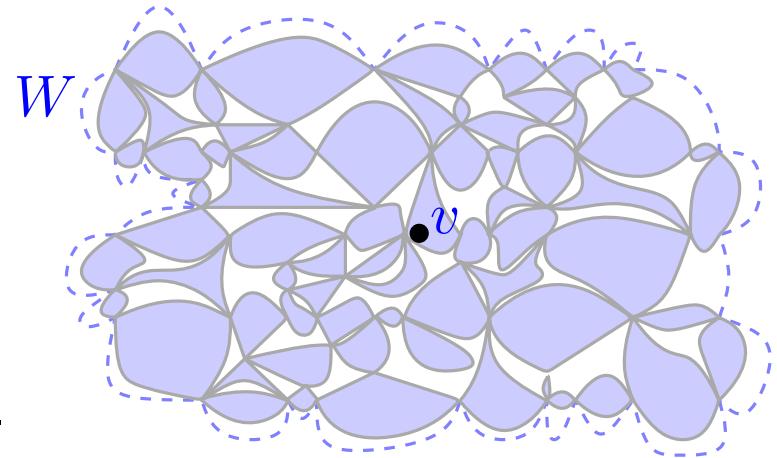
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

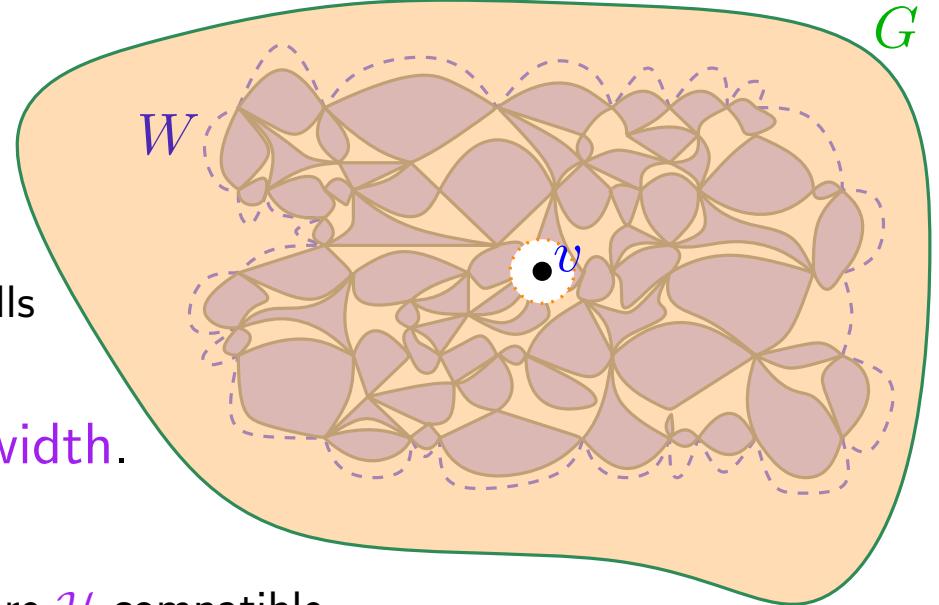
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

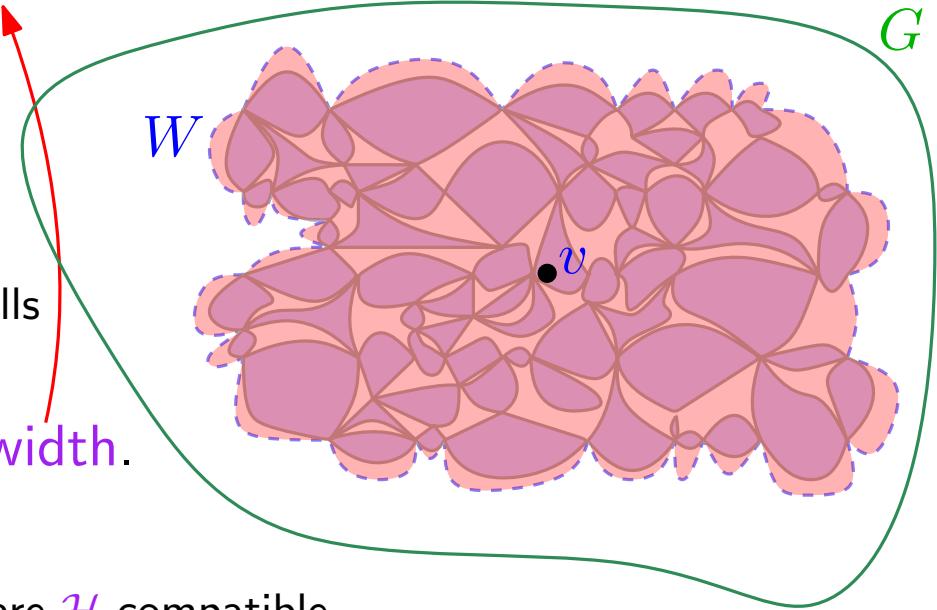
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

Solve recursively on $G - v$.

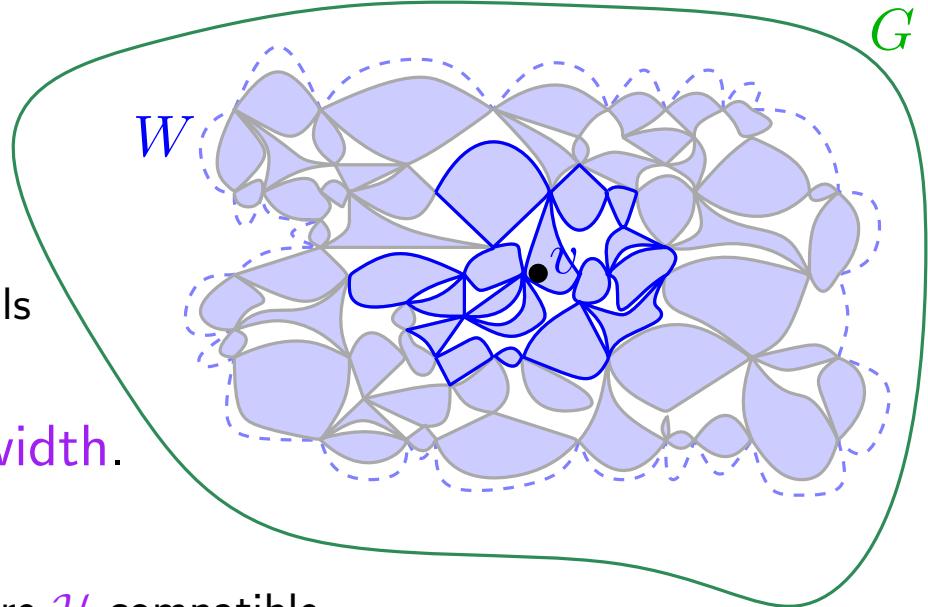
Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

Take a region R of cells of ρ' around v in W .



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

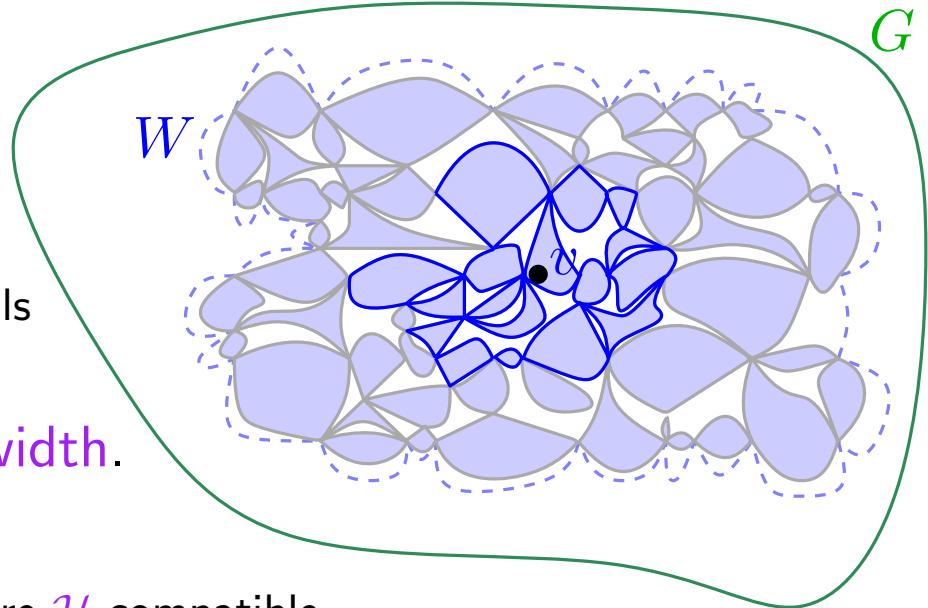
Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

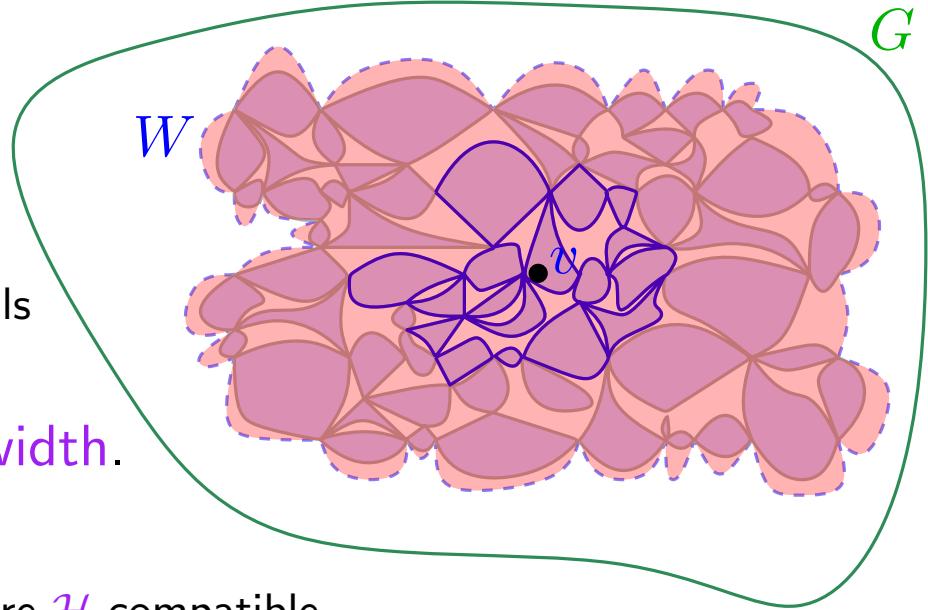
Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.

Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R



Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

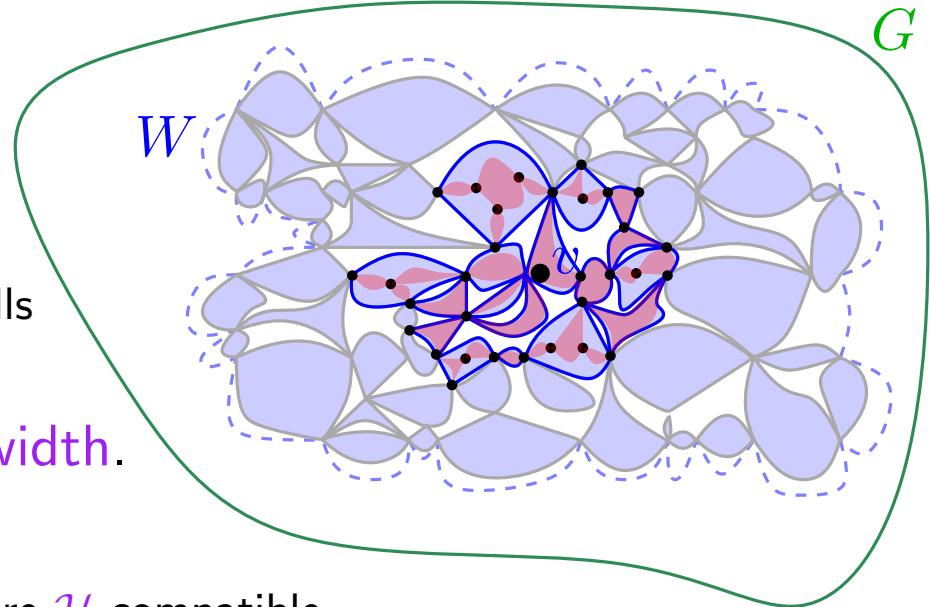
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R
 \rightarrow replace the cells of ρ' in R with cells of ρ_2

Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

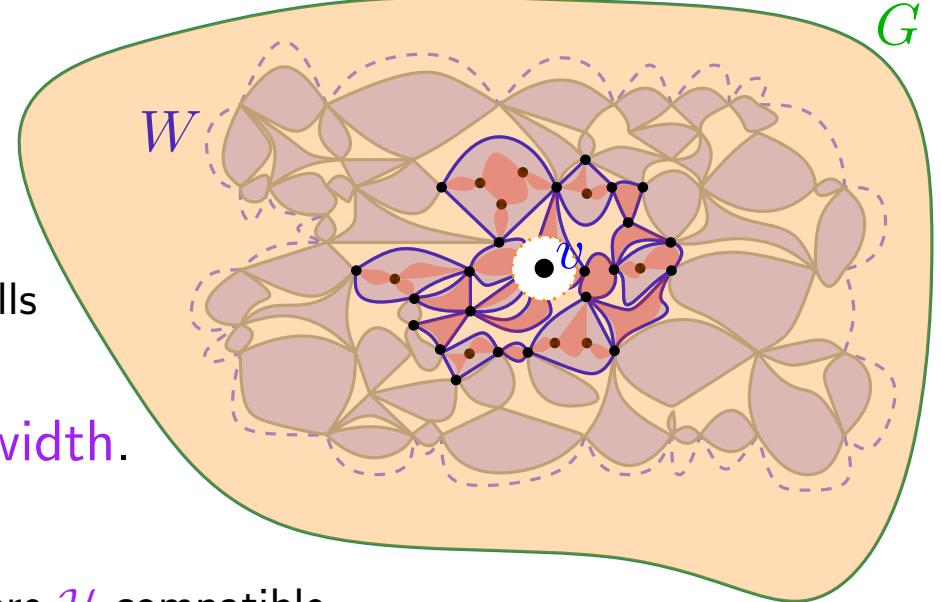
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R
 \rightarrow replace the cells of ρ' in R with cells of ρ_2

Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

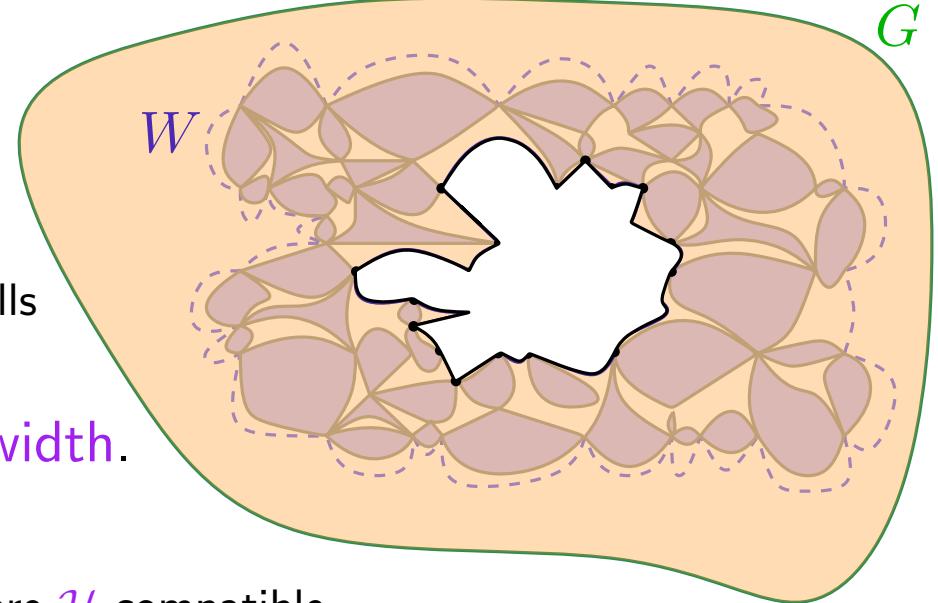
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R

\rightarrow replace the cells of ρ' in R with cells of ρ_2

\rightarrow replace the cells of ρ' outside of R with cells of ρ_1 (and use cells of ρ_1 outside of G')

Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

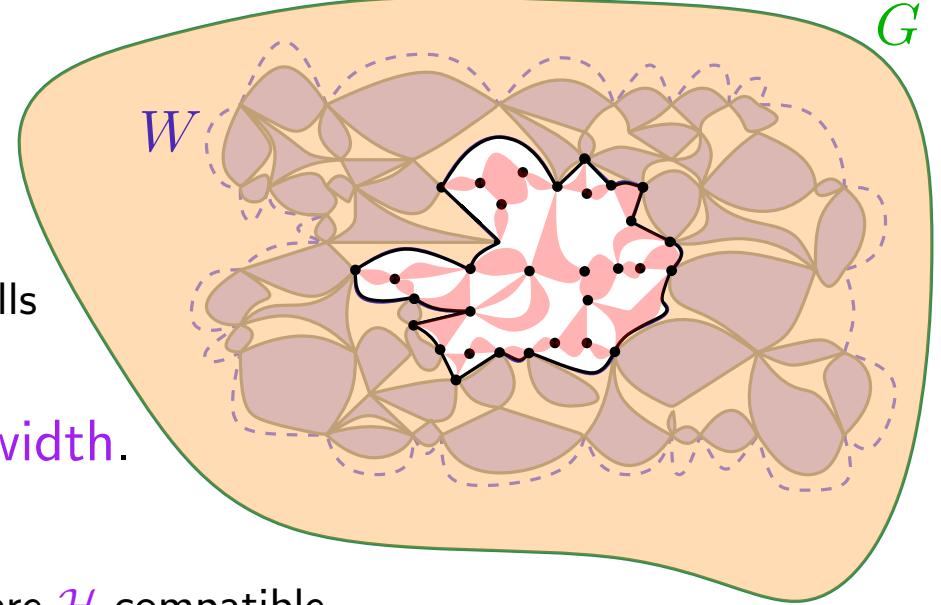
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Take a region R of cells of ρ' around v in W .

Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R

\rightarrow replace the cells of ρ' in R with cells of ρ_2

\rightarrow replace the cells of ρ' outside of R with cells of ρ_1 (and use cells of ρ_1 outside of G')

\Rightarrow rendition ρ of G whose cells are \mathcal{H} -compatible.

Find a flat wall W in G whose interior G' has bounded treewidth (or conclude).

Ground-minimal rendition ρ' in G' .

Pick a vertex v in the center of W .

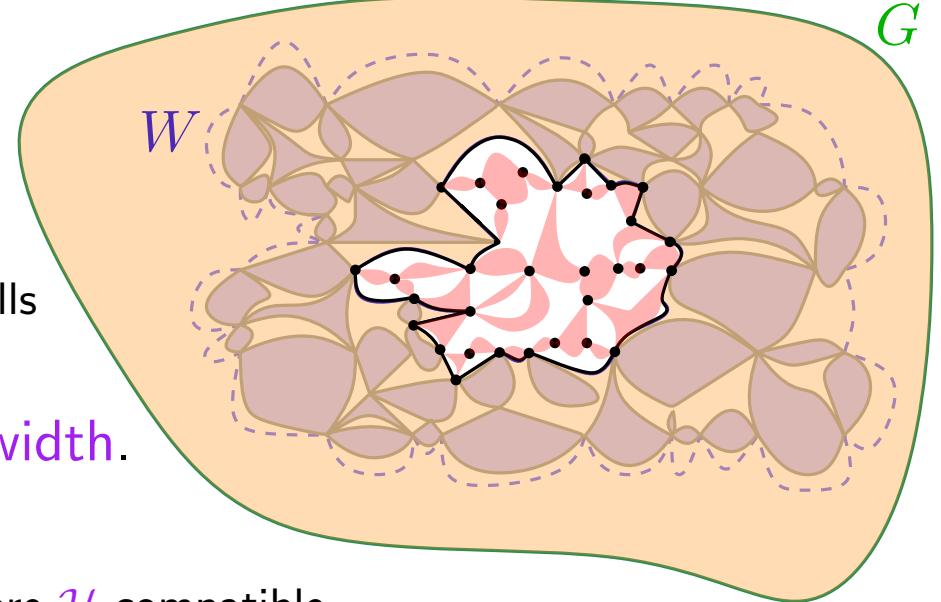
Solve recursively on $G - v$.

Ground-maximal rendition ρ_1 of $G - v$ whose cells are \mathcal{H} -compatible.

Take a region G' around v of small treewidth.

Solve on G' . [Courcelle, '90]

Ground-maximal rendition ρ_2 of G' whose cells are \mathcal{H} -compatible.



Take a region R of cells of ρ' around v in W .

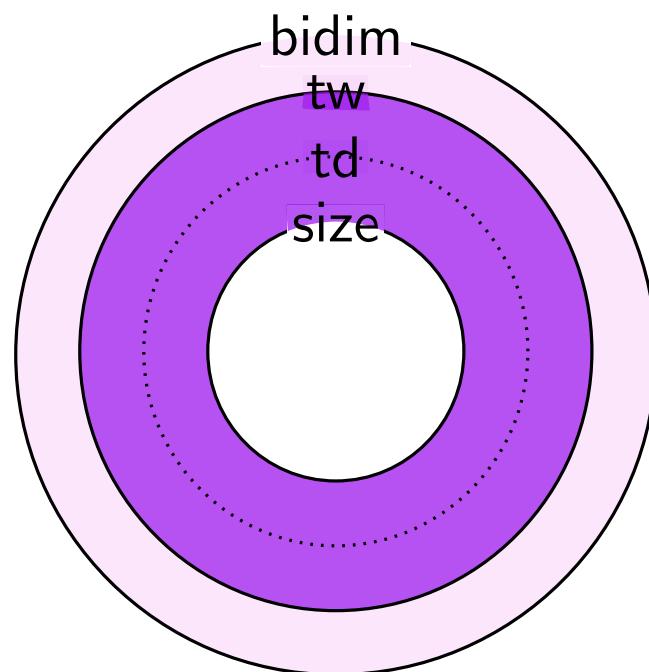
Each cell of ρ_1 and ρ_2 is contained in a cell of ρ' . \rightarrow can glue ρ_1 and ρ_2 at the boundary of R

\rightarrow replace the cells of ρ' in R with cells of ρ_2

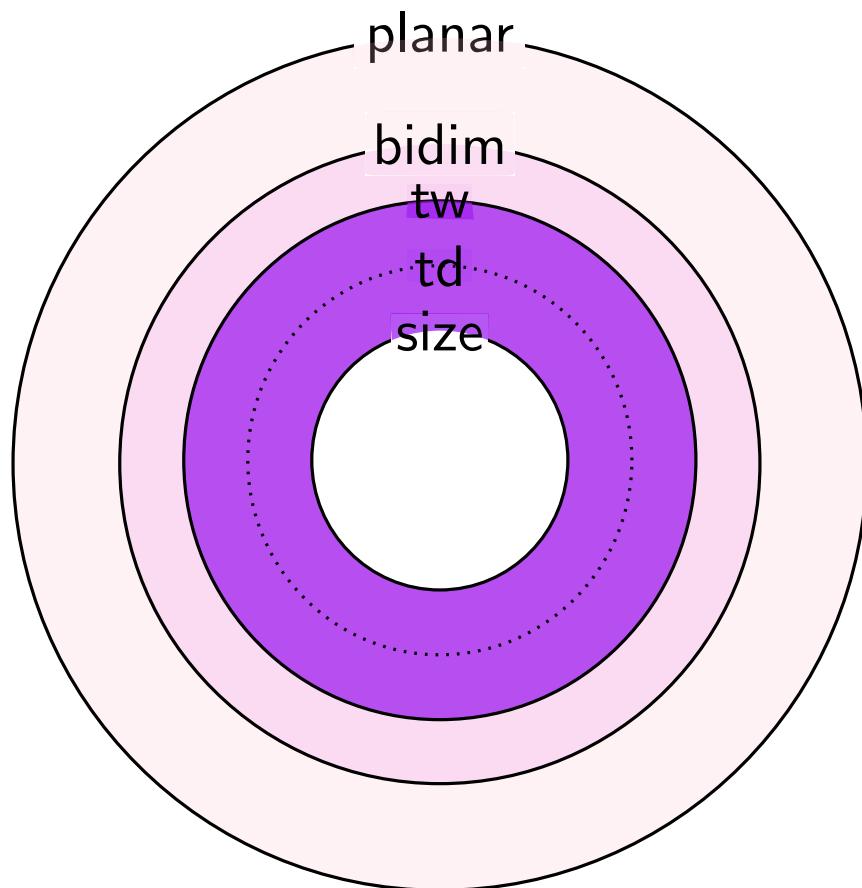
\rightarrow replace the cells of ρ' outside of R with cells of ρ_1 (and use cells of ρ_1 outside of G')

\Rightarrow rendition ρ of G whose cells are \mathcal{H} -compatible.

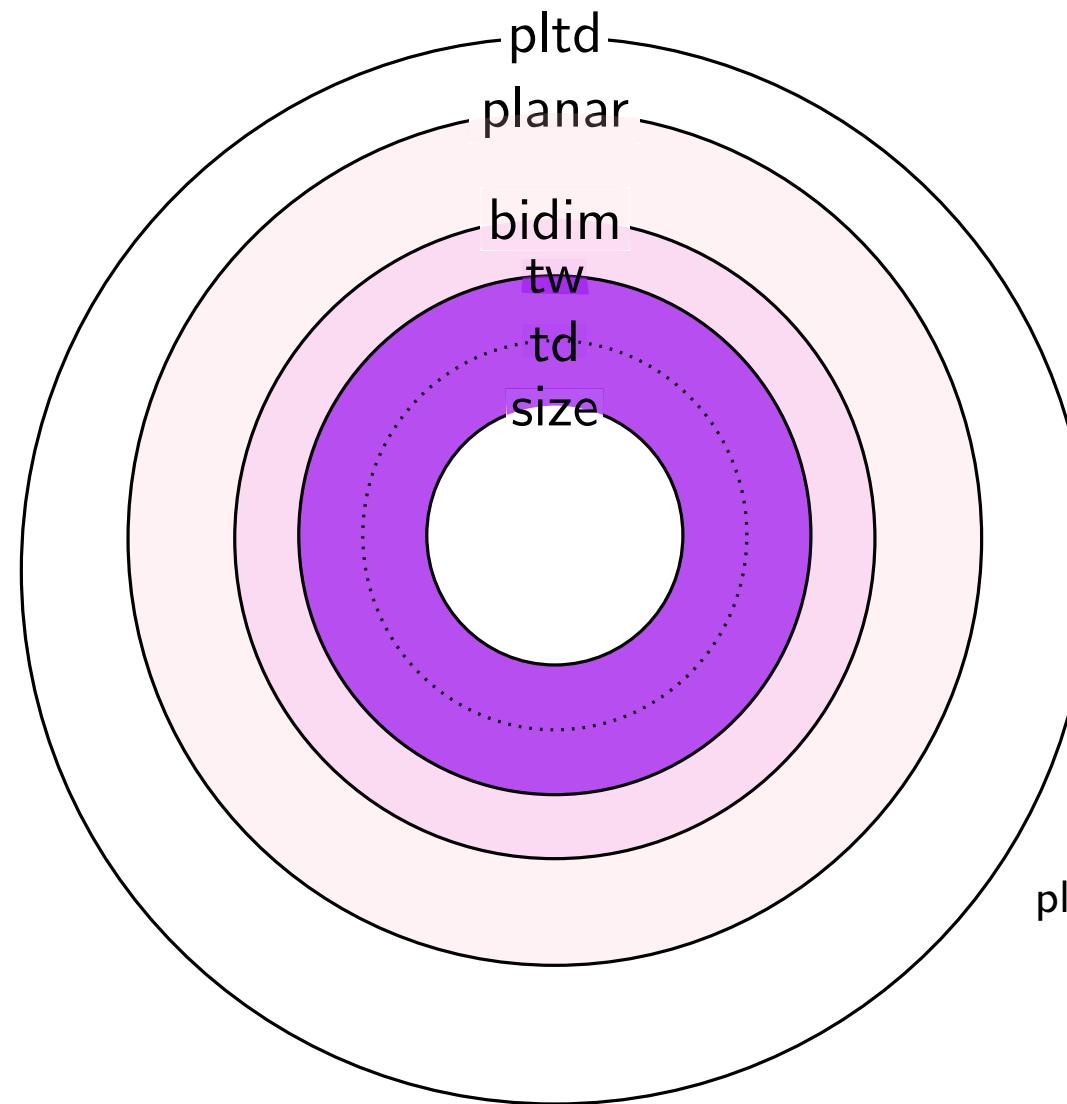
Going even further



Going even further



Going even further



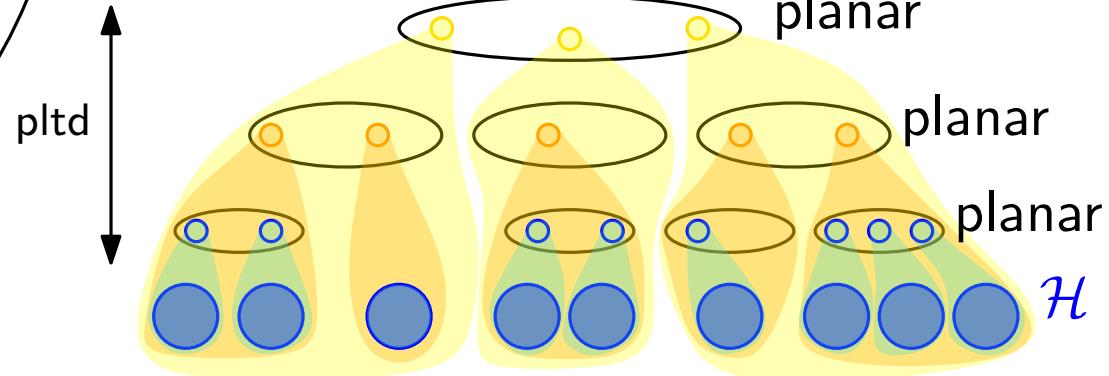
Graph class \mathcal{H}

- hereditary,
- closed under disjoint union,
- CMSO-definable, and
- VERTEX DELETION TO \mathcal{H} in time $\mathcal{O}_k(n^c)$.

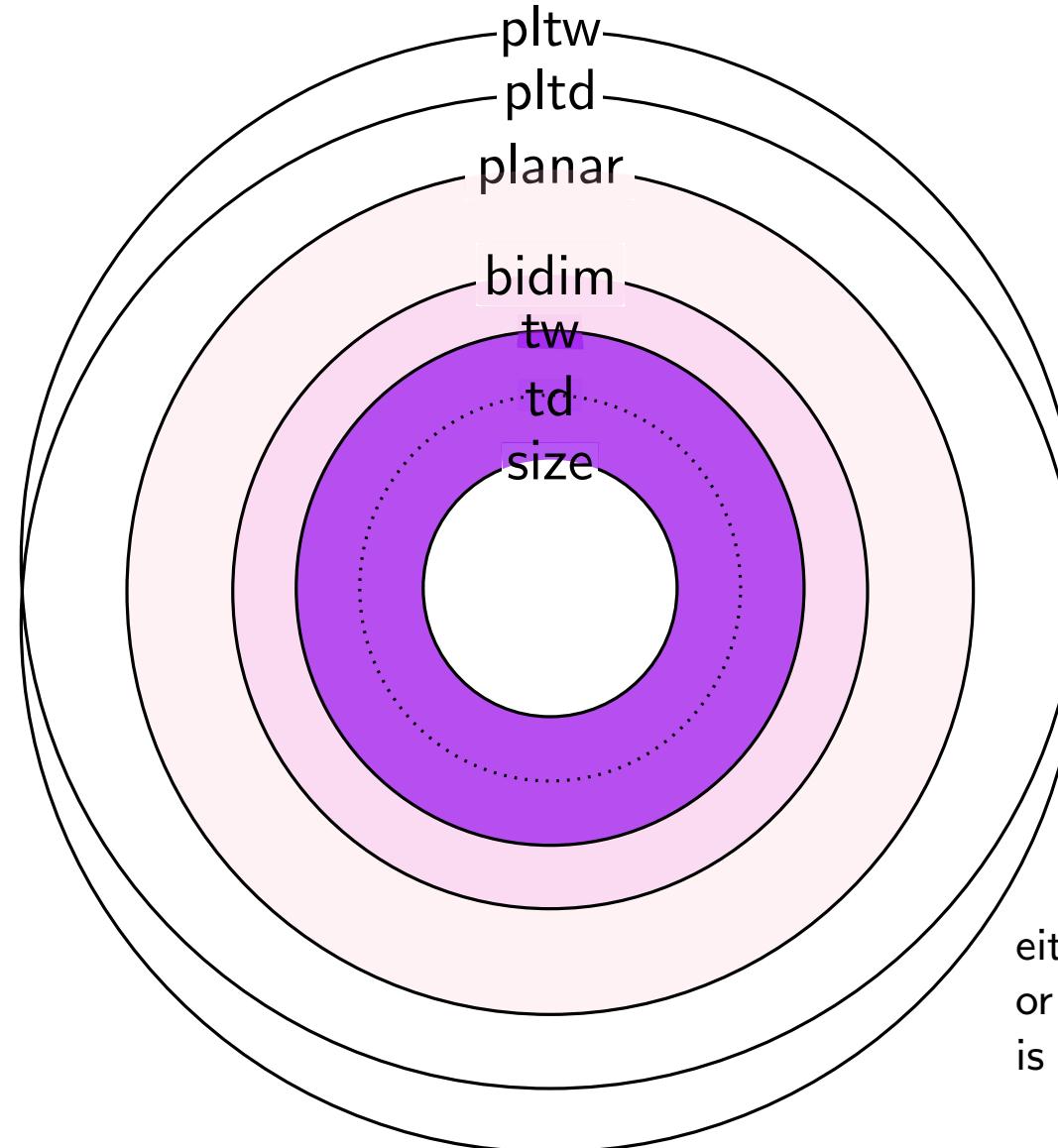
[Fomin, Golovach, Morelle, Thilikos]

One can decide if \mathcal{H} -pltd(G) $\leq k$ in time $\mathcal{O}_k(n^4 + n^c \log n)$.

Planar treedepth pltd



Going even further



Graph class \mathcal{H}

- hereditary,
- closed under disjoint union,
- CMO-definable, and
- VERTEX DELETION TO \mathcal{H} in time $\mathcal{O}_k(n^c)$.

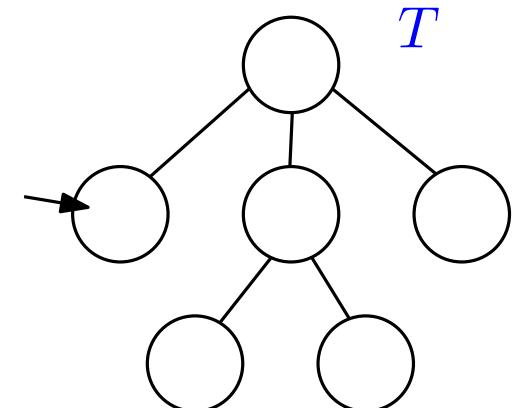
[Fomin, Golovach, Morelle, Thilikos]

One can decide if $\mathcal{H}\text{-pltw}(G) \leq k$ in time $\mathcal{O}_k(n^4 + n^c \log n)$.

Planar treewidth pltw

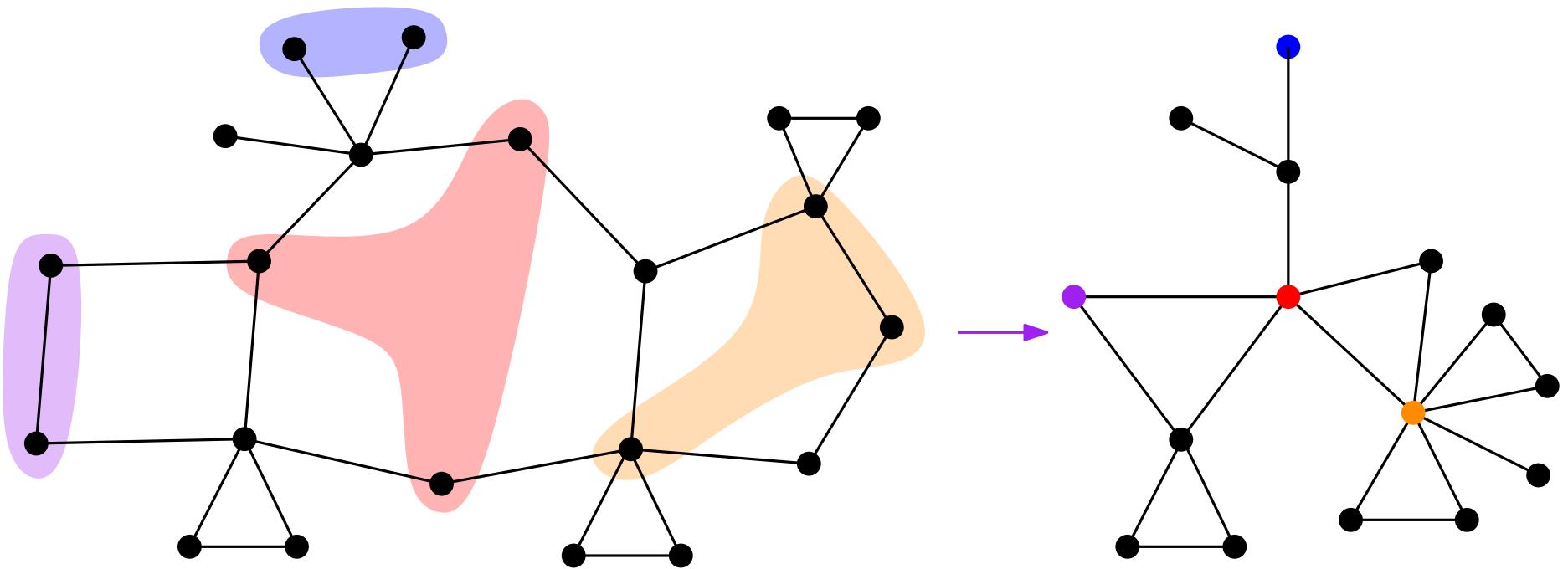
Tree decomposition $(T, \{B_t\}_t)$ of G

either $|B_t| \leq k + 1$
or the torso of B_t
is planar

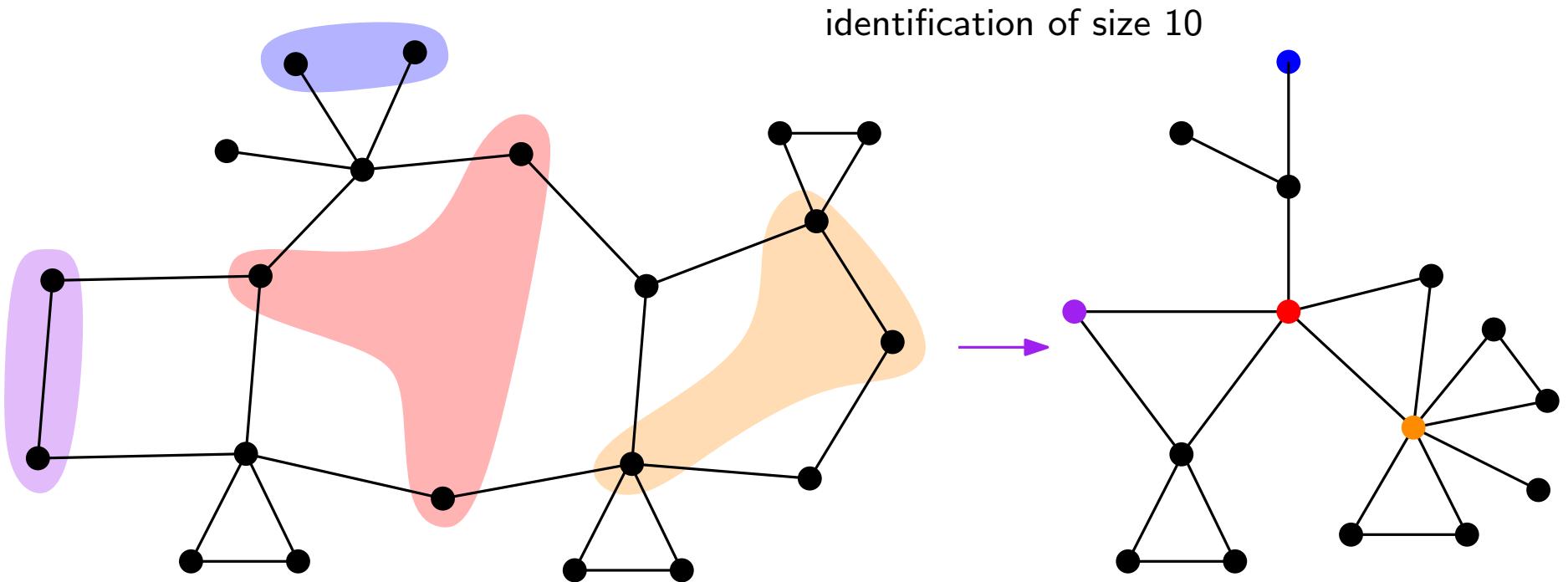


4. A new modification: vertex identification

Vertex identification



Vertex identification



Size of the identification = number of vertices involved in the identification

Why identifications?

Structure theorems meet graph modification problems

Why identifications?

Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

Why identifications?

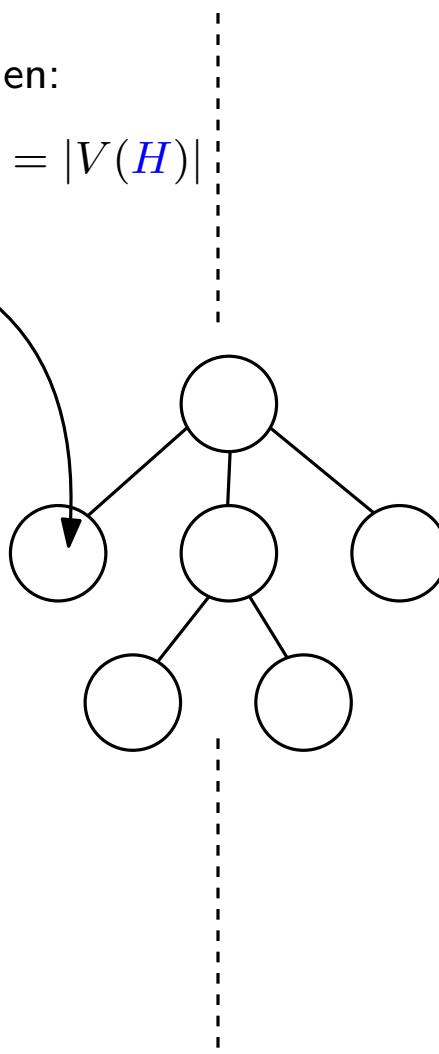
Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t. $h = |V(H)|$

the torso of each bag



Why identifications?

Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

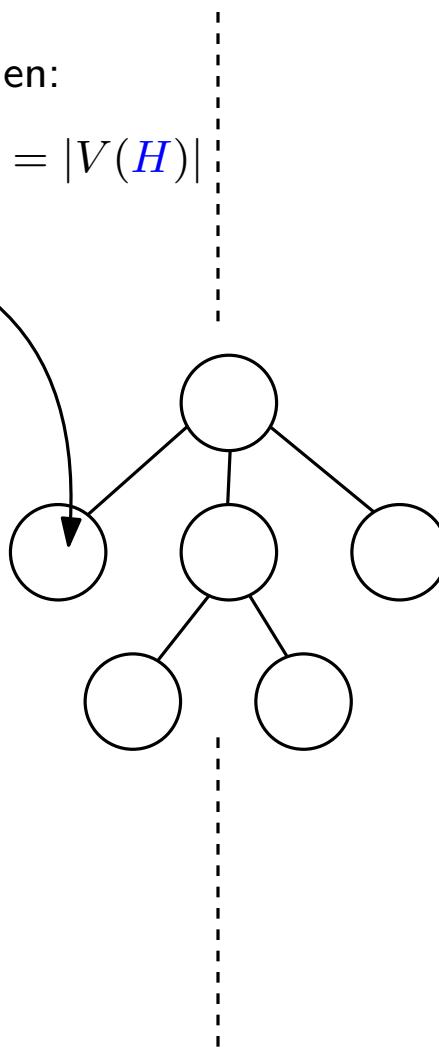
If G excludes a graph H as a minor, then:

G has a tree decomposition s.t. $h = |V(H)|$

the torso of each bag

is embeddable in some surface Σ_h

after deleting a vertex set S of bidimensionality $\leq f(h)$.



Why identifications?

Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

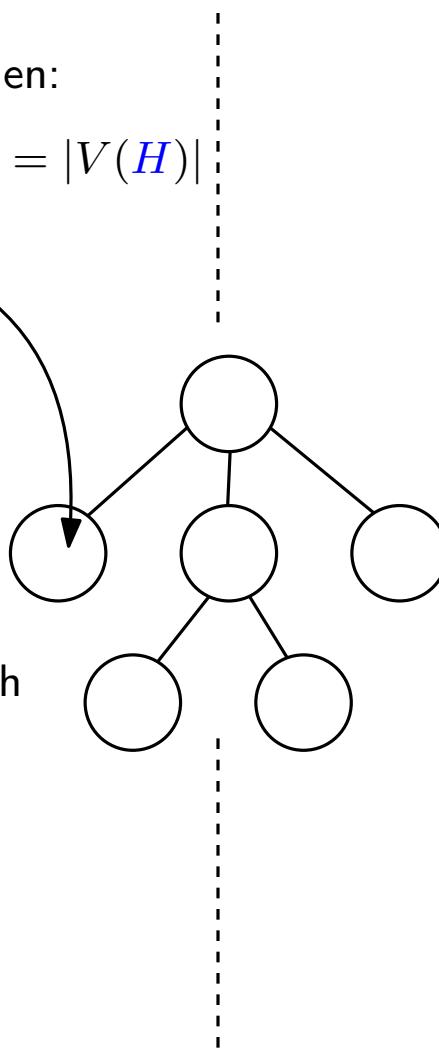
G has a tree decomposition s.t. $h = |V(H)|$

the torso of each bag

is embeddable in some surface Σ_h

after deleting a vertex set S of bidimensionality $\leq f(h)$.

Conversely, if G admits such a tree decomposition, then G excludes a graph H_h as a minor.



Why identifications?

Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

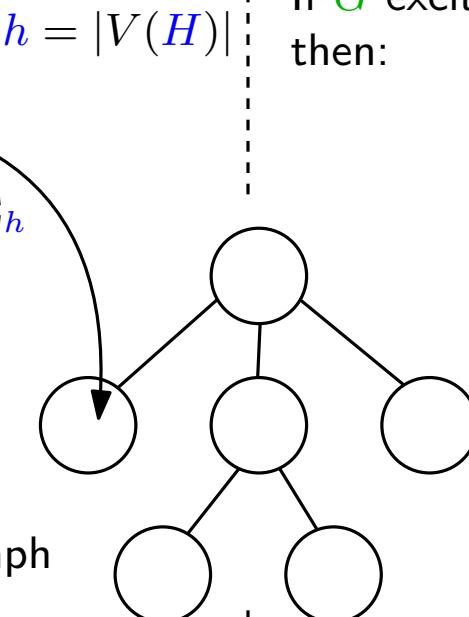
If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

is embeddable in some surface Σ_h

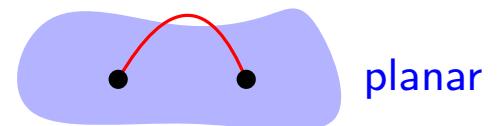
after deleting a vertex set S of
bidimensionality $\leq f(h)$.

Conversely, if G admits such a tree
decomposition, then G excludes a graph
 H_h as a minor.



[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:



Why identifications?

Structure theorems meet graph modification problems

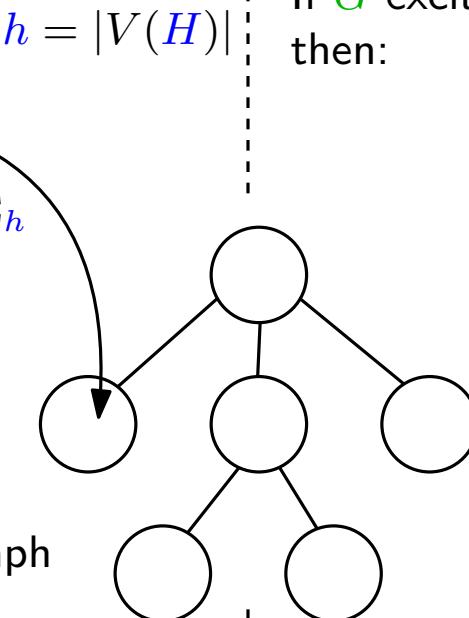
[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

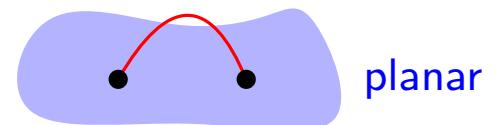
is embeddable in some surface Σ_h
after deleting a vertex set S of
bidimensionality $\leq f(h)$.

Conversely, if G admits such a tree
decomposition, then G excludes a graph
 H_h as a minor.



[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:



G has a tree decomposition s.t.
the torso of each bag

Why identifications?

Structure theorems meet graph modification problems

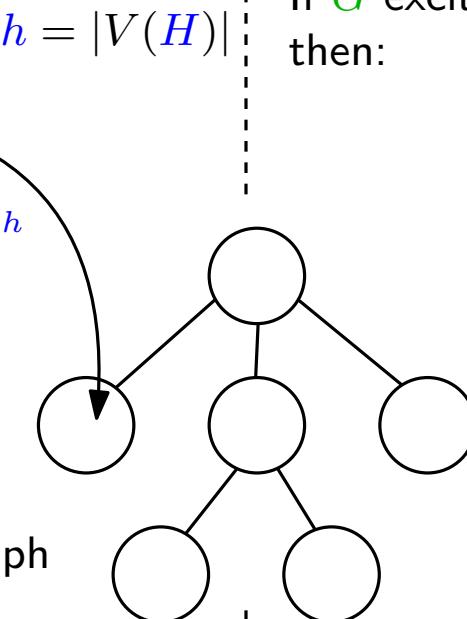
[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

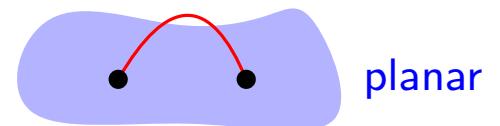
is embeddable in some surface Σ_h
after deleting a vertex set S of
bidimensionality $\leq f(h)$.

Conversely, if G admits such a tree
decomposition, then G excludes a graph
 H_h as a minor.



[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:



G has a tree decomposition s.t.
the torso of each bag
is embeddable in the projective plane
after identifying a vertex set S of
bidimensionality $\leq f(h)$.

Why identifications?

Structure theorems meet graph modification problems

[Robertson, Seymour, '03]+[Thilikos, Wiederrecht, '23]

If G excludes a graph H as a minor, then:

G has a tree decomposition s.t.
the torso of each bag

is embeddable in some surface Σ_h
after deleting a vertex set S of
bidimensionality $\leq f(h)$.

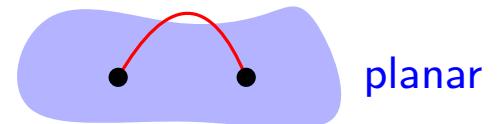
Conversely, if G admits such a tree
decomposition, then G excludes a graph
 H_h as a minor.

$$h = |V(H)|$$



[Morelle, Protopapas, Thilikos, Wiederrecht]

If G excludes an edge-apex graph H as a minor,
then:



G has a tree decomposition s.t.
the torso of each bag
is embeddable in the projective plane
after identifying a vertex set S of
bidimensionality $\leq f(h)$.

Conversely, if G admits such a tree
decomposition, then G excludes an
edge-apex graph H_h as a minor.

Results on identifications

[Morelle, Sau, Thilikos]

VERTEX IDENTIFICATION TO FORESTS is solvable in time
 $\mathcal{O}(1.2738^k + k\sqrt{\log k} \cdot n)$.

[Morelle, Sau, Thilikos]

If \mathcal{H} is minor-closed, then \mathcal{L} -REPLACEMENT TO \mathcal{H} is solvable in time
 $2^{\text{poly}_{\mathcal{H}}(k)} \cdot n^2$ for \mathcal{L} hereditary.

→ includes VERTEX IDENTIFICATION TO \mathcal{H}

Further research

Direction 1: Efficiency

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, VERTEX DELETION TO \mathcal{H}

$$2^{\textcolor{red}{k}^{\mathcal{O}_{\mathcal{H}}(1)}} \cdot \textcolor{green}{n}^2$$

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, VERTEX DELETION TO \mathcal{H}

$$2^{k^{\mathcal{O}_{\mathcal{H}}(1)}} \cdot n^2 \longrightarrow n^{1+o(1)}? \quad [\text{Korhonen, Pilipczuk, Stamoulis, '24}]$$

Direction 1: Efficiency

Can we improve the running time of the different algorithms?

In particular, VERTEX DELETION TO \mathcal{H}

$$2^{\mathbf{k}^{\mathcal{O}_{\mathcal{H}}(1)}} \cdot \mathbf{n}^2 \longrightarrow \mathbf{n}^{1+o(1)}? \quad [\text{Korhonen, Pilipczuk, Stamoulis, '24}]$$

$$\curvearrowright 2^{\mathcal{O}_{\mathcal{H}}(\mathbf{k}^c)}?$$

Direction 2: Generalization

Direction 2: Generalization

Graph class \mathcal{H} hereditary, closed under disjoint union, and CMSO-definable.

Parameter p minor-monotone.

for each minor H of G , $p(H) \leq p(G)$

Conjecture: If VERTEX DELETION TO \mathcal{H} is FPT, then checking $\mathcal{H}\text{-}p(G) \leq k$ is also FPT.

Direction 2: Generalization

Graph class \mathcal{H} hereditary, closed under disjoint union, and CMSO-definable.

Parameter p **minor-monotone**.

for each minor H of G , $p(H) \leq p(G)$

Conjecture: If VERTEX DELETION TO \mathcal{H} is FPT, then checking $\mathcal{H}\text{-}p(G) \leq k$ is also FPT.

Proved for $p \in \{\text{td}, \text{tw}\}$ \rightarrow likely to hold for any p with $\text{tw} \leq p \leq \text{size}$.

[Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, Zehavi, '22]

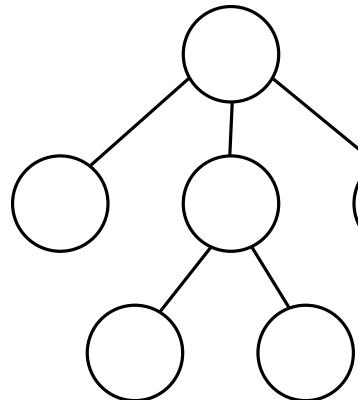
and $p \in \{\text{pltd}, \text{pltw}\}$ \rightarrow extension for any p ?

[Fomin, Golovach, Morello, Thilikos]

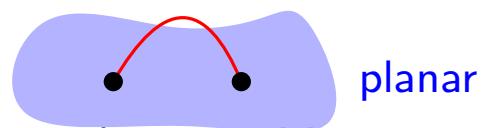
Direction 3: Structure theorems

Direction 3: Structure theorems

If G excludes an **edge-apex** graph H as a **minor**, then:

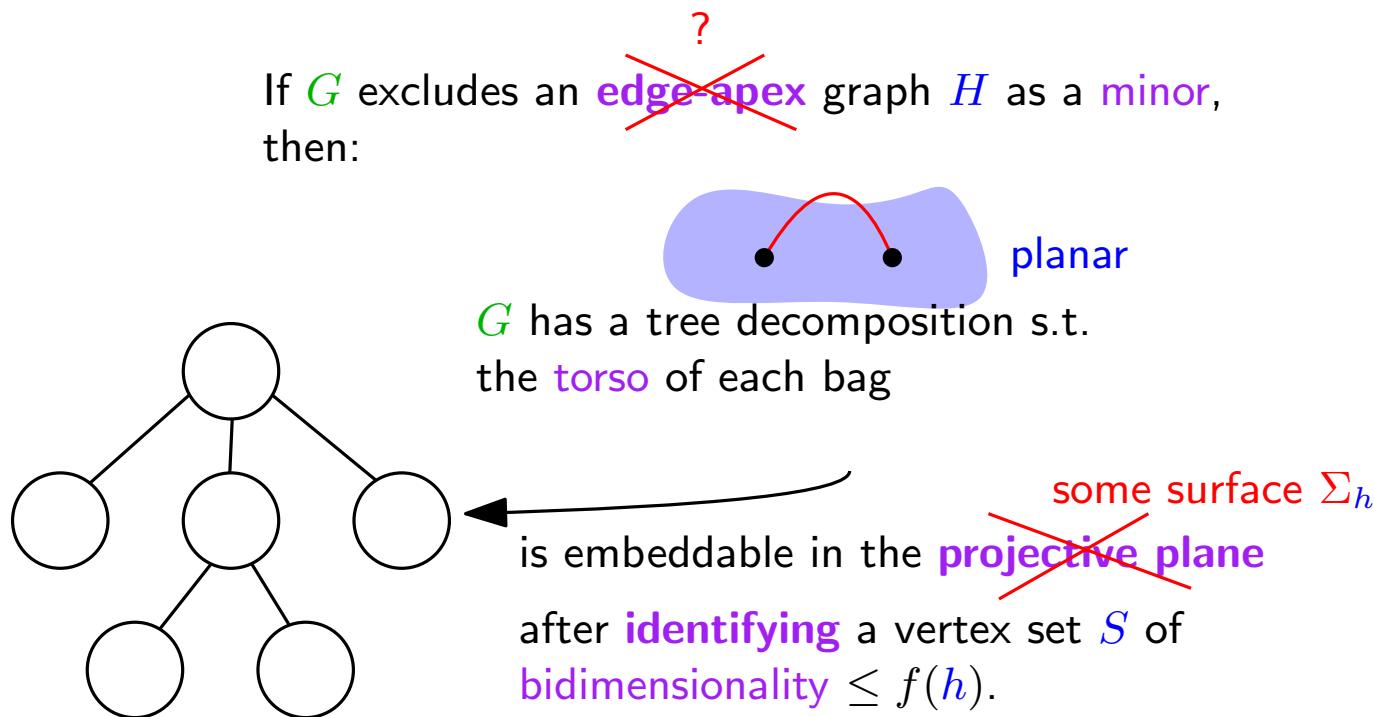


G has a tree decomposition s.t. the **torso** of each bag is embeddable in the **projective plane** after **identifying** a vertex set S of bidimensionality $\leq f(h)$.



planar

Direction 3: Structure theorems



Thank you!

- Faster parameterized algorithms for modification problems to minor-closed classes, with Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. ICALP 2023, TheoretCS 2024.
- Dynamic programming on bipartite tree decompositions, with Lars Jaffke, Ignasi Sau, and Dimitrios M. Thilikos. IPEC 2023, submitted to a journal.
- PACE Solver Description: Touiquidh, with Gaétan Berthe, Yoann Coudert–Osmont, Alexander Dobler, Amadeus Reinald, and Mathis Rocton. IPEC 2023.
- A note on locating sets in twin-free graphs, with Nicolas Bousquet, Quentin Chuet, Victor Falgas-Ravry, and Amaury Jacques. Discrete Mathematics 2025.
- On the parameterized complexity of computing good edge-labelings, with Davi de Andrade, Júlio Araújo, Ignasi Sau, and Ana Silva. Submitted to a journal.
- Vertex identification to a forest, with Ignasi Sau and Dimitrios M. Thilikos. Discrete Mathematics 2026.
- Graph modification of bounded size to minor-closed classes as fast as vertex deletion, with Ignasi Sau and Dimitrios M. Thilikos. ESA 2025.
- Excluding Pinched Spheres, with Evangelos Protopapas, Dimitrios M. Thilikos, and Sebastian Wiederrecht. Submitted to a journal.
- When does FTP become FPT?, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. WG 2025.
- Fault-Tolerant Matroid Bases, with Matthias Bentert, Fedor V. Fomin, and Petr A. Golovach. ESA 2025.
- H-Planarity and Parametric Extensions: when Modulators Act Globally, with Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Submitted to a conference.
- Faster Algorithms for the Pre-Assignment Problem for Unique Minimum Vertex Cover, with Marthe Bonamy, Timothé Picavet, and Alexander Scott. Submitted to a conference.